Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Sage Reference Manual

723723 views
1
Search.setIndex({envversion:42,terms:{iterator_in_nbr:[0,30,13],g_aoagpgc:8,orthogon:21,diffusecolor:8,frucht_graph:21,"_sa_oka_sa":8,yellow:8,classs:38,four:[49,44,21,8,5,26],secondli:8,sleev:8,edge_str:8,suzann:21,pidq:40,dist:[8,44,14,7],num_point:41,kassel:30,andri:21,agacaaig:8,consider:[8,30,26],emptyseterror:8,staticsparsebackend:[38,8,13,2,49],"2k_4":20,typeerror:[28,2,30,4,31,38,8,21],sahni:22,sorri:13,exact_connect:21,wcgegg_:8,check_aut_edg:21,flow_polytop:2,is_arc_transit:38,edward:21,coucou:8,aut:[33,8,21],under:[8,30],preprocess:[22,10],aux:5,sped:3,worth:[15,14,44],clockwis:[8,21],emploi:44,digit:[33,21],edge_transit:33,everi:[1,2,44,45,15,16,5,19,46,26,22,38,48,8,24,47,21],risk:8,batbra2005:21,dollar:44,internet:[39,20,21,5],hakimi:21,p253:38,sibfgacef_:38,s_i:21,acgogo:8,og_va_co:8,kutato:8,sage_object:[0,45,20,44,7],cleemput:[34,21],appar:[0,41],randomregular:21,scb:8,fractal:21,is_plu:10,higman:21,fibonaccitre:21,school:48,average_dist:8,edgelabel:8,"_o_wcochc":8,showcas:8,wurzburg:30,randomtourna:48,prefix:42,degeneraci:38,solid:[8,44,21,7],vector:[14,45,35,7,48,8,21],math:[27,2,3,47,7,38,48,8,22,42,21],cefgacdgacdehadef:38,wiener_index:[8,14],cmu:22,beqcocg:8,pentagram:21,min_out_degre:48,nx_yaml:8,"l\u00e1szl\u00f3":43,miller:[2,45,3,31,38,48,40,21],naiv:[45,25,36,5],direct:[],hypergraph_gener:11,horn:21,consequ:[0,14,5,19,37,38,8],second:[38,14,41,31,47,33,23,8,44,42,21,11],"_num_arc":[28,4],ffff00:[8,7],transitv:38,chen:21,psu:[35,10],antihol:[18,38],inverse_ord:23,even:[14,2,15,19,26,22,38,8,21],blanusa:21,insid:[44,47,20,21,38,8,26],contemp:38,neg:[28,14,2,29,4,5,16,26,38,48,8,31,21],oymfp:40,kantor:[38,45,8,21],weren:7,ff00ff:44,kuo:21,steiner:[41,8],buckl:35,nonetyp:30,punkt:8,"new":[0,28,14,2,44,41,22,30,4,5,47,33,37,38,48,8,31,25,21],symmetr:[38,8,2,21],acgocagca:8,topolog:[14,2,10,38,8,21],joynernguyencohen2010:22,dahi:[38,26],edge_boundari:8,elimin:[38,8,16],qawoha:8,acflss04:38,randomtriangul:21,whose:[0,28,14,41,15,29,30,16,44,39,47,51,42,26,38,8,9,21,35],gaoq:8,graphs_queri:8,never:[14,2,42,18,38,8,9],szeged_index:8,here:[0,2,41,29,30,16,5,38,10,7,23,8,44,40,21,26],latapi:14,dore:21,met:[38,22],spkg:[39,41,8,21,48],num_vert:[27,0,28,13,30,4,6,48,8,21],bad_nam:44,bipartite_set:[38,8],path:[],p_4:20,coen:38,strongly_connected_components_digraph:[8,2],interpret:[0,41,8,28,44],clawfre:20,michal:42,cdef:[15,30,28,4,19],get_opt:[8,44],addario:38,anymor:[38,51,8,26,21],wdm:42,flowersnark:[18,38,8,36,21],precis:[2,15,29,42,51,7,38,8,9,21],graph_db:33,s00224:21,starting_vertex:[8,7],walther:21,to_graphics_arrai:40,permit:[38,8],"_oicg":8,generali:38,studi:[38,21],gnm:21,heawood:[8,21],isomorph:[41,18,33,6,21,38,48,8,45,26,11],a081621:21,schur:38,neighbor_out_iter:2,sierpinskigasketgraph:21,gosset:21,hyeong:21,"2sweep":[8,14],hypercub:21,fournier:5,moral:8,depth_first_search:[8,30],viennot:38,second_permut:21,total:[0,28,14,2,45,42,30,4,32,10,38,8,9,21],univ:[48,21,5],ord:[22,8],unit:[22,8,2,21,44],highli:38,ignore_edge_label:8,plot:[],graphics3d:[8,21],describ:[46,2,45,15,49,16,31,47,38,6,10,36,23,8,44,42,21,35],would:[28,14,15,4,16,47,20,26,37,38,8,44,25,21],tn2:50,is_simpl:[41,21],number_of_vertic:11,alenex:38,hanoi:21,ccpc:8,unpredict:21,c_gcq:8,kuratowski:8,robertsongraph:21,foster:21,call:[0,2,22,4,5,7,8,9,10,11,13,14,15,16,19,20,21,24,25,26,27,28,29,30,31,32,33,46,35,36,38,41,42,44,45,47,48,51],abchrs08:38,loooooong:26,mcqd:38,outgoing_edg:[8,2],robertson:[38,21],shortest_path_length:[8,30],type:[0,49,28,2,48,33,41,15,42,30,31,47,19,20,35,7,38,45,8,9,21],until:[28,29,30,4,16,20,47,8,21],swap:21,graphplot:[8,7],radix_mod_mask:4,relax:[38,42],laguerr:31,relat:[],anticycl:[18,38],notic:[2,42,10,35,38,8,9,21],dobcsanyi:41,warn:[41,8,36,44],holm:21,make_clique_bipartit:31,accur:8,is_bipartit:[38,29,20,21],vpo:45,hold:[30,44,38,48,8,42,21],overrul:[38,2,7],must:[2,22,4,5,40,42,21,16,9,19,8,24,0,28,29,30,31,32,37,38,41,44,48,51],centralii:38,kraus:35,springer:[14,21],rook:[21,31],join:[2,44,31,38,8,24,21],room:[28,4],frucht:21,restor:23,acyclic_dummi:8,generalis:8,setup:44,work:[2,3,4,7,42,8,21,14,15,16,9,19,22,26,28,29,30,32,46,36,38,45,44],degreesequencebipartit:21,roof:21,matroid:8,"_kcgpc":8,wors:[36,21,5],norm:7,gorcg_ao:8,hansen:[23,38,2,21],root:[],pos_dict:[8,7],undirect:[],stantard:38,overrid:[8,44,21,31],"0x7f270ec42c08":48,dataabas:33,toroidalgrid2dgraph:[8,21],quiver:2,gsgpagoc_:8,bell:21,give:[28,2,44,41,42,30,4,5,16,37,38,8,24,9,21],factbook:21,num_chk:31,knesser:21,planar_s:21,cautiou:41,tolrep:21,points_ord:21,caution:41,fibonacci:21,want:[39,28,14,2,41,3,30,4,16,18,45,47,46,51,22,38,8,25,21],boothbi:[38,3,8,16,21],k43:8,unsign:[14,4],tediou:16,"_plot_compon":7,end:[2,45,3,30,44,47,15,38,48,8,21],lecturen3:38,manipul:[33,44],eng:48,transitive_reduction_acycl:45,cylind:8,travel:8,prendr:26,iggp:8,fast_gnp_random_graph:21,copy_graph:21,how:[],vertex_fill_color:44,disappear:8,fibonacci_sequ:21,edge_thick:[39,44],answer:[46,2,41,15,29,20,51,37,38,8,26],verifi:[41,16,38,7,23,8,21],borgatti:38,wolfram:[8,21],rankdir:[8,2],recogn:[2,44,7,38,8,24],lai:45,num_arc:[30,28,4],tablenam:33,ladder:21,after:[2,15,16,44,32,38,8,40,21],lump:31,g_imm:[38,8,2],befor:[13,2,41,30,44,45,51,10,38,48,8,21],wrong:[14,2,29,42,5,20,38,8,9,21],lax:22,beauti:21,permgroup_nam:8,law:21,lap:8,parallel:[2,22,29,38,48,21],averag:[38,19,8,21],caylei:[8,21],zaversnik:38,abcdefghik:8,principl:42,domin:[19,8,20,5],"5048cm":44,ground_set:41,helsinki:34,fewer:[33,21],randomnewmanwattsstrogatz:21,grant:21,rpk80:48,lost:[38,51],degree_iter:[8,2],think:[13,2,15,30,38,9,42],chang_graph:21,receiv:[41,8],somethingdiffer:38,maintain:[14,45,30,5,20,8],includegraph:38,gutman:[8,14],total_vert:4,enter:[38,33,29,2,17],exclus:[20,31],worst:[8,14,16,5],lambda:[14,2,3,44,26,38,48,8,21],digraph_gener:48,order:[2,3,5,7,8,9,10,13,14,16,18,20,21,23,25,26,0,28,29,30,31,32,34,37,38,41,42,44,47,48,51],wine:[8,14],oper:[28,14,2,33,15,29,4,32,19,51,38,8,21],composit:38,is_squar:38,iraadci:2,meredithgraph:21,max_dist:7,over:[1,2,4,5,6,8,42,21,13,15,23,24,25,26,0,28,29,30,31,32,33,38,41,44,47,48,49],upstream:35,becaus:[0,28,14,33,45,42,30,4,44,32,19,37,38,8,9,21],fifo:30,familli:21,dijkstra:[8,30,44],clv0v0:44,"0in":44,tetrahedr:21,incid:[],affect:[38,8,7],flexibl:[28,4,44],vari:21,bubblesortgraph:[36,21],v_k:8,sigplan:35,platon:21,independence_numb:33,furlong:44,loop_siz:7,fix:[13,14,2,41,30,44,38,28,48,23,1,8,21],clv0v4:44,dorogovtsevgoltsevmendesgraph:21,klein:21,better:[5,32,21,38,8,26],complex:[14,2,16,5,20,51,38,8,24,21],active_vertic:[30,28,4],uoi:18,loop_edg:8,ac_g:45,descend:50,them:[13,14,2,45,15,29,30,16,44,32,47,51,46,26,37,38,1,8,24,25,21],incoming_edg:[8,13,2],thei:[49,14,2,41,15,29,30,37,44,39,19,47,51,10,7,38,8,42,21,35],unimodular:20,enrich:51,safe:8,"30th":22,multiflow:8,"break":[2,41,29,31,32,33,38,8,21],add_cycl:[38,45,8],caterpillar:21,altermundu:44,ococtc:8,interrupt:34,bcehkl_bikm_bfghi:40,ihara_zeta_function_invers:38,pathwidth:[38,42],errera:21,sqldatabas:33,choic:[32,48,8,2,44],bodlaend:42,harri:21,unpickl:0,"_sa_oi":8,clique_polynomi:38,a000088:21,arrow:[8,7],each:[1,2,3,5,7,8,9,21,34,14,15,16,19,20,22,24,25,26,27,28,29,30,32,33,37,38,39,40,41,42,50,44,45,47,48,51],debug:[48,21,11],o_agcp:8,barerra:44,european:14,cliques_get_clique_bipartit:38,side:[38,39,8,47,21],mean:[27,0,14,2,41,22,29,30,16,44,32,20,37,38,8,42,9,21],ds_:21,pdflatex:[38,44],"_gcagdg_oa":8,bradshaw:45,laboratori:34,stronger:51,cycle_to_vector:8,oppos:[21,37],go_:8,can_be_reached_from:15,weighted_adjacency_matrix:[38,8,2],ommit:41,genericgraphbackend:[0,30],merg:[38,8,2,21,44],graph_class:[24,20],gon:21,randombipartit:[38,21],network:[1,38,48,8,42,21],gok:8,d_k:33,goe:[38,41,8,14,48],is2:41,is1:41,cluster_transit:8,predefin:[],content:[39,20,36,44],rewrit:[41,22,8],laid:8,spring_m:21,weighted:8,dcgo:8,plot3d:[8,21],lpform:8,got:38,cog_ooag:8,gov:[8,21],cfv11:44,dsc:8,york:21,dense_graph_init:46,gromov:5,dcgocoitc:8,igc_o:8,linear:[],interset:8,bhqwaw:8,markstroem:21,a_oaig:8,situat:[13,2,47,37,38,8,26],infin:[38,8,30,14],free:[15,16,6,26,38,48,8,24,20,21],greedili:[42,51],write_to_ep:38,"_color_by_label":[8,7],gqfo:8,completemultipartitegraph:[38,21],r77:21,publ:[27,48,8,21],xg2:38,fring:[8,14],xg1:38,reconfigur:42,puzzl:21,suter:38,isr:38,incidence_matrix:[38,41,8,2],traceback:[0,2,22,4,5,7,8,9,21,13,14,16,19,20,24,25,26,27,28,30,31,32,33,46,35,38,41,42,44,47,48,51],substructur:41,filter:[38,21],cfhm12:21,cv10v11:44,fuse:19,unabl:[8,29],reduction_rul:38,soda:18,oweokcpwao:2,onto:[21,31],output_list:40,sageobject:[0,45,20,44,7],polyhedron:[2,21],chap004:41,rang:[0,2,3,4,7,40,8,21,13,15,16,9,22,23,27,28,29,30,31,32,38,41,42,44,45,47,48],warshal:[8,14],nice_copi:8,dual_planar_s:21,chap003:41,haoo:8,acgocgo:8,tachyon:[38,8],allow_loop:[2,22,30,46,7,38,8],independ:[],wast:[15,26,38,9,42,51],rank:[],capac:[38,8,43],restrict:[2,42,47,33,23,8,25,21],instruct:[8,44],alreadi:[28,14,2,22,29,30,4,16,32,33,20,51,38,8,31,42,9,21],removed_edg:23,wrapper:[0,14,33,45,49,41,19],cfv12:44,knight:21,aperiod:2,langston:38,massiv:14,primari:[33,44],mlh08:[8,14],layout_extend_randomli:8,cartesian:[],tblname:33,rewritten:37,moduli:38,"_realiz":50,top:[28,30,4,5,7,38,8,44,21],flow_graph:8,mcgee:[38,21],sometim:[14,41,16,5,45,38,8,42],clawgraph:[20,26,38,8,25,21],haggard:23,ogca:8,max_length:2,isconnectedblockdesign:41,too:[13,14,2,29,37,16,25,51,46,20,26,7,38,8,42,9,21],tol:[8,1,7],similarli:[8,44,36,21,5],gurobi:41,gilbert:[27,48,21],john:[22,8],ogco:8,redner:48,listen:26,rong:21,szekeres_snark:21,edgeselect:23,"75in":44,augsburg:30,addition:44,albert:21,lower:[14,42,16,5,36,8,9,21],comar:35,incur:21,write_edgelist:8,somewhat:[8,44],conserv:2,erreragraph:21,dictionari:[0,14,2,33,41,30,38,16,37,44,39,19,20,7,23,48,8,21],technic:[],color_class:38,tex:[38,44],miyano:38,silli:[0,8],target:[39,8,2],keyword:[0,2,16,31,33,38,8],ccba:40,provid:[38,32,39,33,41,22,30,16,31,18,19,7,23,8,44,21],check_fil:44,grundy_color:16,tree:[],contradictori:29,project:[41,48,44,21,31],matter:[41,8],cayley_graph:[8,30],vertex0:8,longest_path:8,cgvac:8,tuttegraph:21,thu:[28,2,41,22,29,42,5,47,35,38,8,25,21],minh:[22,21],test_out:30,fashion:8,wheelgraph:[21,7,38,8,40,26],itali:21,ram:[38,8],mind:[38,15,29,46,26],spectrum:[38,33,8,21],cga_o:8,raw:45,seed:[48,8,21],manner:21,interfac:[],iii:16,seen:[2,42,30,51,36,8,9,21],seem:[38,51,2,21],incompat:[8,21],lbm:[8,14],incompar:[29,10],seven_acre_wood:38,search_iter:30,hull_numb:51,caracteris:38,unhash:[38,30],lmbda:41,latter:[22,8,33],seymour:38,currenli:51,lp2:8,lp1:8,vuqwk:45,matthew:38,chess:21,fname:31,block_design:41,is_strongly_regular:[38,46,14,21],matchstick:21,check_tkz_graph:[38,44],num_cycl:33,localmclaughlingraph:21,blue:[8,44],lb2:[8,14],insur:8,gaa:8,though:[49,14,2,15,29,30,42,44,47,26,38,8,9,21],option_nam:44,oagco_go_gb:8,ff9900:[8,7],what:[],supress:21,regular:[14,33,46,36,38,8,21,11],alan:6,letter:[14,21,38,48,8,42,10,35],multiline_adjlist:8,"0776127h0r7548v7":36,cagg_i:8,shalt:13,tradit:[8,7],simplic:15,doi:[14,22,21,35,24,10,26],don:[36,8,13,2,21],dom:5,max_out_degre:48,doc:[18,8,29,21],sp10:42,flow:[38,15,8,2],ogo:8,labelout:44,doe:[2,22,7,8,42,21,13,14,18,19,20,26,0,30,49,46,38,41,44,45,48,51],lpo:44,dummi:2,basis_as_vector:8,lancin:5,tech:[48,34,5],out_degree_sequ:2,enclos:[38,2],yann:21,unchang:38,sum:[1,41,3,30,16,5,38,46,15,23,8,21],dot:[8,44,7],hecke_matrix:8,cfv3v4:44,issimpleblockdesign:41,gosset_graph:21,shortest_path_all_pair:[8,14],opposit:[2,15,30,47,8,21],chapui:21,random:[27,14,41,22,29,30,16,44,45,20,7,38,48,8,47,21],sage:[],speedup:38,radiu:[38,33,8,21,7],syntax:[41,8,2,21],hafner2004:21,all_of:33,"0000ff":[38,8,44,7],pkg:41,oc_:8,cgekdh_h_:8,hydrocarbon:21,all_on:8,ag_:8,involv:[28,14,2,41,44,38,8,51],och:8,ock:39,gc_32:20,layout:[2,40,45,42,30,44,39,7,38,48,8,9,21],oca:8,explain:[38,47,8,37],configur:44,breadth_first_search:[8,30],scgr:8,q_o:8,del_edg:[0,28,4],gallai:[8,20],"2byte":14,bliss:8,scaba:8,mend:21,folder:20,"15in":44,menger:8,oct:5,capel:38,primary_kei:33,predecessor:[0,8,14,2],vol30:16,small_integer_to_graph6:45,cheng:8,empty1:21,reorder_set:47,label1:8,label2:8,likewis:21,stop:[14,9,5,36,8,42],coast:8,g_oacg_:8,brandstadt:38,congruent:[38,26,21],softwar:[23,8,35,21,44],edge_styl:[8,7],cv6v7:44,report:[41,15,30,5,35,38,8,21],reconstruct:15,"_agg":8,noshita:16,parachut:38,net:44,holland:37,cv0v4:44,cv0v5:44,bar:[8,21],cv0v3:44,cv0v0:44,emb:[8,21],matching_polynomi:[38,3,31],kantorgraph:21,probabl:[27,28,41,3,4,44,45,26,38,48,8,21],shape:[8,44,21,7],gather:[20,16,46,51,37,47,26],gokxir:8,twice:[28,2,30,4,38,8],bad:[29,8,16],aki80:16,wcsegaga:8,cfv1v2:44,cfv1v3:44,is_split:[38,20],lb62:24,genranspanningtre:22,valid:[14,2,29,16,33,42,38,8,9],arc_label:28,underlying_graph:23,twopi:[8,44,7],set_opt:[8,44],kirchhoff:[38,8],sparsegraphllnod:28,habib:[38,14],subtre:47,result:[14,2,45,3,29,30,16,37,5,47,33,20,50,26,7,38,48,8,44,42,21],respons:22,fail:[28,14,30,4,16,21,38,8,31,26],hash:[8,28],hajiagha:47,o_i:8,"_wc":8,subject:[32,8,2,44],coxet:21,awar:5,said:[46,41,5,51,20,35,38,8,25,26],cfv1v4:44,tensor:8,harborthgraph:21,rare:38,wikipedia:[14,2,41,29,16,43,19,46,26,48,38,1,8,25,21],discoveri:8,rot_si:8,web:[8,21],figur:10,prune:[42,21],drawn:[8,44,21,7],awai:[28,4,21],boost_graph:[19,8],pchk:8,posdict23:21,attribut:[0,49,30,16,50,8],gordon10:23,in_degree_sequ:2,accord:[32,39,14,2,29,30,16,37,44,18,47,7,38,8,21],return_tree_basi:38,clique_graph:38,extend:[13,49,30,44,32,20,26,47,8,42,21],knight_i:21,check_overfull_kn_odd:38,xrang:[38,8,30,21,5],weak:[8,51],graph_isom_equivalent_non_edge_labeled_graph:8,clique_maximum:[38,34,21],extens:[],lazi:[8,42,9],snappi:36,replace_input:17,root_vertex:8,get_embed:[8,36,21],backbon:21,gcaacgvag:8,display_col:[38,33,8,40],gewirtz:21,pgf:44,sparse6:[38,45,40,21],gge:8,protect:39,accident:7,default_weight:8,expos:21,sierpinski:21,hashabl:[49,2,41,30,26,38,8,21],szege:[8,14],howev:[14,2,15,29,30,42,31,19,38,8,44,25,21],ggg:21,against:2,facet:38,stuttgart:30,"_ogd":8,und:8,achacgo:8,cog:[45,8],logic:[48,44],countri:21,get_skeleton:33,is_cut_vertex:8,projective_plan:41,col:33,monograph:38,uno:16,sparse6_str:[38,26],giqcc:21,gxg:38,expected_degre:[30,28],kwd:[0,41,38,31,33,7,23,8,44,40],shrikhandegraph:21,chd:45,had:[8,2,17],st94:29,inc:38,height:[45,8,2,21,7],gap:[38,41,21,5],vertex_label_color:44,permut:[],theoret:[38,42,26],write_graphml:8,guid:34,assum:[0,28,2,15,42,30,4,5,47,16,26,7,38,8,24,22,9,21],matth:44,accustom:44,degener:21,coeffs_v:8,gk_:40,oabaoc:8,mapsto:8,cograph:20,fro:11,three:[2,16,44,20,38,8,24,50,21],been:[0,14,2,44,41,15,29,30,16,5,32,51,42,35,36,38,48,8,17,9,21],github:[39,8],much:[13,14,40,29,49,16,5,28,38,8,42,25,21],royl:[23,21],interest:[28,14,2,4,5,36,37,38,8],basic:[2,30,5,19,38,8,21],fry:13,gnm_random_graph:21,feedback:[8,20,2],quickli:[14,16,44,32,8,21],gdk_:8,life:15,atga:29,mck:45,deeper:21,lifo:30,suppress:21,ga_c_gad:8,tempfil:8,ani:[2,22,4,5,7,8,9,21,13,14,15,16,19,23,26,0,28,29,30,31,33,46,35,36,37,38,41,42,50,44,47,48,51],average_degre:[38,33,8],lift:23,etal:6,c__:8,child:[47,30,50,21],cv8:44,gnr:48,gnp:[38,21],ident:[41,48,8,21,44],interior_path:8,magnien:14,explanatori:30,properti:[],iterator_nbr:[0,30,13],counterclockwis:21,"_immut":8,aim:42,gnc:48,calcul:[8,16,35],pairwis:[38,8],acgsgo:8,num_block:41,efz_:21,aid:38,aig:8,change_r:[8,21],"35th":21,gno:8,in_ord:[8,31],audrei:38,opt:[8,44],seven:[38,21],pyramid:21,complement_graph6:33,get_class:20,wouhou:41,need:[13,14,2,41,15,29,4,16,19,51,28,35,7,38,45,8,44,42,21],dist_dict:8,kwarg:0,schilli:21,h_c:8,conf:[8,21],rt75:38,flow_ff:8,s4_14:41,chvatalgraph:[34,32,46,7,38,8,21],linear_arbor:16,ep__:21,sever:[14,2,45,15,42,5,20,51,36,37,38,48,8,44,9,21,11],degreesequencetre:21,topological_sort_gener:[2,10],aooc:8,worldmap:21,perform:[28,14,2,41,22,29,30,16,5,32,20,26,38,8,21],border:44,make:[38,28,14,2,41,30,4,31,33,51,34,35,36,7,23,8,44,21],num_cut_vertic:33,init_short_digraph:15,who:16,betweenness_centr:1,from_graph6:40,renumb:21,split:[45,21,20,35,7,38,8,26],genericgraphqueri:33,godsil93:[38,3,31],dimensionless:44,raghavan:48,usepackagegraph:38,complet:[34,46,2,41,3,16,20,26,36,38,48,8,24,9,21],wheel:[8,26,21],nih:21,tadpol:7,thierri:39,number_of_set:11,welsh:[8,44],latex_opt:[8,44],hang:36,is_binari:41,hand:[29,30,9,44,38,8,42],fairli:8,rais:[0,13,14,2,45,3,29,30,16,31,47,19,46,6,38,48,8,44,25,21],garrai:40,kim:21,refin:[38,8,14],gcpax:8,ec_h:8,verbose_relabel:[38,8],qsefq_stiawiv:8,redefin:0,kept:[8,2],advic:33,thy:21,stargraph:[8,40,21,17],multiedg:[0,13,46,2,22,31,38,28,7,23,8],jmol:[38,8],min:[33,35,38,48,8,21,11],inherit:[33,28,4,21],add_vertex:[0,13,14,3,30,4,31,28,38,8,21],xre:8,weakli:[],greatest:21,thi:[],vertex_label_plac:44,kozl:8,is_triangle_fre:[38,21],everyth:[39,16,18,46,26,37,38,8,21],spencer:38,left:[28,2,30,37,31,47,21,7,38,8,44,10],yeh:[8,14],all_paths_iter:2,identifi:[33,8,24,14,21],digraphgener:48,just:[14,3,29,30,16,44,18,42,51,38,8,9,21],yen:21,curvearrow:8,gipc:21,s0021:26,bandwidth:[],comput:[1,2,3,5,6,7,8,9,10,14,15,16,19,20,21,22,23,24,25,26,49,31,32,35,36,37,38,39,40,41,42,43,47,48,50,51],reaaaaaaaaaaaalllli:29,yet:[39,29,42,5,32,38,8,9,21],languag:8,previous:[2,7,38,48,8,21],o_oga:8,haj:47,characterist:[38,8,36,21,31],hal:[8,42,5],ham:21,easi:[14,41,15,42,49,35,7,38,8,9,26],vertex_graph:21,haa:8,character:[38,26],numerica:35,wright:6,graph1:2,els:[2,44,42,30,16,5,38,48,8,24,9,21,11],ffffff:8,expon:21,normal_subgroup:21,set_latex_opt:[8,44],acicgo_:8,to_dictionari:[19,8],sanit:22,applic:[22,29,16,5,38,8],dot2tex:[38,8,2,44],deg_sequ:21,reverse_edg:2,mayb:44,preserv:[8,2,21],load_afil:31,lcf:21,lcg:33,chose:[29,2,21],f26a_graph:21,bbox:7,background:8,mip:38,spanner:32,poset:[2,45,29,10,8,51],retreat:21,apart:[19,8,14,51,5],disjoint_routed_path:8,measur:[32,38,8,44],scan:16,blanusa_snark:21,specif:[2,30,31,32,20,38,8,44],arbitrari:[28,14,49,31,38,8],iterator_out_nbr:[0,30,13],contradict:37,odlyzko:6,manual:41,zoom:39,edge_disjoint_path:8,graviti:39,num_vertic:[17,33,35,38,8,40],gco_aaco_a_:8,nvert:[30,28,4],tkz_graph:44,transvers:21,hung:21,janko:21,underli:[],www:[1,41,22,29,16,31,18,47,36,38,8,44,21],right:[28,2,3,4,31,47,10,7,38,48,8,44,21,26],old:[0,38,20],deal:[28,14,49,4,18,51,8,26],set2:8,tsouro:51,diderot:5,stopiter:[45,33,30,6,21],heurist:[23,38,8],maxim:[34,41,30,16,36,38,48,8,25,26],forbidden_subgraph:[18,38,20],intern:[13,41,30,44,35,38,48,8],dorian:42,delete_vertic:[38,8,13,31],flatten:[38,47,21,7],bori:38,blanusafirstsnarkgraph:21,indirect:[38,34,43,7],gc_id:20,g_c:8,"_dw":45,cfv5:44,neighbor_in_iter:[8,2],cfv7:44,txt:[45,31],a_cgek:8,peripheri:8,a_cg:8,bottom:[38,8,44,21,7],vertex_boundari:8,soto:5,ear:23,fidel:44,cfv9:44,cfv8:44,a_co:8,multipli:[21,44],centrality_degre:[38,8],condit:[22,42,51,5],gexf:8,foo:[38,8,21],shamir:29,schult:8,valenc:21,posn:8,core:38,ccl12:5,sensibl:21,an_equivalence_class:29,delecroix:41,kruskal:[22,8],bobbi:38,acgqcgo_go:8,confer:[48,21],cycle_graph:21,color_by_label:[8,44,7],hst:38,hsu:8,clv7:44,clv6:44,post:8,clv4:44,clv3:44,clv2:44,o_aaw:8,clv0:44,unsaf:[33,30,28,4],marcolli:38,alexand:[8,21],tn3:50,pasechnik:43,mahonei:21,check_overfull_kn_even:38,slightli:[41,8,1,21,44],acog:8,ofset:47,degreesequ:21,grown:21,spanning_tre:[38,22,8],algo:[38,1],hamiltonian_cycl:8,graphviz_to_file_nam:8,denmark:42,connected:38,produc:[14,44,38,48,8,21],a__qgc:8,out_neighbor:[30,28,13,4],g_p:8,aha:8,adjlist:8,most:[0,2,22,4,5,7,8,9,21,13,14,15,16,19,20,24,25,26,27,28,29,30,31,32,33,46,35,36,38,40,41,42,43,44,45,47,48,49,51],multipartit:[38,21],curiou:[28,4],xyz:21,"float":[8,7],encod:[14,45,17,47,51,38,8,42,21],bound:[],alamito:48,ppl:38,bullgraph:[38,29,21,7],is_cut_edg:8,strongly_connected_components_subgraph:2,acad:21,cliques_get_max_clique_graph:38,wrap:[28,14,2,41,4,39,33,35,38,8],is_forest:[38,8,16],stegerwormald1999:21,storag:[42,49,2,51],harriesgraph:21,szekeressnarkgraph:21,k12:8,accordingli:[18,38,8,16,44],wai:[2,8,42,21,13,14,15,16,9,20,25,26,0,29,30,32,35,37,38,45,44,47,51],convert_empty_dict_labels_to_non:[38,2],homepag:23,support:[],is_directed_acycl:[13,2,30,20,8,10],transform:[45,16,21],sfc:22,avail:[13,2,49,41,15,29,30,4,44,33,20,26,38,48,8,40,21,35],width:[44,33,35,38,9,42,21],reli:8,dense_graph:[49,2,30,4,38,8],editor:[],fraction:[38,8,21],perkel:21,unlabeled_edg:23,combinatorica:38,bolivia:21,interv:[32,47,20,38,8,24,21],analysi:[38,21],head:[30,2,31],medium:21,form:[28,2,41,29,4,31,47,38,8,24,21],rook_radiu:21,forc:[29,39,8,45,2],recommend:21,kroneck:8,ford:[38,8],owgg:8,wyseg:8,add_arc:[30,28,4],c_ggg:40,ethz:29,laurent:38,algoritm:[38,21],"true":[0,1,2,3,4,5,6,7,8,40,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,46,35,36,37,38,39,41,42,44,45,47,48,51],f26agraph:21,blocks_and_cuts_tre:8,layout_tre:[8,7],isit:[38,29],random_edg:8,bugfix:30,coeff:8,sousseli:21,maximum:[43,34,14,2,40,41,15,42,16,5,45,20,35,36,38,8,25,21,11],tell:[29,37],strongly_connected_compon:[38,15,2,48],cc_o:8,erdo:[27,48,8,21],gossetgraph:21,absenc:21,vertex_labels_math:44,ncol:40,weakly_chord:18,more:[1,2,3,4,5,7,8,9,21,11,14,15,16,19,24,25,26,28,29,30,31,39,33,35,36,37,38,40,41,42,43,44,45,47,48,49,51],kite:21,graph_to_j:17,lirmm:38,trim:44,graph_data:33,featur:[19,8,44],edge_properti:8,ieee:[22,42,43,48],classic:[48,8,14,21,44],hardcod:21,tournament:[48,8,2],proven:5,is_chord:[8,20,21],ellinghamhorton78graph:21,exist:[2,22,5,7,8,9,21,13,14,15,16,18,20,26,0,29,31,37,38,41,42,44,47],has_vertex:[0,30,8,13],ending_vertic:2,plan:21,option_valu:44,check:[2,3,4,7,40,8,21,14,9,18,20,22,26,28,29,30,31,36,38,41,42,44,48],short_digraph:[15,13],ccgok:8,eigenspac:8,"200mb":14,floor:[38,8],beezer:[8,21,44],constain:38,when:[2,3,5,7,8,9,10,13,14,15,16,17,18,20,21,24,26,27,29,30,31,32,33,37,38,41,42,50,44,45,47,48,51],refactor:38,"0451in":44,jong:21,aut_grp_siz:33,test:[0,1,2,3,5,7,8,9,21,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,34,37,38,39,41,42,43,44,45,46,48,49,51],ogac:8,randomholmekim:21,shrink:44,node:[27,0,28,14,33,30,50,44,19,20,35,7,38,48,8,21],conect:51,holt:[38,21],intend:[33,30,28,4],incidence_structur:41,kihecqpokvkew_wmnkqpwwcrkoowskigcqhwt:40,cgvcg:8,subdivid:[8,21],why:30,substract:[38,3],width_of_cut_decomposit:9,intens:[38,8,49],intent:26,greedy_is_compar:29,sql:33,is_block_design:41,cfv1:44,uniformli:[38,22,48,21,44],subdivis:[38,8],g_ia:45,longer:[30,13,21],cca_:8,"____ooooccccw___faaaa":8,distance_graph:[8,13],multicommodity_flow:8,cfv2:44,wcgepp:8,dingman:[28,6],c_qgaa_:8,ignor:[14,2,22,30,4,5,26,7,38,48,8,44,40,21],oqoc:8,time:[2,3,5,6,7,8,9,10,14,15,16,18,19,21,22,24,25,26,29,30,36,37,38,40,45,42,43,44,47,48,51],push:[45,21],backward:8,foldedcubegraph:21,breadth:[38,8,30,14,2],nihea:40,milp:[],cutpoint:8,rob:[8,21,44],consum:[8,14,21],dyckgraph:21,record_embed:36,set_max_s:11,signific:[42,21],subclass:[8,20],computation:8,grotzschgraph:21,osa:42,ccccaaaaac____bcccccwoooov_____:8,llg:[38,24],hole:[18,38,8],row:[41,16,47,46,38,8,21],millisecond:36,decid:[2,21,26],recommand:51,depend:[0,14,2,41,3,16,44,19,20,7,38,8,21],random_matrix:38,"_compute_coordin":50,demey:34,intermedi:[38,21],multicommod:8,rightmost:48,peo:8,nggwsojidbhh:40,decis:2,chessboardgraphgener:21,kxirg:8,sociolog:1,mheghc:21,a033995:21,charles1996:21,query_str:33,isinst:[38,8],distances_and_predecessors_all_pair:14,neighbor3:8,brown:[38,44],neighbor1:8,sourc:[14,2,39,35,8,21],ogcaaop:8,asymptot:36,triangul:21,generalizedpetersengraph:[45,21],vertex_bound:8,ooahca___:45,feasibl:38,rep1:35,edge_spac:8,octob:21,genericgraph:[],exact:[34,14,16,5,38,1,8,44,42],cool:8,preuss:10,dim:[45,8,7],read_pajek:8,hajiaghayi:47,vladimir:38,asahiro:38,solver:[2,41,16,38,8,42,51],jernej:23,gui:41,dig:[26,21],iter:[2,4,6,7,8,21,13,14,15,24,25,26,0,28,30,31,33,38,41,45,47,48],item:[38,8],isospectr:21,isgci:[],quick:[45,29,21],e_cg:33,cv10:44,round:[8,16],dir:[8,44],p_n2:21,delete_edg:[38,22,8,28],upper:[28,14,16,5,8,42,21],slower:[38,29,2,21,5],hagberg:8,deletem:31,arboresc:8,htm:[38,41],plu:[16,26],sign:[38,10,21,44],tqika:40,cost:[14,49,9,32,51,8,42,21],neighbors_unsaf:28,alfr:21,cliques_maxim:38,"_embed":8,cv4v9:44,nina:26,two_factor_petersen:38,appear:[14,2,15,30,37,31,32,47,20,10,7,38,8,44,25,21,26],markers_api:8,seqb:42,annal:38,markstroemgraph:21,uniform:[41,22,44,38,21,11],current:[2,5,7,42,8,10,34,14,16,9,18,20,21,0,28,30,31,35,38,44,47,48,51],block_matrix:41,edges_incid:[28,8,13,16],biggssmithgraph:21,fifth:21,cv12:44,soicher:41,unpack:44,boost:[],spirt:44,xml:20,deriv:[16,26],current_alloc:[30,28,4],doubt:[8,2],gener:[],broder:[38,22],coeffici:[38,19,8],e_1:2,french:[13,21],hso:8,satisfi:[],slow:[41,15,49,31,51,21,36,37,38,8,26],modif:[8,25],cv13:44,address:[15,28],cga_ooac:8,b_ooscge_:40,along:[41,30,31,32,21,38,8,44,26],optimali:5,steiner_quadruple_system:41,keshav:21,box:[8,44],combinator:[3,8,21],petersen:[14,2,41,29,30,16,37,5,18,38,51,46,26,7,23,8,44,45,21],edge_label_color:44,oacc:45,queue:[22,30],trial:21,behav:[38,8,44,21,5],cv8v9:44,triad:8,transversal_design:41,boucheron2001:21,cgca:8,generating_set:51,orient:[13,2,29,30,7,38,48,8],a002851:21,regardless:[22,8],clv9:44,dashdot:7,extra:[38,8,28,4,21],lattic:21,tweak:23,modul:[],"0pt":44,prefer:[38,8,20,2],randomtre:[22,31,39,38,8,21],outerplanar:[8,20],ipr:21,meantim:[38,46],a_cgaktiaa:8,a_ccc:8,layout_circular:[8,44],"1st":[50,37],instal:[2,41,43,44,39,38,48,8,21],makeit:51,clv5:44,neumaier:21,in_degre:[0,28,2,30,4,13,8],all_arc:[30,28],barycent:39,baer:41,memori:[13,14,2,49,15,30,18,38,9,42,21],bewar:[29,20,21],univers:[38,33,8,34,41],visit:[30,8,24,51,44],smallgraph:20,perm:[0,13,41,29,30,8],msp:38,graph_nam:17,"2d87a7":44,rescale_row:21,black:[38,8,28,44,7],hinton:31,symplecticgraph:21,tightli:32,ercg:21,chapter:[38,8],capit:21,permutahedron:21,connected_components_subgraph:8,randomtreepowerlaw:21,benzenoid:21,peopl:38,"_gg":8,theorem:[3,29,16,32,38,8,21],cplex:[38,41],enhanc:38,nguyen:[22,21],cbac_acd:40,gc_990:20,poussingraph:21,examin:21,edge_size2:8,distance_matrix:8,definecolor:44,effort:44,easiest:[16,44],report_dist:8,cut_vertex:8,fly:[18,38,21,48],graphic:[2,31,33,7,38,8,44,40,21],cubegraph:[14,30,31,7,38,8,21],gc_999:20,sphere:[8,21,44],gc_997:20,gc_996:20,k__a:8,pretend:8,caw:33,uniqu:[2,33,30,16,19,26,37,38,8,24,21],gc_991:20,cat:[2,10],shortest:[],cai:8,gragoc_:8,can:[0,1,2,3,4,5,7,8,9,10,13,14,15,16,19,20,21,22,24,25,26,27,28,29,30,31,32,33,46,35,36,37,38,39,40,41,42,43,44,45,47,48,49,51],cam:31,subgraphs_to_queri:33,multiwai:8,oo_:8,purpos:[28,15,49,44,51,47,21],problemat:44,nearest:21,"lov\u00e3":38,oa_cagca:8,aker:21,graph_theori:[38,19,8,25,48],spr:21,topic:29,verric:44,strongly_connected_component_containing_vertex:[15,8,30,2],bipartit:[],static_spars:[38,8,13,2],tikzpictur:[38,44],acgo_o:8,acgpcg_ao:8,connected_components_numb:8,cardin:[2,41,16,47,45,51,38,48,8,25,21,11],craze:44,verlag:21,pink:7,alwai:[2,29,4,44,32,21,38,48,8,26],differenti:[38,46],arbor:16,multipl:[0,13,14,2,41,22,49,4,5,38,46,28,7,23,8,42,21],prod:[38,3],attract:21,treeiter:6,randomgnm:[8,21],nyu:38,write:[28,14,4,31,20,51,38,8,40,21],speedwis:38,spring_big:21,randomgnp:[27,1,2,3,30,31,38,35,23,8,40,21],criterion:37,fourth:21,syst:21,algorithmica:18,"9413cm":44,return_paramet:41,hsing:8,map:[34,2,41,21,7,38,8,26],product:[],mat:8,book:[38,22,21,37],sna:21,kaist:35,partwai:44,clique_numb:[38,33,34,21],bitset_t:[15,30,28,4],max_intersect:11,reseaux:5,centrality_between:[38,8,1],mad:38,aoq:8,aop:8,mai:[2,7,42,8,21,14,9,20,27,28,30,31,32,33,36,37,38,41,44,45,47,48,51],"0x7f8fc53678c0":[],"5in":44,data:[],grow:[48,8,21],hik11:37,har62:38,"_backend":[0,49,2,30,36,38,8],johnson:21,repuls:39,"_qo":45,confus:[8,21],explicit:[41,21],bean:38,cfv6:44,inform:[],"switch":[8,44,16,21,10],preced:[33,8,7],combin:[38,21,5],gamma:[8,21],filenam:[38,39,8],eg2:8,offend:31,fg_hijhkfldmkncojp_bq:40,talk:[8,7],irrat:21,"15859n":22,shcghc:21,reset_bound:45,east:44,graph_databas:33,konc:38,chunglu2002:21,dj_:8,graphviz:[38,8,44,2,7],ocgag:8,intervalgraph:[8,20,21],entitl:[38,8],still:[16,17,19,20,8,44,21],pointer:[3,14,19],equit:8,dynam:9,keyiter:0,djp:23,conjunct:[8,21],jie:21,group:[41,5,39,36,7,38,8,44,21],concis:21,clv1v2:44,jim:2,sylvest:21,ogcaaaoc:8,clv1v3:44,toru:21,yaml:8,mbostock:39,stroll:38,onfroi:39,main:[],ecw:8,pruess:[2,10],graph_editor:17,non:[2,3,4,5,7,8,42,21,11,14,16,19,20,22,26,28,30,31,32,33,46,38,41,45,51],within:[32,15,8,38,2],binary_matrix:46,steger:21,francoi:37,subgraphsearch:[45,8],noe:35,supersed:44,alist:31,initi:[4,5,6,7,40,42,21,11,34,14,15,16,9,18,8,26,28,30,31,39,33,38,45,43,44,47,48,50],edmond:[38,8],renyi:[27,48,21],hamilton:8,exoo:[16,21],symposium:[14,22,50,38,8,42],is_weakly_chord:[18,38,21],now:[31,41,3,30,5,45,26,7,38,8,24,21],hall:[32,21],nor:[2,15,44,20,38,8,21],possess:21,down:[2,44,7,38,8,21],term:[38,20,14],name:[0,14,2,44,41,3,30,4,17,39,33,47,20,15,38,48,8,31,45,21],cliques_number_of:38,blocks_and_cut_vertic:[38,8,20],revers:[2,45,15,29,30,32,47,8,42,21],contracted_edg:23,separ:[],bisect:20,magazin:21,wong:21,viggo:8,abcdefg:41,slovak:16,updat:[46,15,42,17,47,33,20,51,7,38,8,9,26],attributeerror:0,pos3d:8,compil:[],domain:[8,21],moebiuskantorgraph:[38,45,8,21],citat:21,min_eigenvalu:33,replac:[38,14,2,3,42,37,17,33,46,26,7,23,8,9,21],individu:[28,44,33,38,8,40,21],weylgroup:30,pappusgraph:[38,8,21],simple_connected_graph_genu:36,aut_grp:33,significantli:[41,28,5],opportun:21,dcacgr:8,happen:[14,2,44,38,8,26],ii83:48,alpha2:8,pholia:35,shown:[44,21,7],abcdefghijklmnopqrstuvwxyz:[38,2],"_awgac":8,space:[14,2,40,15,42,5,51,7,38,8,24,9,21],haacgogo:8,franklingraph:21,faculti:38,laplacian:[8,21],tutte12cag:[38,14,21],aeb:21,decreasingli:[8,14],hcg:8,dutch:21,formula:[8,1,35],rgbcmykw:44,factori:[21,31],integr:[38,42,21],klein3regulargraph:21,egcw:33,earlier:2,matrixtreetheorem:8,gv_go:8,perkel_graph:21,state:[38,8,2,21],hull:[38,51,2,21],runtimeerror:[28,2,3,30,16,4,35,38,8,31],million:[38,3],seventh:[8,21],vertex_opt:7,circulantgraph:[38,8,21],lexicographic_product:8,independent_set_:[38,25],marino:14,niss:42,org:[0,14,44,41,16,5,39,20,26,38,48,8,24,21],"byte":14,queengraph:21,fractional_chromatic_index:38,cgraphbackend:[],care:[38,41,8,44],diagram:2,xgraph:0,randombarabasialbert:[38,8,14,21,5],suffici:[32,41,20,16,21],hexagon_count:21,prescrib:21,frequenc:8,"__o":45,ff0000:[38,8,16,7],cgrc:8,recov:[8,2,21],turn:[14,22,4,5,33,26,8,21],habpau10:38,livingston:21,place:[28,41,30,16,44,33,21,7,47,8,45,10],gordon:23,acyclic_edge_color:16,kaispack:8,yue:21,imposs:[29,38,8,16,47],balanced_incomplete_block_design:41,first:[2,22,4,7,8,9,21,11,14,16,18,19,20,23,24,26,28,29,30,31,32,33,36,37,38,41,42,44,45,48,51],origin:[2,3,31,26,38,8,21,35],toms10:23,gojbdo:40,ono:38,directli:[15,49,33,20,21,22,38,8,10],"_block":41,onc:[2,22,42,30,5,10,37,38,8,44,9,21],arrai:[28,14,40,3,42,30,4,15,8,9,21],emptygraph:[14,22,46,38,8,21],connected_components_s:[38,8],neighbors_in:[8,13,2],yourself:26,minimum:[2,41,22,42,16,25,32,19,20,51,36,7,38,48,8,44,9,21,11],grossi:14,topological_sort_recurs:2,fast:[],symmetri:[32,8],degh:38,ring:[38,8,21,31],complete_poli:3,open:[39,8,31,21,17],lexicograph:[8,35,51],size:[2,3,4,7,8,9,21,11,13,14,15,16,25,26,28,30,31,39,33,34,35,38,40,41,42,43,44,48],given:[2,3,7,8,9,21,15,16,18,20,23,25,26,28,29,30,31,32,33,35,37,38,40,41,42,44,47],four_srg:21,num_orbit:33,silent:[44,30,8,28,7],convent:[38,8,46,21],barabasi:21,cv11v12:44,flint:3,citi:[30,21],hex_color:[38,16],cumul:[8,7],"_skfq":40,circo:[8,44,7],circl:[39,8,44,21,7],deciph:21,graph_plot:[8,7],proposit:38,conveni:[8,44],melbourn:8,cite:[8,14],prettier:21,lovasz:38,knowledg:21,kohler:24,hub:21,especi:[13,45,44,37,38,21],copi:[14,2,48,41,15,30,31,18,45,46,7,38,1,8,44,22,47,21],specifi:[38,28,14,2,40,44,41,42,16,5,33,7,23,48,8,31,9,21],mathworld:[8,21],erdren1959:21,qual:[35,21],wwwcompendium:8,hash_length:28,decemb:21,mostli:[49,2],necessarili:[2,15,29,18,37,38,8],test_graph:7,than:[2,4,5,40,8,21,13,14,15,16,9,24,25,28,29,30,33,35,36,38,45,42,44,48,49,51],has_arc:[30,28,13,4],cjg:33,serv:[8,14,44],wide:[38,44],douleur:26,petersen_spr:[21,7],f_a:8,complete_bipartite_graph:[38,21],inferior:21,euclidean:21,ressourc:15,iggb:8,were:[38,8,25,21,37],posit:[39,31,24,2,44,41,29,30,16,5,32,28,7,38,48,8,17,21],max_pair:10,broker1973:38,seri:[38,4],pre:[2,44,33,10,38,8,21],cv9:44,sai:[28,29,5,32,47,20,38,51],san:[50,21],nicer:40,vuskov:38,ann:[27,48,21],argument:[27,0,2,33,41,15,38,16,31,19,26,7,23,48,8,40,21,11],dash:[8,7],prt:8,eigenvalues_sd:33,gog_oa:8,nikolopoulo:18,delta:5,notimplementederror:[0,13,30,4,33,38,8,21],rpk83:48,saw:8,contribut:[9,5,38,8,42,21],radix_div_shift:4,shtml:35,delete_vertex:[8,13,21,31],engin:8,squar:[2,45,16,38,8,21],k33:8,"_pc":[8,21],characteristic_polynomi:[38,3,8,21,31],destroi:[8,28,4],chessboard:21,"_po":[8,7],vertex_partit:39,write_gml:8,note:[2,22,4,5,7,40,8,10,14,16,20,21,25,0,28,30,31,32,33,36,38,41,44,48],ideal:16,"18th":14,harald:21,take:[28,13,14,2,40,45,22,42,30,5,39,33,47,20,26,36,7,38,8,25,21],advis:8,interior:[23,38,8,44],environ:44,noth:[38,8,51,31],sqlqueri:33,gc_441:20,begin:[28,14,2,41,4,44,38,48,8,21,11],"0310049v1":38,incorpor:44,clique_complex:38,normal:[8,1,21,44],track:[30,51,10],sagemath:[0,38,8,41],all_pairs_shortest_path_bf:14,herschel:21,incidencestructurefrommatrix:41,balaban10cag:21,butterfli:[48,30,21],render:[38,8,44],gridgraph:[16,5,19,20,38,8,21],qg_:8,pair:[],random_subgraph:8,wfunction:22,shchgd:40,cag_gcscagccgocg:8,focu:25,graph_backend:[0,30],latex:[],rose75:8,cv3:44,mkgraph:35,later:[8,42],berg:[38,20,44],typeset:44,free_short_digraph:15,dodecahedron:[8,21],axa:8,eulerian_orient:8,runtim:[22,36],pattern:47,chiang:21,reed:38,disjoint_union:[38,8],axi:[45,44],preambl:[38,44],review:[38,21],gracefulli:21,set_vertex:[38,8],slope:44,simsgewirtzgraph:21,wormald:[38,21],pp11:47,show:[34,2,45,22,29,30,31,39,33,21,7,38,48,8,44,40,26],german:30,orthogonalarrayblockgraph:21,gap_packag:[41,21],setdefault:22,cheap:[9,42,29],tkk:8,pathgraph:[14,40,45,42,37,16,44,38,20,7,23,8,9,21],end_point:23,minimum_outdegree_orient:38,permiss:30,corner:[8,26,21],lookuperror:[30,28,13,4],tkz:44,abcdefghiklm:19,knightgraph:21,ground:[41,47,11],e_3:2,e_2:2,onli:[0,1,2,22,4,5,7,8,9,10,11,13,14,15,16,19,20,21,24,25,26,27,28,29,30,31,32,33,34,36,37,38,41,42,43,44,46,47,48,49,51],espoo:34,ratio:[21,5],randomdirectedgn:48,scottstorm:38,acacgogo:8,transact:[23,35],activ:[30,28,4],"5225in":44,fulkerson:[38,8],"2p_3":20,parametr:2,dict:[2,41,30,38,20,23,8,21],analyz:19,by_compon:[45,8,7],neato:[8,44,7],overwritten:[8,2,44],reset:7,scheinerman:21,pgfsetstrokecolor:44,find_ear:23,variou:[0,8,44],get:[0,28,2,40,42,30,16,4,32,10,7,38,48,8,24,25,21],chromatic_symmetric_funct:38,addit:[13,44,3,49,5,46,35,38,8,24,21],broder89:[38,22],academi:16,goltsev:21,gc_993:20,artsci:33,cannot:[0,44,33,41,22,42,16,5,32,19,20,35,48,38,45,8,31,9,21],hmcbcbq:40,lighter:49,c_graph:[0,13,2,49,30,4,28,36,38,48,8,21],safer:33,clv1v4:44,count_onli:16,gen:[8,21],requir:[43,28,14,41,15,29,30,4,16,33,20,26,36,38,45,8,44,42,9,21,11],embedd:21,prime:[38,21,37],tikz:44,doabl:42,myrvold:8,edq_:21,pascal:35,yield:[0,2,22,29,18,38,35,23,8,21],"2c_4":20,j_imm:2,stupid:1,xmax:7,usabl:17,scott:38,luo:[8,14],where:[2,3,5,7,8,9,21,13,14,16,18,19,22,23,26,28,29,30,32,33,35,36,37,38,40,41,42,45,48,51],max_cliqu:34,summari:10,wiki:[39,16],kernel:[38,48],n11:51,lectur:14,gc_541:20,stanlei:[38,2],reduced_adjacency_matrix:31,degrees_sd:33,gomori:38,set_object_enumerated_with_categori:8,graph_generators_pyx:[27,21],krg96b:[8,14],disjunct:8,phrag:21,vuw:23,jeong:21,concern:8,infinit:[8,14,21],timeit:8,detect:[18,20],amort:10,ignore_direct:[8,30],achag:8,"_caocg":8,enumer:[2,41,15,49,45,51,26,36,37,38,8,25,21,11],knesergraph:[38,8,26,21],label:[],enough:[38,3,30,21],"_g_ca":8,jth:21,between:[],"import":[0,1,2,3,4,5,6,7,8,9,10,13,14,15,16,17,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,50,51],nauru:21,num_hamiltonian_cycl:33,across:8,godsil:[38,3,21,31],param_tupl:33,spars:[],august:48,parent:[2,50,31,19,7,38,8],comp:21,cycl:[38,2,45,29,30,16,5,18,19,20,37,23,8,31,42,9,21],cagogacc:8,bitset:[49,30,32,46,38,51],matchpoli:[38,3],come:[38,8,2,35],tue:21,value_onli:[38,8,2,51,16],grid:[14,22,42,16,5,19,20,37,38,8,50,9,21],triangles_count:[15,8,46],layout_planar:8,fit:[45,16],graph_latex:[38,8,44,7],similar:[9,21,44],oac:8,quiet:[2,41,16,38,8,42],contract:[23,38],friendshipgraph:21,bounded_outdegree_orient:38,is_isomorph:[41,29,20,18,6,26,37,38,48,8,21],dim_list:21,data_to_degseq:33,mani:[28,14,41,15,42,4,44,47,33,51,38,8,40,21],scope:44,unrecogn:44,among:[14,22,42,5,38,8,44,9],iraadciioweokcpwao:2,use_edge_label:[38,8],matjaz:38,color:[],overview:[],layout_opt:[8,17],numerantium:8,krapivski:48,deduc:[32,38,20,35],node_6:8,exploit:51,housexgraph:[40,21],project_left:31,laplacian_matrix:[8,21],"_line_embed":7,nicola:[38,42,44],prasad:38,gocc:8,save:[14,40,44,15,42,37,17,20,7,38,8,31,9,21],ultim:[8,44],cqo:33,coupl:[8,7],mylabel:2,max_eigenvalu:33,west:[8,21,44],caogo:45,invers:[38,45,29,21],gilbert1959:21,niskanen:34,gocq:8,tooltip:39,to_graph6:40,certifi:[48,8],valueerror:[2,22,5,7,42,8,21,13,14,16,9,19,20,24,25,26,27,28,32,46,38,41,44,47,48,51],merge_vertic:[38,8],liafa:38,jfk:22,bm04:8,qse:8,generate_linear_extens:10,emphas:21,default_plot_opt:7,thousand:36,resolut:8,incidence_graph:41,andrew:6,naurugraph:21,scc3:2,scc2:2,scc1:2,cg_rev:30,cv8v13:44,"__eq__":8,former:8,those:[13,14,2,16,31,47,19,51,26,36,7,38,8,25,21],berri:38,"case":[1,2,4,5,7,42,8,21,14,16,9,18,26,0,28,29,31,32,33,36,38,41,44,47,48],"char":44,steiner_triple_system:41,horel:21,thesi:8,new_p:47,all_graph_color:16,debrecen:8,booleanlattic:45,is_direct:[38,8,2],trick:15,new_g:[38,26],invok:[8,44],unitinterv:20,brinkmanngraph:21,"markstr\u00f6m":21,finer:8,margin:44,cliqu:[],girth:[38,33,8,21],cls1:41,cls2:41,randomli:[8,21],shift_list:21,advantag:[15,20,21],out_degree_iter:2,with_pictur:33,metric:[8,5],henc:[14,2,45,15,29,30,16,51,20,26,38,8,42,9,21,35],show_al:20,write_adjlist:8,destin:[39,8,26],layout_rank:[8,2],cluster:[19,8,21],bron:38,eras:8,generic_graph_pyx:[45,8],theta:[],nation:21,abcdef:[38,44],ascii:[38,2],densiti:[27,38,8],graph_bord:[38,8,7],nat:21,plantri:21,develop:[33,28,34,4,21],bentwonk:39,d0d3:21,wang:21,alphabet:48,goodrichtamassia2001:22,tour:8,same:[14,2,41,3,29,30,16,37,31,39,19,51,20,15,7,38,8,24,22,42,21],character_t:8,binari:[28,41,29,45,46,47,48,8,42,21],standard_label:8,tutori:[38,33],interact:33,layout_acyclic_dummi:2,root_graph:[38,26],pai:[8,26],graphlatex:[],document:[2,4,5,7,40,8,21,11,15,9,20,23,24,25,26,28,29,30,39,35,38,32,42,44,47,48],is_overful:38,hermit:3,densegraph:[49,30,4,36],cc_:8,finish:[38,36],closest:21,heyheyhei:38,tree_orient:[8,7],nest:19,assist:21,edge_label_slop:44,goldner:21,oagc:8,output_as_graph:[38,22],rectangl:44,"_aa":8,improv:[14,22,42,5,33,51,20,25,36,38,8,9,21,26],extern:[23,38,8,21,44],blanusasecondsnarkgraph:21,harborth:21,cliques_vertex_clique_numb:38,institut:16,adacg:8,abdhaeh_:40,appropri:[30,16,44,8,31,21],moder:36,kinggraph:21,k23:8,cochc:8,facad:8,love:38,feedback_vertex_set:8,ccl:5,cco:8,without:[0,28,14,2,44,45,30,4,31,33,26,38,8,24,25,21],kaar:8,orthogonalpolargraph:21,inneighbor:14,model:[45,29,21,47,48,51],cospectral_graph:21,cca:8,dimension:[48,8,2,21],"1cm":44,ernesto:35,polygen:[8,31],set_edg:[8,7],okg:[38,33],execut:[45,44,33,7,8,5,21],dihedr:21,tip:[38,8,5],resp:[38,8],"_coocq":8,vertex_disjoint_path:8,subgraph_search_count:[38,8],densegraphbackend:[49,8,30,4],actor:38,aspect:[38,8,44],touch:[41,44],speed:[28,41,45,38,8,21],kit:38,mycielskigraph:[42,21],blow:8,gc_2:20,gc_1:20,gc_7:20,struct:28,gc_5:20,alternatinggroup:8,rose:8,clustering_coeff:[19,8],except:[13,14,2,49,29,30,16,31,33,46,26,36,7,38,48,8,44,47,21],param:[33,8],removed_from:23,feohw:[38,33],rescal:45,asteroidal_tripl:[38,24],symon:38,"7524cm":44,nurnberg:30,versa:[30,21],cospectr:21,decagon:44,mclaughlingraph:21,qoc_hew:8,kingdom:21,from_str:21,sub:[8,20],around:[14,45,29,44,7,38,8,21],comparabl:29,brouwer:21,read:[2,15,42,44,19,38,8,9,21],convexityproperti:[38,51],tarjan72:8,kirkman:[50,33,38,48,40,21],hao_oi:8,period:[38,2],first_permut:21,doyl:21,eisermann:[18,38,21],snark:[38,8,21],defaut:8,world:[14,21],khzam:38,meredith:21,awoc:8,mod:[38,21],saniti:[22,8],fagdc:21,"_goc":8,"_sa":8,plane:[41,2,21,11],my_disconnected_graph:22,integ:[2,3,4,5,7,8,9,21,11,13,14,16,24,28,29,30,31,32,33,46,35,37,38,39,41,42,45,48,49],benefit:20,outneighbor:[15,30,14,48],either:[13,2,41,29,4,31,32,33,28,21,38,8,44,42,26],vstyle:44,cone:8,cutwidth:[],output:[2,22,5,8,9,21,11,13,14,16,17,19,20,0,28,29,30,31,32,33,35,36,38,40,41,42,44,45,47,48],downward:8,inter:21,manag:[23,13,44],emerg:38,iterator_vert:[0,30,13],densest:38,tetra_po:21,removed_multiedg:23,citeseerx:[35,10],ascend:21,simplici:[38,8],kimvu2003:21,viewdoc:[35,10],drake:33,loop:[27,0,13,46,2,49,45,15,30,44,38,28,36,7,23,48,8,22,40,21],haemer:21,strogatz:21,intact:[8,2],constitut:16,acngoc:8,link_strength:39,nonzero:38,gross:8,abcad:40,kaiser:8,micro:8,xemhdb:40,hassediagram:2,recomput:51,protocol:30,rambin:38,moor:21,exit:[23,2],inject:[41,8],degreesequenceconfigurationmodel:21,cmn14:42,base_r:21,nonintuit:8,complic:[19,8,29,44],refer:[],bsetb:8,tdi:35,hcacac:8,power:[41,4,21],emul:8,sixth:21,bezueglich:8,ration:[38,8,1,21],is_even_hole_fre:38,naphtalen:21,fulkerson65:8,broken:38,symp:21,vertices2:8,tree_root:[8,7],graph_info:33,nauti:[48,21,11],immut:[13,2,31,33,38,8],hoffmangraph:21,ac_:8,max_prefix_length:42,session:[38,2,44],src:15,path_decomposit:[38,42],central:[],greatli:8,joyner:[38,22,41],acm:[14,50,38,35,23,8,21],issu:[48,8,21,44],stretch:21,degre:[0,13,14,2,41,3,30,38,16,35,33,28,26,36,15,23,48,8,45,21,11],eigenvalu:[8,21],edge_label:[2,15,7,44,39,22,38,8],stand:8,add_arc_label:28,act:[38,45,8,36],table_nam:33,gc_274:20,bond:21,kacb:8,processor:48,morphism:[38,21],mannheim:30,h_imm:[38,2],effici:[13,14,2,3,4,44,18,28,51,15,38,8,21],consid:[13,14,2,33,41,22,42,30,5,32,19,47,25,36,7,38,8,9,21],multigraph:[0,13,22,39,36,38,8],elementari:[49,21],useasboundingbox:44,herbert:21,kvler:40,acd_:8,quietli:40,list_edg:15,list_composit:34,heawoodgraph:[8,44,21,7],your:[2,41,22,44,39,33,38,8,51],stare:26,ymax:7,area:[40,44],abov:[14,2,15,16,44,47,46,26,7,38,1,8,42,21],hex:[16,44],brute:45,overwrit:2,start:[14,2,22,30,38,8,42,21],cv1v10:44,"01in":44,mad_g:38,lot:[9,42,44],resum:8,mad_h:38,bidiakiscub:21,hei:[48,8,13],exog:21,"_ocgaceag":8,witt:41,incidencestructur:41,has_homomorphism_to:38,sql_db:33,polytop:[2,21],networkxgraphbackend:0,watkin:21,tupl:[2,44,41,31,33,38,48,8,5,21,11],alain:44,aric:8,test_in:30,posdict389:21,boundary_first:8,assmu:41,shannon:43,lobster:[38,8,21],faster:[1,2,41,29,49,16,5,33,42,36,37,38,8,31,25,21],"_circle_embed":7,notat:[47,21],tripl:[],tmp_filenam:[38,8],furthermor:[22,20,21],possibl:[2,5,8,42,21,15,16,20,25,26,28,29,30,32,33,46,37,38,45,44,47,48,51],petersen_famili:21,adjacency_matrix:[32,38,8,2,21],get_query_str:33,fano_block:41,"_wcg":8,sage_db:20,commonli:[38,30],embed:[],extrem:36,is_equit:8,eigenvector:8,expect:[13,14,41,15,29,16,28,36,38,8,42,21],optionalpackagenotfounderror:8,lanl:8,topological_sort:2,ohi:8,creat:[2,4,7,40,8,10,14,15,19,21,23,25,0,28,29,30,31,39,33,38,41,44],certain:[16,44,36,38,8,21],australasian:38,connected_compon:[38,8,2],fellow:38,strongli:[14,2,15,30,46,38,48,8,42,21],thomsengraph:21,strongly_connect:48,decreas:[21,5],file:[16,31,39,38,20,36,23,8,44,40],trace:[38,41,8],bob:8,subdivison:8,proport:48,intra:21,quadrupl:[38,41,46],fill:[32,46,44,21,7],incorrect:[38,8],denot:[43,14,3,16,31,35,36,37,38,8,42,21],beyond:44,arrowhead:44,googl:22,gara:2,gomez:5,collin:38,mathematica:[24,16],green:44,reduct:[38,45,8,42],elementar:8,hyperstargraph:[45,21],binomi:[15,8,46,48],caltech:38,owondbo:40,igo:8,chik_:40,you:[2,3,4,5,7,8,40,21,13,14,16,20,22,26,28,29,30,31,39,33,46,35,36,38,41,43,44,48,51],pappu:[38,8,21],dorogovtsev:21,brouwerhaemersgraph:21,polar:[21,44],triangular:21,node_8:8,randominterv:20,vertex_iter:8,sequenc:[0,28,13,2,42,38,4,31,47,33,20,23,8,9,21],symbol:[8,21],sartaj:22,vertex:[],docstr:[38,33,21,48],return_graph:8,express:[38,33,8,20,21],polynomi:[],"_both_":8,glist:[40,21],geodet:51,unbound:20,peac:38,cv7v8:44,reduc:[38,8,31,21,5],degree_to_cel:8,watkinssnarkgraph:21,hamalainen:16,graph_decomposit:[32,35,37,38,9,42],krishnamurthi:21,directori:20,invest:29,complete_graph:21,mask:35,binary_string_from_dig6:45,symmetricgroup:[38,8,21],mass:2,adam:35,potenti:[8,30,42,9,31],set_boundari:8,escap:38,"export":8,dst:15,check_vertex:30,cpw:33,set_vertic:[38,8,7],alo:29,all:[],coxetergraph:21,skeleton:[38,21],dual_planar:21,illustr:[31,7,38,8,44,21],recip:21,hypergraphgener:11,lack:39,neigh:21,scc:[15,2],emili:[50,33,38,48,40,21],binary_string_from_graph6:45,vertex_cov:[38,8],inspect:[38,8,21],disc:8,marcolli2009:38,deprecationwarn:[0,38,8,41],gdba:40,orthogonal_arrai:21,cameron:21,follow:[1,2,3,4,5,7,8,9,10,14,16,18,20,21,22,24,26,0,28,29,30,31,32,33,37,38,39,41,42,43,44,47,51],disk:21,children:[47,19,8,50,7],rshamir:29,"_num_vert":[28,4],vertex_label:[2,22,30,44,39,7,38,8,21],albrecht:21,cell120:21,white:[8,44,7],articl:[38,14,2,41,43,19,46,48,23,1,8,25,21],fake_label:8,program:[2,41,29,16,44,51,42,35,7,38,48,8,9,21,11],queri:[38,33,20,14,44],lex_bf:8,numberfield:8,solano:42,circularladdergraph:[8,21],introduc:[38,8,7,5],corollari:37,osr:8,vert:[0,28,30,4,13,8],straightforward:24,song:26,fals:[0,1,2,3,4,5,6,7,8,40,10,11,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,46,35,36,37,38,39,41,42,44,45,47,48,51],strictli:[42,19,38,48,8,24,9,21],offlin:39,util:[21,44],vertex_s:[44,39,7,38,8,40,21],novel:21,mechan:[0,8],failur:[33,21,44],veri:[2,5,8,42,21,13,14,15,16,9,19,25,26,28,29,49,32,36,38,41,45,51],han:[42,21],linklessli:21,is_long_antihole_fre:[18,38],cartesian_product:[38,8,21,37],vigneron:5,is_resolv:41,chz02:51,hamiltonian:[45,8,20,21],tensor_product:8,occurr:[45,47],new_q:47,list:[],clv8:44,"_repr":44,vize:16,sang:35,adjust:[38,21,44],number_of:[33,25],small:[13,14,45,29,42,44,28,21,38,8,40,26,11],cythonif:45,approximation_factor:5,cliques_maximum:[38,34],align:47,iterator_edg:[0,30,28,13,4],dimens:[38,8,44,21,7],correct:[14,41,29,33,51,8,26],omit:[8,21,44],pccssge:38,neighborhood:[14,42,30,16,38,8,24,9,21],ten:[28,4],odd_cycl:29,diamondgraph:[14,21,38,8,40,26],automorphism_group:[41,48,8,21],past:[30,8,28,4],zero:[28,14,31,32,33,48,8,44,21],design:[28,41,4,5,7,38,48,8,44,21],progress:[38,35],pass:[2,22,16,31,7,38,8,42,21],further:[41,22,16,5,18,45,38,44],"lov\u00e1sz_numb":43,independentset:[38,25],caog_ogawq:8,ab_:8,cocg:8,deleg:[49,44],xou:40,abd:19,aggac:8,richard:2,cast:16,number_of_loop:8,abi:8,section:[29,44,32,38,8,21],abl:[45,19,42,20,21],brief:8,complete_partial_funct:8,cliques_containing_vertex:38,beinek:26,delet:[0,28,2,3,30,38,4,31,19,23,48,8,21],abbrevi:44,version:[],paths2:8,abu:38,intersect:[2,41,29,30,32,47,20,21,38,8,26,11],iraadciioeokcpwao:2,consecut:[9,47,37,38,48,8,42,21],"public":[1,21],contrast:21,movement:21,kirchhoff_matrix:8,hierarch:8,full:[47,33,8,30,31],themselv:[38,8,28,4,7],trunz:29,pacif:8,midpoint:44,unmodifi:44,karlsruh:30,behaviour:[38,22,8,2,21],modular:[38,20],shouldn:8,middl:[21,44],palio:18,eval:8,"6126cm":44,ggo:8,ineffici:38,modifi:[1,2,41,44,19,7,8,21],valu:[0,1,2,3,5,6,7,8,9,21,11,13,14,15,16,18,19,20,24,27,28,29,30,32,33,46,35,38,39,41,42,43,44,45],hass:2,vertex_max_degre:11,search:[12,14,2,45,42,30,5,18,33,20,36,38,8,9,21],labelstyl:44,my_graph:17,newlin:8,gg_:8,graphicsarrai:[8,21],"4952cm":44,prior:[22,8],figsiz:[38,8,34,21,7],ad_o:8,social:21,real:[14,2,5,33,38,8,24,21],chain:2,symmetricfunct:38,heawood_graph:21,sci:[14,21],factoris:38,is_perfect:[38,20,21],diamet:[13,14,2,33,38,48,8,21],via:[0,22,30,31,36,7,38,48,8,44,21],depart:2,grundi:16,random_all_graph_color:16,primit:[2,31,7,38,8,21],transit:[2,45,29,30,36,38,48,8,21],oqa_p:8,planar:[],echecakkqkfpowo:40,deprec:[0,38,8,41],kerbosch:38,famili:[38,47,26,21,48],constraint_gener:[8,2],"2008exp":35,"025in":44,bober:50,select:[38,14,2,33,23,8,47,21],clifford:22,aharoni:38,hexadecim:39,proceed:[38,22,8,14,21],init_empty_copi:15,distinct:[2,41,23,48,8,21],layout_graphviz:[8,2,44],folkmangraph:21,xg3:38,"_g_ac":8,fall:51,wcce:8,degree_histogram:[38,8,21],camerongraph:21,goedgebeur:21,taken:[2,15,30,31,26,38,8,44,21],krackhardtkitegraph:[38,8,40,21],qco:8,graphen:8,toggl:22,vec:8,reachabl:[19,8],flat:21,c_c:8,diamond:[20,14,26,21,44],desir:[8,20,2,21],min_spanning_tre:[38,22,8,7],egabrag:7,c_h:8,hoffman:[8,21],leonard:41,chromat:[23,38,16,21,43],flag:8,floyd:[8,14],independent_set_of_repres:38,stick:21,c_w:33,particular:[0,14,2,41,16,51,21,38,48,8,42,26],known:[45,5,18,46,21,36,38,8,24,10],multiset:41,cach:[3,44,38,20,51,23,10],cv1v3:44,cv1v2:44,none:[2,3,4,5,7,8,40,21,11,13,14,16,17,19,20,22,23,26,0,28,29,30,31,32,33,37,38,41,42,50,44,45,48],endpoint:[39,8,21,31],squish:45,polynomial_rational_flint:8,hous:[38,8,26,21],gqg:[38,33],der:8,outlin:44,det:8,peg:21,acgacgocgo:8,angl:[44,21,7],remain:[2,44,15,30,16,5,31,21],sudden:38,dcycl:[8,2],g_aocoa:8,cutwidth_dyn:9,dec:24,obtain:[14,2,15,29,30,16,5,32,51,20,35,48,38,1,8,44,42,21],def:[2,22,30,6,26,38,8,21],pick:[8,30,21],cv2v4:44,loop_vertic:8,prompt:33,brown2011:38,neighbor2:8,icosahedron:21,toroid:[8,21],share:[2,16,44,21,38,8,26],accept:[2,31,33,21,7,8,26],clv13:44,fundamenta:24,cv2v7:44,mackai:31,unreli:8,explor:[25,47,38,9,5,42],randomshel:21,all_path:8,ist:[35,10],ocg_:8,action:8,strong_orient:38,string:[0,2,48,44,41,3,17,33,20,7,38,45,8,31,40,21,11],huge:[9,20,42,51,5],cso:8,cours:[29,30,4,16,51,37,38,8,44,21],interconnect:[48,8,21],goal:21,divid:[14,2,5,38,1,8,21],eg3:8,anoth:[14,2,45,5,18,20,51,38,8,31,40,21],eg1:8,cv2v3:44,chordal:[],is_lin:[38,26],ostergard:34,wuuhuu:8,trival:21,magyar:8,quadrangul:21,strong:[38,8],simpl:[28,46,2,41,15,37,16,44,20,36,22,38,8,25,21],guangda:21,anticompon:38,isn:7,resourc:21,static_dense_graph:[49,8,13,46],referenc:[8,36],algebra:[38,3,8,21],staticsparsecgraph:[49,13],edge_vector:8,ezcg:21,dejter_graph:21,reflect:[8,4],blockdesign:41,edgelist:8,"16gb":[8,14],reaction:21,mutat:[0,8],wilei:[22,21],associ:[28,14,33,15,29,30,16,37,44,19,51,20,26,7,38,1,8,50,21,35],one_of:33,diagon:[32,8,21],steiner_tre:8,stabil:21,"short":[14,2,41,44,7,38,8,24,21],cut_edg:21,awa:8,cagcc:8,spectra:21,bidirectional_dijkstra:30,"_kggo_ogcaa":8,gc_3:20,caus:[14,44,33,38,8,21],shade:44,"0cm":44,matrixspac:[8,31],arett:21,is_valid_ord:42,decomposition_tre:[38,35],kittel:21,allows_loop:[8,13],checkbox:44,aw_i:8,help:[8,28,42,21],ith:[8,14],boolean_answ:41,dual_incidence_structur:41,soon:[41,42,5,21,8,9,26],g439:8,maxcliqu:38,wiener:[8,14,21],paper:[29,16,18,38,23,8,21],through:[39,14,2,29,49,16,44,18,19,51,20,26,36,38,48,8,25,21],daniel:21,cyan:8,starting_vertic:2,perhap:[38,46],aw_q:8,"_egk":21,moserspindl:21,paramet:[0,14,2,48,44,41,42,16,5,33,46,7,38,45,8,24,9,21],edge_color:[41,16,44,7,38,8],style:[15,36,44],is_eulerian:[8,21],num_long:4,sopra:35,indegre:[8,2],coarser:8,orthogonal_poli:[3,31],tutt:[],resort:21,pend:8,cachedrepresent:20,famou:[8,21],stephen:38,cross:[8,21,44],soccer:21,might:[3,30,19,38,8,21],dig6:[45,2],"_ig_q":8,unlabel:[41,33,8,28,21],fool:28,oooooch:2,doctest:[0,34,41,15,43,44,36,7,38,8],"return":[0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,51],imrich:37,"_goo_cng":8,"_cq":8,dominating_set:8,kautz68:48,has_fil:44,gua:38,inria:[8,42,5],ceh:38,remove_multiple_edg:8,hanoitowergraph:[8,21],thereof:8,ulrik:1,knuth:16,canonical_label:[41,8,21],vertex_separ:[38,9,42],"_cg":[49,30],anu:[45,48,11],genericsqldatabas:33,igagoq:8,"schl\u00e4fli":21,treenod:50,administr:21,fuzzyballgraph:21,canaug_travers:21,dik:33,unlik:[38,21],robbin:2,node_10:8,easili:[14,2,3,29,37,15,38,8,25,26],mathsci:35,disjunctive_product:8,d3j:39,warsetcj_qwasehoxqg:8,"12th":38,fulli:30,friendship:21,leftov:38,truncat:7,valuat:8,inplac:[38,41,8,2,26],england:38,weight:[0,2,22,30,31,32,20,38,8],exhaust:[45,44,47,48,8,5,42,21],fish:20,hard:[2,15,30,16,51,38,8,21],idea:[13,45,16,33,35,51,21],procedur:[45,30,16,10,8,21],coc_n:8,heavi:8,petersen_databas:[21,7],connect:[2,22,5,7,8,42,21,11,14,15,19,23,24,26,29,30,39,35,36,37,38,41,50,48,51],stabl:8,quantum:38,cv5v6:44,energi:33,thing:[15,44,20,37,38,8,25,21],todo:[],thick:[39,44],standard:[14,44,39,38,48,8,21,11],ftp:29,flower:[38,8,21],admiss:[16,32,47,7,38,8],graygraph:[38,21],graph_db_info:[38,33],networkxerror:[0,21],robert:[2,45,3,31,6,38,48,40,21],cubic:[38,14,21],pygraphviz:[38,2],neighbors_out:[8,13,2],set_po:[38,22,8,44,7],research:5,bubbl:21,bod98:42,dag:[2,10],set_random_se:[27,48,8,21],hill:22,sloan:21,mpppkqynooookhhdbp:40,my_fil:8,"007f00":44,randomlobst:[38,8,40,21,7],file_nam:31,rev_interv:21,ringedtre:21,dvipng:44,inclusionwis:[25,26],advanc:[38,33,29,21],signless:[38,3],int_to_binary_str:45,polyhedra:8,attempt:[15,29,42,17,20,37,47,8,31,9,21],laigl:21,reason:[14,22,42,30,16,44,38,8,9,26],base:[2,3,4,6,7,8,9,10,13,14,15,19,20,21,23,25,0,28,30,31,33,34,35,36,37,38,41,44,45,46,47,49,51],believ:21,put:[33,8,30,31],canon:[38,41,8,21],length_and_string_from_graph6:45,k5_minor:38,basi:[38,8,44],sampl:[8,5],nws99:21,barbel:21,cacgo:8,rankwidth:[38,35],finland:34,bf_:40,christiph:38,spinrad:38,powersum:38,"0587cm":44,circuit:[13,1,2,29,30,32,19,48,8,42,51],local:[20,21],pq_tree:47,"4sweep":[8,14],clump:45,assign:[],feed:[38,39,14,26],metaaaaaalll:8,singleton:[38,8,35,21],maximum_average_degre:38,obviou:[16,21],habibviennot1999:38,guao:40,graphgener:21,keep_label:2,misc:[38,33,8,46,44],number:[0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,21,23,25,27,28,30,31,33,34,36,38,41,42,43,44,45,46,47,48,50,51],placehold:0,pioro:42,tkz_pictur:44,alexandr:[38,2],is_circul:[48,8,21],construct:[2,41,22,29,16,31,18,33,10,7,38,48,8,44,21],balanc:[41,21],indistinguish:28,miss:[30,16,19,51,38,48,8,21],arggggggggggggg:8,width_of_path_decomposit:42,springerlink:36,random_dag:42,com:[22,44,39,36,38,8,21],exponenti:[],swart:8,vertex_color_dict:16,dfw:22,fruchtgraph:[38,8,21,7],stewart:21,"_hqxa":8,least:[0,13,2,15,42,30,16,31,18,50,22,38,48,8,44,9,21],cell600:21,pittel:38,koh04:24,expand:[8,21,44],storm:38,szeker:21,twenti:[28,4],transitive_closur:[29,45,8,2],kac:8,at_fre:24,hitotumatu:16,unalign:47,minimizesingledegre:23,caporossi:21,statement:[22,29],distanc:[],akad:8,park:2,pari:5,fabien:38,round_robin:16,part:[41,29,37,16,31,7,38,8,44,21],pars:20,qaa:40,consult:[29,44],is_connect:[2,41,22,30,26,36,38,8,21],monteil:39,aeronaut:21,cliquewidth:20,eventu:[38,8,26,44],seta:8,whatev:[40,51],king:21,kind:[45,15,51,35,38,8,40,21],scheme:[8,14,21],contrari:29,doubli:[8,50],fgge:38,cyclic:[38,16,21],edge_label_plac:44,k_n1:21,remov:[13,46,2,49,41,15,30,31,38,28,22,23,48,8,44,21],to_undirect:[34,2,22,43,31,38,8],horizont:[45,16,21,44],degree_constrained_subgraph:38,aaw:8,bridg:[38,8],joel:38,store:[0,28,1,41,15,42,4,46,18,19,20,7,38,14,8,24,9,21],str:[3,8,31,15,7],set_planar_posit:8,haach:8,toward:[14,2,15,29,9,42],danc:[38,16],harborth_graph:21,krep:21,boland:24,cv4v4:44,node_5:8,ogsgcgcagcj:8,position_d:8,windmil:21,get_minmax_data:7,ymin:7,gasket:21,is_distance_regular:[38,14,21],dedic:8,"null":[38,15,14,22],copenhagen:42,option:[],lie:31,outbound:[0,28,13,4],built:[2,29,30,44,20,48,8,21],equival:[14,2,29,16,32,47,36,37,38,8,21],randint:[22,30,21],lim:21,self:[0,28,2,41,22,29,30,16,4,47,46,21,36,38,8,31,50,10,26],lovasz1979:43,lih:8,goodrich:22,folkman:21,graphplot_opt:8,hartk:38,tree_iter:21,build:[0,14,41,29,30,42,26,37,38,48,8,9,21],compute_depth_of_self_and_children:50,millenia:36,techniqu:[38,45],command:[44,39,33,20,7,38,8,21],block_design_check:41,clv3v4:44,tool:38,ifub:[8,14],bab:42,cube:[38,8,14,21],is_hamiltonian:[8,21],distribut:[14,2,22,5,7,38,8,44,21],kirkmann:38,endlessli:[45,8],explicitli:[2,15,7,38,8,21],previou:[45,22,29,30,42,32,36,37,38,8,9,21],reach:[45,15,9,47,8,42],miscellan:[38,2,21],quelqu:5,plai:38,durergraph:[25,21],matric:[38,8,14,21,31],watt:21,prentic:21,level_set:2,charg:39,lazili:[9,42],k33_minor:38,buckminsterfulleren:21,return_vertex_weight:8,linearextens:10,clear:[45,44,21,38,8,51],cover:[41,16,20,38,8,21],lovasz_theta:[38,43],roughli:[8,14],ext:[38,8],s_graph:21,tutte_graph:21,oacgo_go:8,o_ia:8,"__gwmkecahkgtlerqa":40,ron:29,rgbtupl:8,flow_lp:8,gc_6:20,awesom:38,cccf:8,visibl:21,hyper:21,ridicul:8,grid2dgraph:[14,2,22,42,20,37,38,8,9,21],v12:44,v13:44,v10:[21,44],v11:44,predecessors_it:0,xdata:7,multiple_set:11,get_vertex:[38,8,21],networkx:[0,1,2,31,7,38,8,25,21],blondin:2,unique_represent:20,designtheori:41,franklin:21,seqd:42,fine:[38,8],mycielski:21,acgo:8,impact:42,induced_subgraph:33,giant:38,pretti:[15,29,16,36,7],agoha:8,cfv2v3:44,less:[40,45,42,30,16,5,33,38,48,8,9,21],solut:[42,16,5,51,38,8,9,21],acg_:8,in_degree_iter:2,experiment:[19,42,14],templat:30,propriet:5,minimizedegre:23,gqc:8,moser:21,sure:[28,31,21,7,38,8,44,26],lederberg:21,demonstr:[2,44],hit:[2,41,21,38,48,51],unus:[38,30],wagner:[38,21,37],completebipartitegraph:[31,39,38,8,40,21],mclaughlin:21,crescenzi:14,cheaper:[38,15],nativ:[38,49],stavro:18,rest:[29,21],compass:44,hexahedralgraph:21,cgi:[8,14],harrieswonggraph:21,restart:45,reoal:35,yeeeeppeeeee:8,batagelj:[38,21],posdict_m:21,brendan:[45,6,38,48,8,21,11],grotzsch:21,whenev:[41,29,30,5,37,38,8,26],aoga:8,herschelgraph:21,dejtergraph:21,sicmm:38,common:[],"_ccacg":8,link_dist:39,vincent:41,dyck:21,gg_a:8,commod:8,certif:[],coarsest:8,set:[],art:44,ser:38,seq:[47,42],sep:[44,5],subfunct:8,duplic:[42,2,21,31],startup:7,invis:[8,7],decompos:38,mutabl:[],see:[1,2,3,4,5,7,8,9,21,11,13,14,15,16,19,20,22,24,25,26,0,28,29,30,31,32,33,46,35,36,37,38,39,40,41,42,43,44,45,47,48,49],arc:[0,28,2,42,30,4,20,38,48,8,9,26],lcfgraph:[38,21],pvd:22,sea:42,only_bipartit:21,nlm:21,close:[31,21,7,38,8,26],kini:21,arm:21,atla:21,gc_69:20,simultan:32,fang:21,someth:[0,28,14,3,29,4,16,38,8,21],cgaogd:8,g_immut:38,fano:[41,11],min_genus_backtrack:36,mckai:[45,6,38,48,8,21,11],won:31,check_aut:21,nontrivi:21,kth:8,meanwhil:16,moretti:38,aldou:[38,22],multidigraph:[0,22,2],block_siz:41,altern:[41,32,20,51,47,8,21],bitset_list:15,return_map:8,imagemagick:44,mixedintegerlinearprogram:[2,41,16,38,8,42],numer:[3,7,31,39,33,35,22,38,8,21],induc:[34,41,29,42,18,38,20,10,23,45,8,9,21,26],javascript:[],imbrenda:14,versu:21,qwcg:8,traveling_salesman_problem:8,"4gb":[9,42],incident:41,has_arc_label:28,matplotlib:[38,8,44,7],arrang:[8,21],solv:[],purpl:[8,44],distances_all_pair:[15,8,14,37],vectorspac:8,install_packag:39,both:[13,22,29,30,37,31,33,51,28,21,7,38,8,42,26],informatik:35,last:[0,2,22,4,5,7,8,9,21,13,14,15,16,19,20,24,25,26,27,28,30,31,32,33,46,35,38,41,42,44,45,47,48,51],delimit:8,edge_disjoint_spanning_tre:8,thou:13,annual:[8,14,50,21],relabel:[0,13,41,30,32,19,21,37,38,8,26],graph_gener:21,sty:44,sporad:21,rotat:[44,21,7],aperiodic_graph:2,context:23,pdf:[1,22,18,38,35,23,21],whole:[14,41,3,30,16,19,46,35,15,38,8,47,51],wei:21,load:[44,20,10,31],azarija:23,tutte_polynomi:[23,38],simpli:[2,41,4,31,38,8,51],analytictech:38,show3d:[38,8],johnsongraph:21,instanti:[47,28],cycle_basi:8,has_edg:[0,28,13,41,15,4,16,20,35,8,21],sweep:[8,14],arbitrarili:[21,44],degreesequenceexpect:21,oddcycl:38,wpkcore:38,add_package_to_preamble_if_avail:44,ocacg:8,zeta:38,supersingularmodul:8,"_aaa":8,backend:[],vertex_shap:[8,44,7],geoffrei:38,check_input:8,becom:[28,2,41,30,38,8,21],java:22,edge_opt:[8,44,7],sz_number:38,add_vertic:[0,13,14,22,30,31,8],due:[28,1,45,4,7,8,24,21],empti:[34,14,2,41,15,30,31,47,46,35,7,38,8,24,22,42,21,11],accessor:20,bgcolor:8,brice:39,ireland:21,reformat:33,nonexist:44,walter:50,networkx_graph:[8,1,2,31],b_j:41,modern:36,whitnei:26,"gr\u00f6tzsch":21,delta_ub:5,itoh:48,imag:[38,8,40,44],appli:[14,44,32,33,47,21,38,8,42,26],housegraph:[17,21,38,8,40,26],gaq:8,mine:21,coordin:[2,50,44,37,38,8,21],understand:[29,21,31],g_mut:8,demand:20,"0x7f8fc94fccf8":[],query_iter:33,bdqg_:8,imas:48,convers:[45,16],del_arc_label:28,sfo:22,pitman:2,"_canonical_label":41,look:[14,45,29,37,44,21,7,38,8,26],gale:21,dead:38,jstor:26,straight:[],tetrahedron:21,sobj:8,is_circular_planar:[8,20],"while":[49,1,2,48,22,29,30,16,37,35,33,51,26,7,38,14,8,44,25,21,11],kittellgraph:21,smith:21,smart:51,behavior:8,shift:[33,21,7],orderli:[48,21],bowti:[8,21],robin:16,fernandez:21,in_neighbor:[30,28,13,4],unitdisk:20,"_o_xdc":8,larger:[28,14,45,42,5,7,38,8,31,9,21],chudnovski:38,formul:[],bseta:8,prim_edg:8,dbg_oa:8,went:23,itself:[2,41,44,33,51,7,38,8,47,26],costli:15,reddi:48,trennenden:8,quadrat:[14,21],rid:2,south:44,amritanshu:38,pso:8,loop_plac:44,lybanon:35,decor:8,minim:[2,41,16,44,35,36,38,48,8,42,21],belong:[13,14,2,41,29,32,47,51,38,8,24,26],set_edge_label:[0,28,30,4,7,38,8],nonzero_posit:38,minu:[38,3,21,48],shorter:[8,21],funni:21,directed_cliqu:8,decod:[45,21],max_degre:33,dinversea:21,mutzel:21,layout_default:8,"_class":20,horton:[38,21],randomintervalgraph:[38,8,21],superfast:[9,42],higher:[8,16,21],"_nxg":8,"_ocha":8,dima:43,transitivetourna:[19,8,2,48],optic:42,optim:[28,41,3,42,16,5,18,35,36,38,8,9,51],gglkcmo:40,hararygraph:21,fgc:[38,33],random_acycl:[30,2],moment:[15,29,20,37,8,11],strength:39,temporari:14,soto11:5,boa:8,edge_connect:[38,19,8,33],robust:44,dart:36,typic:[38,33,14,21,7],vertex_separation_milp:42,recent:[0,2,22,4,5,7,8,9,21,13,14,16,19,20,24,25,26,27,28,30,31,32,33,46,35,38,41,42,44,47,48,51],travers:[38,8,30,21],task:[9,42,44],"_gc_id":20,older:44,vertex1:8,entri:[33,15,16,32,19,20,7,38,48,8,21],vertex2:8,spent:[8,42,9],"try":[45,3,29,16,5,32,33,51,37,38,8,31,21],pickl:[0,28,4],is_gallai_tre:[8,20],dendral:21,expens:[28,51,21],uint32_t:15,chvatal_graph:21,tetra_spr:21,tetrahedralgraph:[38,8,21],lowel:26,lin:[8,21],propos:[8,14,42,21,5],explan:[28,2,29,4,44,42,38,8,9,21],usepackag:44,internat:21,itemgett:8,fiv12:5,"_boundari":[8,2],scc_digraph:2,grunbaum:21,query_dict:33,uselessli:15,ranked_layout:2,set_immut:8,associahedron:2,gc_249:20,combinat:[41,10,2,21],nichola:38,subdivide_edg:8,prufer:21,part_bbox:7,"_cg_rev":30,iterator_out_edg:[0,28,13,4],cut:[42,5,19,20,38,8,9],cup:41,hgxgagug:8,shortcut:[38,8,2,21,11],pitsta:2,rgb:[8,16,44],gyll93c:[8,14],win:21,fmpz_poly_t:3,input:[0,1,2,3,4,5,7,8,9,21,11,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,46,35,36,37,38,39,40,41,42,50,44,45,47,48,51],subsequ:[41,20,44],dcgok:8,euler:[8,36],useless:[41,9,38,8,42,51],cut_vertic:38,treewidth:[38,42,20],stein:[38,22,21],format:[],big:[21,44],molecul:21,intuit:[33,8,21],vertex_int:30,forbidden:[18,20,21,38,8,26],find_path:45,thoma:[38,22,8],gc_76:20,alias:8,a_c:45,combinatorialclass:10,insert:[27,14,30,39,48,8,21],step:[28,45,22,29,5,21,38,42,26],resid:21,bit:[14,30,4,51,26,38,8,42,21],subhypergraph_search:41,sparse_copi:8,valent:21,cutedg:8,distances_distribut:[8,14],semi:[38,8],lightpath:42,b_color:16,col2:33,resolv:41,rgbcolor:8,collect:[2,41,22,47,26,38,8,21],nxgd:0,byproduct:32,quotient_matrix:8,tolrep2:21,mcgraw:22,interestingli:[48,21],variant:[22,8],"3in":44,two:[],edge_multipl:23,imaseitoh:48,encount:[21,31],often:[8,21,44],simplifi:[38,47,8],spring:[2,45,39,7,38,48,8,40,21],set_min_s:11,cv9v10:44,some:[2,22,5,7,8,9,10,11,14,15,18,19,20,21,24,26,29,30,32,35,37,38,39,41,42,44,47,48,51],back:[38,8,16,21,37],global:44,understood:8,ellingham:21,pack:[41,8,16],vertex_separation_exp:[9,42],exgg:21,sampo:34,surpris:[38,25,21],hdict:5,is4:25,senseless:21,vol:[14,2,18,51,26,38,48,8,21,35],scale:[45,44,21,5],acgoo:8,permutationgraph:[29,21],acgoa:8,int32_max:14,balaban:21,weisstein:21,per:[14,2,44,33,6,10,38,8,40,21],initial_vertex:8,boucheron:21,bruce:6,nxdgd:0,mathemat:[14,41,16,43,38,51,26,23,1,8,44,21,35],larg:[14,2,42,5,20,51,38,8,31,9,21],represent:[2,44,45,29,16,17,38,48,8,24,21],transitive_reduct:8,prog:[8,44,7],leftmost:48,eccentr:[8,14,21],proc:[8,50,21],prob:[8,21],berger:38,recogniz:[8,7],machin:48,cgh:[8,14],set_embed:[8,36,21],run:[],gco_agpa:8,cgo:8,s13:41,word:[48,8,42,26,21],modular_decomposit:[38,20],cgb:30,cge:8,shortest_path_all_vertic:30,force_spring_layout:39,oei:[48,21],franci:38,gc_56:20,claw:[20,26,38,8,25,21],automorph:[38,41,8,21],from:[0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,50,44,45,46,47,48,51],major:41,subtract:44,tower:21,von:[8,21],canaug_traverse_edg:21,gen_html_cod:[39,8],tester:16,usa:[48,21],idx:31,constraint:[2,42,16,31,32,33,47,51,38,8,25,21,11],transpos:[41,8,10],aaoaacd:45,materi:8,brinkmann:21,"_coap":8,unweight:[32,22,8,14],identity_matrix:21,remove_loop:[8,21],preset:[33,44,7],additive_gap:5,akiyama:16,pred:8,dominator_tre:[19,8],has_multiple_edg:8,block:[41,8,20,21],charl:22,cutoff:[8,30,36,21],lollipop:21,perfect_id:20,primarili:45,dense_gnm_random_graph:21,digraph:[],add_path:8,good:[14,45,29,16,5,33,26,38,8,44,25,21],everyon:[19,8],hortongraph:21,nsg:21,segfault:[8,14,36],master:8,url:16,default_show_opt:7,static_sparse_graph:[49,15,8,13,2],ensur:[44,29,30,5,32,47,20,37,38,8,31,21],removed_loop:23,kaib:8,spindl:21,pentagon:[21,44],websit:[39,20,21],inclus:[],triangl:[2,15,29,30,19,46,21,37,38,8,26],spam:[8,7],save_po:[8,7],captur:[48,21,11],question:[33,37],chr:[41,8],textual:44,custom:[38,8,44],betwe:21,almost:[38,46,2],adjac:[0,32,13,2,41,16,31,18,19,46,26,37,38,8,45,21,35],"_option":44,handbook:37,includ:[2,41,22,31,33,20,36,38,48,8,44,21],suit:[8,30,44],forward:[0,48,8,13,11],jonsson:[38,8,21],offer:21,direcetd:8,properli:[8,16,21],repeatedli:30,subgraph:[38,34,2,41,18,33,20,26,23,48,8,45,21],itervalu:41,oterwis:42,handl:[34,30,44,33,46,35,38,8],"_o_":8,padsto:21,borassi:5,decomposit:[],coarsest_equitable_refin:8,unpickle_graph_backend:0,octahedralgraph:[31,38,21,23,8,26],append_child:50,link:[28,2,29,16,50,37,38,48,8,21],translat:[30,8,13,14],spring389:21,atom:21,linestyl:7,line:[],tkzpictur:44,australian:38,info:[33,8],bevel:44,cia:21,ooch:2,consist:[2,41,4,31,33,7,38,48,8,44,21,11],best:[42,5,51,21,36,8,44,9,26],godsilroyl:21,bigg:[38,21],fdp:[8,44,7],"_og":8,random_spanning_tre:[38,22],kuhl:48,reorder:47,pointi:21,"_om":8,highlight:44,"_oi":8,"_oh":8,impl:8,superclass:20,curv:[38,39,44],constant:[14,2,5,6,10,38,9,42,21],a000666:21,centrality_clos:[38,8],maxn1:21,meredith_graph:21,max_cut:8,"_go":8,doesn:[33,8,2,21],repres:[2,7,42,8,10,34,14,15,9,20,21,26,28,29,30,31,39,33,37,38,32,41,50,44,45,47,48],octahedr:[21,7],thomsen:21,incomplet:[41,51],poussin:21,destruct:38,ggaca:8,field:[33,15,8,21,31],is_line_graph:[38,8,20,26],graham:8,handili:36,max_field_s:33,return_edge_label:8,randomdirectedgnr:[48,8],parabol:21,randomdirectedgnp:[13,2,29,48,8,42],cliquer:[],grp:33,titl:7,user:[38,34,14,2,44,33,20,23,8,21],num_var:31,x3d_str:8,invalid:[8,31,21,7],randomdirectedgnc:48,priori:36,nico:[34,21],oa_cicaooc:8,jcc:[8,7],"9775in":44,dig6_str:2,randomdirectedgnm:48,nice:[14,15,44,33,20,51,7,38,8,21],dot2tex_pictur:44,draw:[44,39,7,8,40,21],"2476cm":44,minimum_degre:21,clean:[33,44,5],gigabyt:14,f26a:21,correspon:11,knew:26,planar_graph:21,vertexord:23,finit:[2,31,20,8,24,21],william:[38,21],watkins_snark:21,meaning:21,ugagg:40,"_ssjdapcoig":40,o_agcai:8,formal:[38,8],glpk:[38,41],lang:8,furthest:[14,21],wendi:8,ternari:[38,35],vice:[30,21],min_vertex_cover_s:33,export_to_fil:8,rather:[0,8],visual:[],evenli:[8,7],discrimin:8,depth:[42,30,50,18,38,8,9,21],chartrand:21,far:[14,45,5,51,38,8,44,42,21],is_cartesian_product:[38,8,37],convert:[34,14,2,33,45,3,43,44,19,22,38,8,40],scroll:39,external_fac:8,path_semigroup:2,save_afil:31,dualiti:[38,3],code:[35,49,14,44,41,3,37,38,5,39,33,10,51,15,7,23,8,31,22,21,26],partial:[],edg:[0,2,3,4,7,8,42,21,13,14,15,16,17,18,19,20,22,23,26,27,28,29,30,31,39,33,46,35,36,37,38,41,44,45,48,49],cut_vert:21,sylvestergraph:21,error:[28,14,2,30,31,19,38,48,8,44,25,21,11],toto:9,chvatal:[38,46,21],higmansimsgraph:21,"_gca":8,fano2:41,essai:5,barbellgraph:[8,40,21],ellipt:[38,21],legal:21,edu:[45,22,16,33,35,38,48,47,10,11],erdos1978choo:8,prim:[22,8],p08:38,graph6_str:[38,33,8,21],compact:[15,8,13],cython:[],ccaaac__bcccwoov___:8,ouvert:8,write_:8,antisymmetr:8,isbinaryblockdesign:41,minor_:38,icosahedr:21,ryser:21,prin:8,elsewher:[44,7],young:33,send:[8,21],carefulli:44,hqkhqojykc_uhwgx:40,tud:8,isomporph:21,aris:41,cfv4:44,qacg:8,sent:38,chemistri:[8,14,21],spring_layout_fast_split:45,rank_decomposit:[38,35],rainbow:[8,7],position_:8,wagnergraph:[38,21,37],lanzi:14,get_edge_label:[0,28,13,4],ihara:38,ivuqwk:38,cputim:21,eunseuk:21,mous:2,electron:21,gromov87:5,volum:[14,2,38,23,48,8,42,21],cellular:48,chan:2,implicitli:7,relev:[30,51,21],tri:[2,45,30,16,18,20,38,9,42,21],randomtolerancegraph:21,span:[],tran:[48,43],chromatic_polynomi:[23,38,16,21],tuttecoxetergraph:21,c_gaogc:8,schrijvercombopt:[38,8],gc_998:20,michael:[38,22,35,21,48],radii:21,vertex_separation_bab:42,queen:21,tietz:21,race:21,desarguesgraph:21,joep:38,practic:[49,8,28,14,5],relatedwork:22,topological_minor:38,num_fixed_point:33,degseq_to_data:33,gc_995:20,"_gaco":8,tgrid:21,impli:[29,16,47,51,37,38,8,21],gc_994:20,natur:[28,4,31,16,35,37,38,48,8,44,21],genbg:[48,11],stereograph:21,equivalence_class:29,sparse_graph:[0,28,2,49,30,13,38,8],max_it:45,cambridg:[38,21],redond:21,fold:21,konstanz:1,blanklin:[8,20],show_graph:[38,48,8,40,21],numbers_of_color:16,tournament_:48,download:[8,20,35,44],minimum_connect:21,subgraph_search:[8,21],line_graph_forbidden_subgraph:[38,8,20,26,21],carlo:16,click:17,successors_it:0,compat:[45,30,8,13,10],index:[],font:44,"0x7f8fd2f2ede8":[],graphclass:[38,20],compar:[],bdm:[45,48,11],resembl:21,node92:8,incoming_edge_iter:2,"_g_":21,borgatti95:38,find:[32,28,14,45,42,30,16,31,18,38,20,26,36,37,23,8,50,9,21],access:[28,2,33,20,38,48,21],onpair:8,birk:[18,38,21],indian:[8,14],fa_pw:[38,33],tom:[3,16,35,38,8,21],allow_multiple_edg:[22,30,39,46,38,8],counterexampl:21,aocgo:8,garbag:7,is_asteroidal_triple_fre:[38,24],is_half_transit:38,agcago:8,oci:8,chrompoli:21,perimet:44,add_vertex_unsaf:30,elect:37,iteritem:[23,8],csdp:[38,43],len:[38,13,14,2,40,41,3,29,30,16,18,33,47,20,35,23,48,8,25,21],optiml:38,closur:[8,51],acac:21,get_graphs_list:[38,33,8,40],sink:[8,2],mazaur:42,lex:8,vertex_dict:8,vertic:[],tachyon_vertex_plot:8,sinc:[28,14,2,33,3,4,5,39,16,7,38,8,42,21],dominator_:[19,8],remark:[14,36,37,1,8,21],survei:38,ogaccogagoc:8,genu:[],technolog:[34,21],"_name":41,genl:10,rdf:21,bd1:41,bd2:41,a001349:21,geng:21,chang:[0,14,2,42,30,16,37,32,10,7,8,9,21],hexagon:21,randomboundedtolerancegraph:21,chanc:21,dissert:5,fake:8,vertex_properti:8,have_tkz_graph:44,affineorthogonalpolargraph:21,polynomialr:[23,38],tau:29,realloc:[30,28,4],approxim:[8,21,5],vertices1:8,foundat:[38,22],submodul:38,bishop_radiu:21,halljankograph:[8,21],pxi:46,api:8,aut_gen:21,regexp:[47,33],find_hamiltonian:[45,8],is_comparability_milp:29,chartrus:44,"0x7f26fa231320":21,cloud:2,ch_:[33,8],ziv:38,bbabiu:21,feel:[36,8,26,21],nstargraph:21,stream:40,zip:[8,20,2],commun:[38,42,34,21],doubl:[14,2,45,15,44,1,8,21],next:[28,2,45,29,30,4,31,33,6,48,8,42,21,11],contemporari:38,update_db:20,bunch_it:0,asteroid:[],usr:44,nonzero_positions_in_row:21,jda:24,jonathan:50,commut:[8,2,37],remaind:8,sort:[38,13,14,2,41,22,31,32,33,20,10,23,8,42,21],ogacagc:8,is_compar:29,lovasz_numb:33,g_list:21,crst06:38,carbon:21,recal:[24,4],outgoing_edge_iter:2,is_planar:[8,20,21],iif:8,"32gb":14,inclusion_digraph:20,quadrangl:21,clv1:44,livingstone_graph:21,realli:[38,22,8,21],on_embed:8,kautz:[48,2],schrijver:8,fan:21,g_og:8,account:[13,14,45,30,39,38,8,21],retriev:[28,8,20,36,44],set_posit:21,augment:[48,8,21],tietzegraph:[38,22,21],alia:[38,8,2],credenti:20,temp_graphviz:8,critic:41,bubblesort:21,chebyshev_u:31,cv0v13:44,obvious:[2,30,16,31,26,7,38,8,25,21],hoffmansingletongraph:[8,21,7],iff:[38,8,2,21],algrithm:42,min_siz:41,meet:[21,44],neighbor_iter:8,number_of_descend:50,fetch:[39,33,8],subgraph_search_iter:8,point:[],sahni2000:22,sqlite:33,sri:48,"_oa_dfga":8,bent:21,nikolopoulospalios07:[18,38],process:[14,44,38,35,23,48,8,42,21],lock:47,llwc:21,high:[33,49,51,21],stanley95:38,"1in":44,sligthli:[38,25],sangil:35,onlin:[38,33,8,21],xmin:7,dejter:21,akgsao:38,graph_product:[38,8,37],empty2:21,gca:8,vertex__fill_color:44,surfac:[8,21],feynman:38,palei:[38,21],gcd:2,k_gcq:8,pseudograph:21,hexahedron:21,prevent:[42,21],balancedtre:[8,20,42,21],cormen:22,occur:[8,30,2],acycl:[],vertex_connect:[33,8,21],ander:[38,8,21],infeas:51,forest:[38,16],exterior:44,instead:[28,14,41,15,42,30,37,44,39,45,46,20,7,38,48,8,22,25,21],edoaeq:38,edge_labels_math:44,sin:[8,44,7],sim:21,centaid:38,klau:35,frac:8,odc_ao:8,overridden:[8,30],has_loop:8,fmdec:38,"_how":8,jump:14,ronald:22,notebook:[33,40,44,17],acgacgo_:8,ggc:8,attent:[8,26],completegraph:[46,2,40,44,3,29,16,17,19,42,26,36,15,38,8,24,22,9,21],crazi:[38,3,26],"5cm":44,ceil:38,subcal:29,postiv:38,debruijn:[13,14,2,29,39,48,8,42],qwchk:8,alloc:[15,30,28,14,4],essenti:21,nanci:42,amount:[15,14,26,10],ideia:16,extra_vertic:[30,28,4],correspond:[0,14,2,41,15,29,37,16,44,19,51,20,26,36,7,38,8,42,9,21,35],lnc:42,hexahedr:21,zuge:38,mark:[33,21],sousseliergraph:21,gc2:20,write_dot:8,lollipopgraph:[8,40,21],is_subgraph:8,weight_funct:8,g_aa:8,american:26,vertex_color:[38,8,44,16,7],m22graph:21,amoz06:38,schnyder:[],fastest:8,a000055:21,six:21,creation:[45,21],only_eulerian:21,routin:[2,15,44,10,8,21],attain:21,cfv0v0:44,cfv0v3:44,move:[10,21,44],del_all_arc:[30,28,4],equinumer:2,cut_off:[9,42],ryan:[28,6,31],label_styl:8,ticket:[13,14,2,41,3,30,37,44,39,46,28,15,7,38,8,21,26],add_edg:[0,13,14,2,44,41,22,30,38,4,5,39,19,28,36,7,23,8,31,42,21],"9437cm":44,overful:38,is_odd_hole_fre:38,packag:[41,43,44,39,33,38,8,21],affinegeometrydesign:41,bruijn:[48,8,14,42],butterflygraph:[2,15,30,44,48,8,21],return_relabel:8,bunch:30,perfect:[38,33,8,20,21],chien:21,induced_substructur:41,outer:21,bipartite_graph:31,chosen:[14,5,7,48,8,21],subseteq:38,eulerian_circuit:8,gari:23,sublist:21,return_vertic:8,multiway_cut:8,rubin:8,mutualis:8,decad:42,therefor:[38,20,37],byc:8,tsp:8,acde_acdef_acdefg_acdegh_acdeghi_acdeghij_acdegijk_acdegijkl_acdegijklmacegijknacegijknacgijknpacip:8,factor:[5,38,37,23,8,21],crash:[38,35],greater:[8,42,9,21],nonneg:[30,8,28,2,21],python:[],auto:[8,21],dan:8,overal:[44,5],guess:[38,41,8,2,37],dai:[38,36],read_edgelist:8,cagi:8,mention:21,cago:8,dotspec:8,vertex_transit:33,cv0v2:44,cagc:8,boruvka:22,cage:21,my_label:[8,44],ooh:8,trac:[0,13,14,2,41,3,30,37,31,39,46,28,15,7,38,8,44,21,26],sampling_s:5,edit:[38,22,44,21,17],cv0v1:44,star_graph:21,bcn89:21,direct_product:8,februari:[48,21],gnp_random_graph:21,perkelgraph:21,truth:20,circular:[2,30,7,38,8,40,21],sequenti:[2,29,16,38,8,26],no_certif:29,upward:[8,2],few:[14,16,32,36,38,21],societi:38,arxiv:[38,8,2,21,5],oum:35,edge_fil:44,return_group:8,surviv:21,w12:41,s__:8,combinatori:[38,8,36,26,44],saoecea:40,ruskei:[2,10],nkstargraph:21,brittl:20,average_clustering_coeffici:19,bg2:31,our:[38,19,47,45,21],col1:33,differ:[2,5,7,42,8,21,15,16,9,19,25,28,30,31,46,37,38,41,44,47,48,51],salesman:8,elaps:45,special:[38,30,33,20,21,7,23,8,26],out:[0,13,1,2,48,45,15,42,30,4,37,44,28,26,7,38,14,8,9,21],backtrack_bound:45,newman2003:21,cv1v4:44,matrix:[14,2,41,16,31,32,47,46,35,38,8,24,21],contigu:[47,15],bag:38,influenc:[21,44],longest:[45,8],symanzik:38,waah:8,rev:[48,21],"00ff00":[38,8,7],g_networkx:8,neigbour:8,categori:[47,26,31],cv11:44,erfurt:30,genericgraph_pyx:[45,8],"_aig":8,suitabl:[38,30],rel:[2,44,36,38,48,8],max:[14,48,16,33,36,7,38,1,8,21,11],ggow:8,gocwitc:8,s_k:21,thieri:[38,44],red:[38,8,28,44,7],franc:21,random_el:[41,29,47,38,8,21],cv6v11:44,pajek:8,node_9:8,out_degre:[0,13,2,15,30,4,28,38,8],node_7:8,frank:[2,21],pleas:[41,29,42,5,46,35,37,38,8,9,21],node_4:8,node_3:[8,44],node_2:[8,44],node_1:[8,44],node_0:[8,44],layout_spr:8,og_ukebg:40,control:[45,42,44],pendant:38,graphinit:44,from_sparse6:[38,40],dense_copi:8,bwi:22,philip:21,bolloba:38,greedi:[29,42],s_1:21,exemplifi:33,s_2:21,independent_set:[38,20,25,21],transposit:21,upper_bound:42,wcgor:8,cremona:38,could:[28,14,41,3,42,30,37,31,33,20,26,15,38,8,44,9,21],ask:[2,16,44,38,8,5],m22:21,min_degre:33,compute_number_of_descend:50,annoi:33,length:[28,14,2,44,41,15,29,30,4,5,18,33,42,26,48,38,45,8,31,40,21],glieder:8,graph_id:33,descript:[],outsid:[38,15,51,2,21],no_nonfacial_quadrangl:21,"_g_o":8,retain:[38,8],successor:[0,48,8,2],cyclegraph:[43,1,2,40,41,29,37,16,5,18,19,42,26,7,38,48,8,31,9,21],cadin:21,petersengraph:[1,2,3,5,7,8,40,21,13,14,15,16,18,20,23,24,25,26,28,29,30,31,32,34,35,36,37,38,39,41,43,44,45,46,51],seok:21,clv0v3:44,clv0v2:44,clv0v1:44,t48:34,rookgraph:21,christoph:38,third:[38,8,24,21,7],pgl:41,"_inclusion_digraph":20,psw1996:38,is_semi_symmetr:38,k_4:20,pseudofract:21,dh_o:8,by_weight:[8,30],stark:38,to_direct:[38,22,8,30,2],ydata:7,redund:31,gh_:8,to_simpl:8,prioriti:[22,8],klein7regulargraph:21,"lov\u00e1sz":[],"long":[14,2,3,42,30,4,5,51,46,20,26,36,7,38,48,8,44,22,25,21],smaller:[2,42,35,37,38,8,9,21],dump:[44,10,31],strict:20,finitefield:8,unknown:[38,45,8,20,5],licens:21,perfectli:21,system:[],messag:[38,30,2],eighth:21,interactive_queri:33,attach:[48,21],buckminst:21,sadli:14,isomorphic_substructures_iter:41,privaci:39,write_gexf:8,siam:[2,22,50,6,38,8,21],cv3v12:44,"final":[2,45,44,7,38,48,8,21],elimint:8,set_contigu:47,lekkerkerk:24,shell:[33,21],test3:8,hardwar:[35,36],havet:38,termin:[8,26],fuzzi:21,juli:[39,48],multiple_edg:[0,13,22,30,4,28,8],intersectiongraph:21,extra_preambl:44,number_of_n_color:16,rivest:22,caaoq:8,buckybal:21,yurko:[48,21],edge_selector:[23,38],nauty_geng:21,sage_trac:8,hierholz:8,standalon:44,exactli:[14,2,41,16,31,21,37,48,8,26,35],nx_pydot:8,ogc:8,havel:21,og_:8,graphic_s:44,cv0:44,acj_:8,laddergraph:[8,40,21],bother:36,roberto:22,clebsch:[38,46,21],structur:[],is_cycl:23,caphabmont02:38,num:[38,33],sens:[38,8,10,21],gc_62:20,polycycl:21,minor:[38,51,20,16,21],graph_plot_j:39,is_cliqu:8,counter:[38,21],paritcular:21,clip:7,terribl:38,plaintext:8,"_agco____occ_":8,cohen:[39,34,14,45,15,29,37,16,5,18,47,51,20,26,22,38,8,42,21,35],arg:[23,0,8,41,31],clearli:[8,2,21,16],chapman:21,corrupt:[38,2],have:[2,22,5,7,8,9,21,13,14,15,16,18,19,20,26,27,28,29,30,32,33,46,35,36,37,38,41,42,44,45,47,48,49,51],disjoint:[41,30,47,38,8,21],north:[21,44],gyll93:8,element:[5,7,8,10,11,13,14,15,16,21,25,26,29,30,31,39,33,35,37,38,32,41,44,47,48,51],gosset_3_21:21,s3_9:41,philipp:35,tkz_style:[8,44],gc1:20,spgt:38,k__:8,bip_id:20,mia:22,dictionnari:[38,8,5],rout:[33,8],brandes01:1,wqseo:8,outward:[8,29,21],mix:[29,38,8,42,2],rwklaus:35,discret:[22,50,5,38,8,24],graph6:[2,45,33,38,8,40,21],hssnx:8,which:[2,3,4,5,7,8,9,10,11,13,14,15,16,18,20,21,23,24,25,26,0,28,29,30,31,32,33,46,36,38,39,40,41,42,43,44,45,47,48,49,51],conclud:8,buckygen:21,pcaogi:8,hbox:44,mit:[47,22],singl:[38,2,44,33,23,8,40,21],pyx:21,ismail:5,unless:[28,2,15,36,7,38,48,8,42,21],allow:[2,4,5,7,40,42,21,11,13,14,8,23,25,0,28,30,39,33,38,44,47,48],prim_fring:8,edge_cut:8,horton_graph:21,discov:[9,42],ead:21,gocwitcc:8,eight:[8,21],cfv10:44,cfv13:44,awh:8,pradhan:48,comparison:[14,5,20,38,8,42],segment:[29,21],"class":[],with_label:[38,8],constrait:51,prove:[38,47,42,26,5],lee:[8,14,21],"32a":[8,14],placement:[2,44],edge_partit:39,gomory_hu_tre:38,dens:[],pieter:8,jussieu:38,request:[0,30,8,28,4],unachiev:8,inde:[28,14,2,29,30,16,32,20,26,37,38,8,24,42,9,21,35],posdict_big:21,ldist:44,michel:[38,5],determin:[31,28,2,44,29,30,42,5,7,38,8,17,9,21],sourceforg:44,occasion:21,constrain:[38,48],klavzar:[8,14,37],wcsegagaiaa:8,fact:[38,8,44,21,37],gain:51,son:22,is_independent_set:8,dbk:33,texlbl:8,"super":20,graphs_list:[38,48,8,40,21],is_edge_transit:38,text:[33,8,44,17],verbos:[2,41,16,5,51,35,38,8,42,26],affin:21,dbg:33,watch:37,graphdatabas:33,cv12v13:44,empir:[14,2],chri:3,edge_s:8,trivial:[14,2,21,38,8,51],dbw:33,staff:16,redirect:48,done:[39,2,44,45,29,37,42,5,18,33,20,10,25,38,8,31,9,21],outdegre:[38,2],locat:[33,8,44,51,7],nois:[8,7],jay:21,delete_multiedg:8,categor:8,c_cp:8,clebschgraph:[38,46,21],should:[2,3,7,42,8,21,11,13,14,15,16,9,22,26,28,29,30,31,33,38,41,44,47,48,51],cfv0v1:44,smallest:[16,32,51,7,38,48,8,42,21],del_vertex:[0,30,28,13,4],is_permut:29,livingstonegraph:21,layout_acycl:[8,2],is_interv:[47,8,20,21],hope:[45,32,48,9,42,21],whitney32:26,meant:[8,1,16,21,10],iterkei:[38,8],insight:8,clustering_averag:8,g_oa:8,all_cycles_iter:2,familiar:[33,7],fano1:41,data_structur:[38,8,13,2],desarguesianprojectiveplanedesign:41,variabl:[28,13,1,44,3,29,30,4,17,39,19,20,10,15,38,14,8,31,42,21],cfv0v4:44,"_hqwc":8,return_dict:[19,8],lower_bound:[9,42],increas:[8,30,42,2,21],wise:[8,35],weight_sum:8,write_multiline_adjlist:8,is_transitively_reduc:8,liu:[38,21],extract:[20,21],experi:[38,35],enabl:[29,8,2,21,31],organ:[48,8,21],grayscal:44,gc_215:20,stanford:16,all_simple_cycl:2,benzen:21,grai:[38,21],stuff:[38,15,8,20,2],s4_8:41,tamassia:22,partit:[14,2,41,29,16,5,39,7,38,8,31,21],contain:[2,3,4,5,7,8,9,21,11,13,14,15,16,18,19,20,24,26,28,30,31,32,33,46,35,36,37,38,39,40,41,42,44,45,47,48,49,51],igmoqocuoqeb:38,bicub:21,dodecahedr:[45,21,7],holtgraph:[38,21],"___wmjfcahwzeba":40,bipartitegraph:31,view:[],hash_mask:28,categorical_product:8,e_cw:33,charpoli:[8,21],khckm:21,unavail:7,frame:7,num_spanning_tre:33,"2k_2":[38,20],"2k_3":20,to_partit:38,clust_of_v:19,xsggwow:40,sparsegraphbtnod:28,ctan:44,ohcgk:21,dictionai:39,stack:[8,30],verbose_constraint:[38,8],acg:8,grw:8,run_spr:45,braid:29,dlg:21,conjectur:[16,21],correctli:[8,28,7],mainli:[28,30,4,16,39,21],boundari:[38,8,2,21],dlo:33,balaban11cag:21,kirchhoff_symanzik_polynomi:38,tend:21,written:[34,40,41,3,37,16,26,15,38,8,25,21],proof:[2,29,30,32,47,8,21],hasse_diagram:[45,8,2],sparsegraphbackend:[0,28,30,13,49,8],araya:21,max_:38,chemic:21,insomorph:41,dlx:[38,16],complement:[3,29,43,18,51,46,35,22,38,8,25,21],strong_product:8,fanoplan:41,grout:[38,33,8,21],graph_list:40,kei:[2,41,29,16,44,33,20,7,38,8,21],leiserson:22,isom:[38,26,21],"0563cm":44,notion:[38,29,21,5],isol:[8,21,31],itertool:[38,41,21],moebiu:[38,45,8,21],job:[16,26],entir:[38,8,16,21,44],max_prefix_numb:42,subgroup:[41,8,21],disconnect:[14,45,22,30,51,21,36,38,8,26],disallow:[38,46],readwrit:8,garden:38,david:[27,14,41,22,5,38,35,23,48,9,31,42,21],linear_extens:[8,10],nonsquar:2,biggs93:38,hammack:37,jia:21,aqua:44,equal:[2,3,5,42,8,21,11,13,14,16,9,19,26,29,31,32,33,35,37,38,41,44,48,51],etc:[38,45,8,5],admit:[38,16],instanc:[28,13,2,33,41,29,4,5,47,19,51,20,35,37,38,8,17,42,9,21],num_edg:[0,13,30,33,6,8,21],is_transit:[29,2],mycielskistep:21,freeli:[28,4],vc1:38,to_sparse6:40,boyer:8,bidirect:[8,30],comment:51,matrix_funct:21,"04cm":44,allows_multiple_edg:[8,2,31],harpri:8,wall:[41,21],"0x7f271868ac80":8,complementari:21,aacg:8,gc_992:20,walk:[38,22,8],is_prim:38,distinguish:2,taylor:8,gca_sa:8,toler:21,respect:[14,2,41,49,43,31,33,36,7,38,8,21],oakland:48,krackhardt_kite_graph:21,append:[2,6,21,7,38,8,40,10],goldnerhararygraph:21,iterator_in_edg:[0,28,13,4],quit:[38,8,2,21],q_a:21,deep:8,platform:8,cv6:44,edge_iter:[8,2,16],cv4:44,cv5:44,cv2:44,compos:34,abc:[41,8],cv1:44,compon:[38,14,2,45,15,29,30,37,5,19,51,35,7,23,8,24,42,21],choosabl:8,get_po:[38,22,8,7],my_add_edg:30,besid:[14,2,42,16,5,8,9],treat:[38,33,8,28,4],groetzschgraph:21,fooba:[38,7],immedi:[15,30,5,19,35,8,9],clv10:44,ntri:22,generic_graph:[2,22,44,32,19,37,38,48,8,21],rajapaks:[8,14],mike:[23,2],acyl:30,setup_latex_preambl:44,nbunch:8,mcad:38,presenc:8,face:[36,8,2,21],coincid:38,ridder:20,is_long_hole_fre:[18,38],outo:2,dodecahedralgraph:[45,39,7,38,8,40,21],neighbour:[15,9,30,42],neighbor:[13,1,2,49,15,29,30,16,37,46,42,22,38,14,8,9,21],biconnect:[19,8,21,5],togeth:[8,21,44],bull:[38,29,21],elliptic_curve_congru:38,educ:[48,21],loukaki:51,lists_of_paramet:8,packing_in_a_hypergraph:41,present:[0,15,29,30,44,20,37,8,51],found:[28,44,45,15,29,30,16,37,5,39,42,26,36,7,38,8,24,9,10],determinist:8,multi:[14,2,22,30,31,38,7,23,48,8,40,21],convexity_properti:[38,51],a113201:21,ellinghamhorton54graph:21,plain:44,homomorph:38,richmond:6,harder:5,first_color:16,rectangular:38,defin:[1,2,3,5,7,8,9,21,11,13,14,16,19,20,23,25,0,29,31,32,34,35,37,38,39,41,42,44,47,48,51],higman1968:21,textobj:7,xyzzi:21,rochest:48,armanio:21,backtrack:[38,45,8,16],observ:[38,3,8,14,37],binarytre:20,vertex_cut:[38,8],layer:21,bucki:21,kuan:8,helper:[38,33,8,45,21],subplan:41,alon:[32,45,44],texttt:[8,44],horribl:44,site:44,"__graphlatex_opt":44,del_vertic:[0,30],archiv:8,motiv:38,dual:[38,41,21],graph_color:[38,16],incom:[0,28,2,30,4,13],bgg:8,"3874cm":44,scienc:[38,22,42,14,16],let:[14,41,29,16,5,32,45,20,38,1,8,42,21],odd_girth:[38,8],wienerarayagraph:21,una:35,author:[],pkgo:8,oddgraph:[13,14,36,38,8,21],sqrt:[3,8],g_revers:15,member:[38,21],paleygraph:21,harary69:26,cnga:8,uniquerepresent:20,set1:8,fabc:1,largest:[34,14,2,5,38,8,21],kneser:[38,21],"_ogc":8,all_simple_path:2,xir:8,infer:[8,31],difficult:36,odd:[29,16,26,38,8,21],"_cwka":8,ball:[21,44],http:[1,22,5,8,42,10,11,14,16,18,21,23,24,26,0,29,31,39,33,35,36,38,41,44,45,47,48],icosahedralgraph:[19,21],charact:[38,8,2,44],again:[14,30,31,32,37,38,8],max_level:38,expans:38,vc1_set:38,upon:[30,20,21,23,48,8,10],effect:[14,21,44],coffe:38,phy:[48,21,31],pearc:23,a000273:48,hyperbolicity_distribut:5,dealloc:13,divin:8,feedback_edge_set:2,eulerian:[33,8,21],cyclicpermutationgroup:8,keep:[41,42,30,47,51,21,38,8,25,10],wcceo:8,newman:21,coudert:[27,14,5,38,48,9,42,21],off:[22,4,44,33,7,8,9,21],center:[39,8,44,21,7],edge_fill_color:44,crc:[21,37],nevertheless:21,pdc:8,colour:20,usual:[28,14,2,15,29,30,16,31,38,8,21],well:[13,44,15,4,5,47,51,28,26,7,38,8,24,21],ofo:8,hafner:21,plus_on:16,thought:[28,10],slovaca:16,octahedron:[26,21],exampl:[0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51],spanning_trees_count:[23,22,8,38],achiev:[2,45,42,20,35,36,38,8,9,21],choos:[38,22,2,21],great:[15,44],fostergraph:21,loss:[38,21],latest:[32,8,20],tunabl:21,test2:8,gcogc:8,cv4v5:44,"boolean":[0,1,2,22,4,5,7,8,42,10,11,13,14,16,17,18,19,21,25,26,27,28,29,30,39,33,46,35,37,38,41,44,45,47,48,51],ad_:8,product_s:8,half:[38,8,14,21,5],petergraph:8,jeroen:34,cgraph:[],patric:34,interim:21,simple_connected_genus_backtrack:36,caveat:8,heavili:16,increasingli:32,paul:[38,21],aldous90:[38,22],systemat:8,e_ko:33,wether:[38,26],adv:38,is_t_design:41,topologiqu:5,knight_x:21,preprint:23,all_max_cliqu:34,gml:8,write_pajek:8,elsevi:35,harari:[16,21,38,8,51,26],oacgogo:8,seidman:38,"00ffff":[8,16],nb_color:16,script:7,add:[22,4,5,28,7,8,21,13,15,16,25,0,30,49,31,39,33,46,38,45,50,44,51],divis:[8,4,7],adc:8,tripartit:[38,21],init_revers:15,ljubljana:[38,21],bool:[8,36,21],semigroup:2,is_strongly_connect:[8,30,2],adj:[0,8,21],spring23:21,match:[],ps2pdf:38,exot:8,penalti:21,bidiaki:21,branch:[],kin92:42,"_inclus":20,get_vertic:[8,21],degree_sequ:[33,8,21],varieti:[38,44],piec:[33,21],s_0:21,assert:[38,41,8,21,7],oagcc:8,cruz:44,realiz:[38,29,50],five:[45,15,21,33],know:[0,13,2,42,5,33,20,26,37,38,48,8,9,21,35],facial:21,press:[2,22,33,37,38,21],chacgo_o:8,"2nd":[38,22,21,37],recurs:[14,2,3,47,38,23,8,25,21],recurr:[23,38],suppos:[32,22,8,44],generalizeddebruijn:48,obgkqegw:[40,7],analco:38,tail:[30,2,21,31],pure:[28,4,51],like:[28,4,44,39,47,13,38,8,21],success:[16,44,33,48,8,21,11],incred:15,max_vert:21,anyth:[13,15,42,30,5,38,48,8,24,9,21,11],fernando:42,cfv2v4:44,"4mb":14,munchen:30,necessari:[14,2,41,29,16,20,38,8,42,9],lose:2,arriv:2,cfv4v4:44,project_right:31,page:[12,14,22,29,49,16,44,18,10,35,38,48,8,24,42,21,26],candi:21,kinnerslei:42,write_yaml:8,drop:8,is_regular:[38,8,14,21],dual_design:41,isblockdesign:41,"_latex_":44,suppli:22,toroidal6regulargrid2dgraph:21,junk:8,p3d:8,growth:[48,21],graphqueri:[38,33,8,40],vse:42,congressu:8,convex:[],proper:[41,16,31,20,51,38,44,21],guarante:[33,8,30],greedy_is_comparability_with_certif:29,peter:41,gg_c:8,cogaa:8,francisco:50,connected_component_containing_vertex:[8,21],throughout:[36,44],leaf:[8,21],lead:[2,42,30,51,48,8,9,21,11],montgolfi:38,broad:44,avoid:[14,15,30,39,51,38,8,24,21],print:[2,5,6,8,42,21,11,13,14,15,16,20,25,29,30,31,33,38,41,44,47,48],slide:8,overlap:[8,28,21,44],goco:8,canaug_traverse_vert:21,graph6_to_plot:33,outgo:[8,30],leav:[2,29,44,35,47,8,21],nonempti:[8,26],cv7:44,perm_gp:8,cluster_triangl:8,ogd:8,mode:[33,40,7],weslei:[26,21],encourag:[28,4],kronecker_product:8,kung:21,brigham:33,slight:8,signifi:30,gps_coordin:21,journal:[14,21,48,38,1,8,24,42,26],from_whatev:40,a_a:8,is_aperiod:2,nathann:[39,34,14,45,15,29,37,16,18,47,51,20,26,22,38,8,42,21,35],distance_all_pair:8,klein_graph:21,although:[41,8,28,14,2],yuen:2,preferenti:[48,21],terra:38,vc2:38,geometr:[8,50,21],k_cq:8,simpler:[8,49],about:[13,2,3,29,30,4,44,33,20,26,36,38,48,8,21],actual:[2,3,4,7,42,8,21,11,14,15,9,25,26,28,30,39,37,38,41,44,47,48,51],get_boundari:8,networkxgraphdeprec:0,graphviz_str:[8,44],column:[2,41,16,33,38,8,47,21],maximizedegre:23,set_emb:8,nonsens:44,orgnet:21,profil:21,"2cm":44,tr98:21,swear:0,oog_o:8,gc_309:20,discard:[41,45,2,21],number_of_children:47,disabl:[38,41,8],wcg:8,subset:[2,41,44,45,21,35,38,8,25,26],own:[23,33,8,30,38],tetrahedral_graph:21,krackhardt:21,lesniak:21,tight:[45,14],inlin:[14,44],perman:7,hypohamiltonian:[45,8,21],automat:[2,44,41,31,39,38,23,8,17],check_tre:6,is_tre:[22,20,6,38,8,21],ahaberziv07:38,cagoao_h:8,merl:21,fusen:21,elab:7,pollak:8,browser:[39,8],forget:[38,2,37],cornuejol:38,desargu:21,cfv0v2:44,gc_151:20,"d\u00fcrer":21,van:[22,34,21],chung:21,val:8,pictur:[33,21],"_ccg":8,anticonnect:38,legibl:8,bipartite_color:38,"_kagc":8,yre:8,cokaagca:8,renorm:1,watts_strogatz_graph:21,tarjan:[38,8],gg0000:44,inner:[8,21,44],eurasian:21,"var":[8,44],clv12:44,clv11:44,wellsgraph:21,qoc_hgaocc:8,gh_a:8,jason:[38,33,8,21],static_sparse_backend:[38,8,13,2],"function":[],fulleren:21,clv2v3:44,afcrl:48,edge__fill_color:44,clv2v4:44,unexpect:21,agre:[8,21],brand:[1,21],"__ooccw_faa":8,wenji:21,keyerror:8,continu:[45,21,47,9,42,26],binary_string_to_graph6:45,cormenetal2001:22,sage_tmp:[8,31],bodi:14,del_vertex_unsaf:30,ljubljanagraph:[38,21],arboretum:42,wheel_graph:21,gokwiv:8,highest:21,wittdesign:41,bug:[38,3,8,35,7],cac_cc:8,nonplanar:[8,21],count:[13,45,30,6,36,38,8,25,21],also:[1,2,3,4,7,8,9,10,14,15,16,20,21,22,25,26,28,30,31,32,33,37,38,39,41,42,44,45,47,48],made:[3,42,37,19,20,15,8,9,21],fast_digraph:15,cleanup:29,tab:[38,48,2,21,7],whether:[0,1,2,3,4,7,8,9,21,11,13,14,16,17,18,20,22,25,26,27,28,29,30,32,33,46,35,36,37,38,39,41,42,44,47,48,51],wish:[38,8,26],displai:[39,42,5,18,33,51,21,7,38,8,44,40,26,35],layout_blah:8,record:41,below:[14,2,41,30,37,31,20,7,38,8,44,42,21],clv4v4:44,limit:[42,21],matild:38,fiaho:[38,33],"static":[],problem:[],bishopgraph:21,spring_layout_fast:[45,8],acbcwv_:8,shortest_path:[30,8,20,21],line_graph:[20,21,38,8,24,26],evalu:[38,17,33,23,9,42],addison:[26,21],"int":[28,14,45,15,30,4,31,39,33,36,7,38,8],recognition_funct:20,dure:[45,16,9,5,8,42],orbit:[8,36,21],html:[29,31,39,33,38,8,21],zenmyo:38,beineke70:26,graphml:8,cfv0:44,bisimplici:38,circul:[48,8,21],hyperbol:[],oa_:8,chromatic_numb:[38,16,21],inf:[29,1,43],n_edg:15,eric:21,cv3v4:44,otherwis:[27,0,31,14,2,44,41,22,30,16,5,19,51,26,36,38,48,8,24,42,21],diego:21,mutual:31,vertices_to_edg:8,is_vertex_transit:[8,21],oab:21,oaa:21,contest:21,oao:8,estim:8,hyperstar:21,detail:[],virtual:38,cfv3:44,"default":[0,1,2,3,4,5,7,8,9,21,11,14,16,17,18,19,22,24,25,26,27,28,29,30,31,32,46,37,38,39,40,41,42,44,45,48,49,51],strokecol:44,other:[1,2,22,4,8,9,21,13,14,16,19,20,26,49,29,30,31,39,33,37,38,32,41,42,44,45,47],uni:[1,35],futur:[0,16,21],rememb:[14,20,51,36,9,42,21],relationen:8,veeeeri:21,theor:14,tournaments_nauti:48,stat:[27,48,21],repeat:[14,41,30,16,8,42,21],star:[38,19,8,26,21],s_p:21,shrikhand:21,floyd_warshal:14,vega:21,june:[39,42,21],num_compon:33,is_drawn_free_of_edge_cross:8,tolerancegraph:21,accomplish:[8,44],vertex_min_degre:11,symplect:21,doublestarsnark:21,objet:15,schlaefligraph:21,involut:36,union:[41,30,16,31,51,26,38,8,21],durer:21,xdigraph:[0,2],texhash:44,simon:[29,26],sparsegraph:[49,30,28,4],holmekim2002:21,nrow:[40,21],dihedralgroup:21,bishop:21,setb:8,reliabl:8,texmf:44,eoo:8,indirectli:22,rule:[32,38,21,37],networkxdigraphdeprec:0,portion:[8,44,2,31],nisost2003:[38,34],auxiliari:[18,38,21],oa1:21,oa0:21,cell:[15,44,7,8,17,21],mcgeegraph:[38,21],enforc:8,invari:[8,16],frankfurt:[30,35],rep:[48,34,35,5],random_vertex:[8,14,21]},objtypes:{"0":"py:module","1":"py:method","2":"py:function","3":"py:staticmethod","4":"py:class","5":"py:attribute"},objnames:{"0":["py","module","Python module"],"1":["py","method","Python method"],"2":["py","function","Python function"],"3":["py","staticmethod","Python static method"],"4":["py","class","Python class"],"5":["py","attribute","Python attribute"]},filenames:["sage/graphs/base/graph_backends","sage/graphs/centrality","sage/graphs/digraph","sage/graphs/matchpoly","sage/graphs/base/dense_graph","sage/graphs/hyperbolicity","sage/graphs/trees","sage/graphs/graph_plot","sage/graphs/generic_graph","sage/graphs/graph_decompositions/cutwidth","sage/graphs/linearextensions","sage/graphs/hypergraph_generators","index","sage/graphs/base/static_sparse_backend","sage/graphs/distances_all_pairs","sage/graphs/base/static_sparse_graph","sage/graphs/graph_coloring","sage/graphs/graph_editor","sage/graphs/weakly_chordal","sage/graphs/base/boost_graph","sage/graphs/isgci","sage/graphs/graph_generators","sage/graphs/spanning_tree","sage/graphs/tutte_polynomial","sage/graphs/asteroidal_triples","sage/graphs/independent_sets","sage/graphs/line_graph","sage/graphs/graph_generators_pyx","sage/graphs/base/sparse_graph","sage/graphs/comparability","sage/graphs/base/c_graph","sage/graphs/bipartite_graph","sage/graphs/graph_decompositions/bandwidth","sage/graphs/graph_database","sage/graphs/cliquer","sage/graphs/graph_decompositions/rankwidth","sage/graphs/genus","sage/graphs/graph_decompositions/graph_products","sage/graphs/graph","sage/graphs/graph_plot_js","sage/graphs/graph_list","sage/combinat/designs/incidence_structures","sage/graphs/graph_decompositions/vertex_separation","sage/graphs/lovasz_theta","sage/graphs/graph_latex","sage/graphs/generic_graph_pyx","sage/graphs/base/static_dense_graph","sage/graphs/pq_trees","sage/graphs/digraph_generators","sage/graphs/base/overview","sage/graphs/schnyder","sage/graphs/convexity_properties"],titles:["Backends for Sage (di)graphs.","Centrality","Directed graphs","Matching Polynomial","Fast dense graphs","Hyperbolicity","Generation of trees","Graph Plotting","Generic graphs (common to directed/undirected)","Cutwidth","Linear Extensions of Directed Acyclic Graphs.","Hypergraph generators","Graph Theory","Static sparse graph backend","Distances/shortest paths between all pairs of vertices","Static Sparse Graphs","Graph coloring","Graph editor","Weakly chordal graphs","Interface to run Boost algorithms","ISGCI: Information System on Graph Classes and their Inclusions","Common Graphs","Spanning trees","Tutte polynomial","Asteroidal triples","Independent sets","Line graphs","Common graphs and digraphs generators (Cython)","Fast sparse graphs","Comparability and permutation graphs","Fast compiled graphs","Bipartite graphs","Bandwidth of undirected graphs","Graph database","Interface with Cliquer (clique-related problems)","Rank Decompositions of graphs","Genus","Products of graphs","Undirected graphs","Graph plotting in Javascript with d3.js","Lists of graphs","Incidence structures (i.e. hypergraphs, i.e. set systems)","Vertex separation","Lov\u00e1sz theta-function of graphs","LaTeX options for graphs","GenericGraph Cython functions","Static dense graphs","PQ-Trees","Common Digraphs","Overview of (di)graph data structures","Schnyder’s Algorithm for straight-line planar embeddings","Convexity properties of graphs"],objects:{"sage.graphs.base.dense_graph.DenseGraph":{in_neighbors:[4,1,1,""],realloc:[4,1,1,""],del_all_arcs:[4,1,1,""],add_arc:[4,1,1,""],out_neighbors:[4,1,1,""],has_arc:[4,1,1,""]},"sage.graphs.graph_database.GraphDatabase":{query:[33,1,1,""],interactive_query:[33,1,1,""]},"sage.graphs.base.static_sparse_backend.StaticSparseCGraph":{in_neighbors:[13,1,1,""],in_degree:[13,1,1,""],verts:[13,1,1,""],del_vertex:[13,1,1,""],has_vertex:[13,1,1,""],out_neighbors:[13,1,1,""],add_vertex:[13,1,1,""],has_arc:[13,1,1,""],out_degree:[13,1,1,""]},"sage.graphs.graph_plot_js":{gen_html_code:[39,2,1,""]},"sage.graphs.graph_decompositions.cutwidth":{cutwidth_dyn:[9,2,1,""],width_of_cut_decomposition:[9,2,1,""],cutwidth:[9,2,1,""]},"sage.combinat.designs":{incidence_structures:[41,0,0,"-"]},"sage.graphs.digraph":{DiGraph:[2,4,1,""]},"sage.graphs.trees.TreeIterator":{next:[6,1,1,""]},"sage.graphs.graph_plot.GraphPlot":{plot:[7,1,1,""],show:[7,1,1,""],set_pos:[7,1,1,""],set_vertices:[7,1,1,""],layout_tree:[7,1,1,""],set_edges:[7,1,1,""]},"sage.graphs.genus":{simple_connected_genus_backtracker:[36,4,1,""],simple_connected_graph_genus:[36,2,1,""]},"sage.graphs.base.dense_graph.DenseGraphBackend":{add_edges:[4,1,1,""],multiple_edges:[4,1,1,""],get_edge_label:[4,1,1,""],has_edge:[4,1,1,""],set_edge_label:[4,1,1,""],iterator_out_edges:[4,1,1,""],del_edge:[4,1,1,""],iterator_edges:[4,1,1,""],iterator_in_edges:[4,1,1,""],add_edge:[4,1,1,""]},"sage.combinat.designs.incidence_structures":{IncidenceStructureFromMatrix:[41,2,1,""],IncidenceStructure:[41,4,1,""]},"sage.graphs.base.c_graph.CGraphBackend":{out_degree:[30,1,1,""],relabel:[30,1,1,""],iterator_out_nbrs:[30,1,1,""],num_edges:[30,1,1,""],strongly_connected_component_containing_vertex:[30,1,1,""],depth_first_search:[30,1,1,""],has_vertex:[30,1,1,""],loops:[30,1,1,""],shortest_path_all_vertices:[30,1,1,""],iterator_nbrs:[30,1,1,""],del_vertex:[30,1,1,""],del_vertices:[30,1,1,""],breadth_first_search:[30,1,1,""],add_vertices:[30,1,1,""],c_graph:[30,1,1,""],add_vertex:[30,1,1,""],degree:[30,1,1,""],iterator_in_nbrs:[30,1,1,""],iterator_verts:[30,1,1,""],num_verts:[30,1,1,""],is_directed_acyclic:[30,1,1,""],is_strongly_connected:[30,1,1,""],in_degree:[30,1,1,""],bidirectional_dijkstra:[30,1,1,""],is_connected:[30,1,1,""],shortest_path:[30,1,1,""]},"sage.graphs.convexity_properties.ConvexityProperties":{hull_number:[51,1,1,""],hull:[51,1,1,""]},"sage.graphs.generic_graph.GenericGraph":{is_independent_set:[8,1,1,""],neighbors:[8,1,1,""],get_vertex:[8,1,1,""],tensor_product:[8,1,1,""],show:[8,1,1,""],shortest_paths:[8,1,1,""],subgraph_search_count:[8,1,1,""],distance_matrix:[8,1,1,""],edge_disjoint_paths:[8,1,1,""],steiner_tree:[8,1,1,""],vertex_iterator:[8,1,1,""],is_equitable:[8,1,1,""],set_embedding:[8,1,1,""],layout:[8,1,1,""],is_eulerian:[8,1,1,""],connected_components_subgraphs:[8,1,1,""],density:[8,1,1,""],is_circulant:[8,1,1,""],has_edge:[8,1,1,""],clustering_coeff:[8,1,1,""],lex_BFS:[8,1,1,""],to_dictionary:[8,1,1,""],multiway_cut:[8,1,1,""],subgraph_search_iterator:[8,1,1,""],allow_multiple_edges:[8,1,1,""],disjoint_routed_paths:[8,1,1,""],add_vertex:[8,1,1,""],remove_multiple_edges:[8,1,1,""],delete_multiedge:[8,1,1,""],plot3d:[8,1,1,""],hamiltonian_cycle:[8,1,1,""],distance:[8,1,1,""],clustering_average:[8,1,1,""],dominating_set:[8,1,1,""],delete_edges:[8,1,1,""],breadth_first_search:[8,1,1,""],szeged_index:[8,1,1,""],layout_tree:[8,1,1,""],cluster_triangles:[8,1,1,""],canonical_label:[8,1,1,""],cartesian_product:[8,1,1,""],num_verts:[8,1,1,""],shortest_path_all_pairs:[8,1,1,""],name:[8,1,1,""],latex_options:[8,1,1,""],average_distance:[8,1,1,""],get_embedding:[8,1,1,""],connected_component_containing_vertex:[8,1,1,""],disjunctive_product:[8,1,1,""],wiener_index:[8,1,1,""],graphviz_string:[8,1,1,""],depth_first_search:[8,1,1,""],connected_components:[8,1,1,""],min_spanning_tree:[8,1,1,""],categorical_product:[8,1,1,""],is_regular:[8,1,1,""],all_paths:[8,1,1,""],is_transitively_reduced:[8,1,1,""],automorphism_group:[8,1,1,""],num_edges:[8,1,1,""],radius:[8,1,1,""],charpoly:[8,1,1,""],loops:[8,1,1,""],weighted_adjacency_matrix:[8,1,1,""],subgraph_search:[8,1,1,""],edge_labels:[8,1,1,""],allows_loops:[8,1,1,""],centrality_betweenness:[8,1,1,""],characteristic_polynomial:[8,1,1,""],longest_path:[8,1,1,""],blocks_and_cuts_tree:[8,1,1,""],delete_edge:[8,1,1,""],add_vertices:[8,1,1,""],is_hamiltonian:[8,1,1,""],connected_components_sizes:[8,1,1,""],blocks_and_cut_vertices:[8,1,1,""],periphery:[8,1,1,""],am:[8,1,1,""],vertex_boundary:[8,1,1,""],set_boundary:[8,1,1,""],set_planar_positions:[8,1,1,""],size:[8,1,1,""],kirchhoff_matrix:[8,1,1,""],eulerian_circuit:[8,1,1,""],interior_paths:[8,1,1,""],degree:[8,1,1,""],subdivide_edges:[8,1,1,""],complement:[8,1,1,""],traveling_salesman_problem:[8,1,1,""],degree_sequence:[8,1,1,""],layout_planar:[8,1,1,""],edge_boundary:[8,1,1,""],lexicographic_product:[8,1,1,""],set_vertices:[8,1,1,""],laplacian_matrix:[8,1,1,""],get_vertices:[8,1,1,""],add_edge:[8,1,1,""],triangles_count:[8,1,1,""],is_drawn_free_of_edge_crossings:[8,1,1,""],antisymmetric:[8,1,1,""],random_vertex:[8,1,1,""],get_pos:[8,1,1,""],incidence_matrix:[8,1,1,""],relabel:[8,1,1,""],layout_ranked:[8,1,1,""],edges:[8,1,1,""],get_boundary:[8,1,1,""],faces:[8,1,1,""],genus:[8,1,1,""],shortest_path:[8,1,1,""],diameter:[8,1,1,""],add_path:[8,1,1,""],show3d:[8,1,1,""],vertex_disjoint_paths:[8,1,1,""],number_of_loops:[8,1,1,""],multicommodity_flow:[8,1,1,""],weighted:[8,1,1,""],layout_circular:[8,1,1,""],connected_components_number:[8,1,1,""],distances_distribution:[8,1,1,""],plot:[8,1,1,""],add_cycle:[8,1,1,""],union:[8,1,1,""],layout_graphviz:[8,1,1,""],shortest_path_lengths:[8,1,1,""],distance_all_pairs:[8,1,1,""],degree_histogram:[8,1,1,""],degree_to_cell:[8,1,1,""],dominator_tree:[8,1,1,""],shortest_path_length:[8,1,1,""],delete_vertices:[8,1,1,""],graphplot:[8,1,1,""],networkx_graph:[8,1,1,""],has_multiple_edges:[8,1,1,""],add_edges:[8,1,1,""],multiple_edges:[8,1,1,""],subgraph:[8,1,1,""],set_pos:[8,1,1,""],kronecker_product:[8,1,1,""],spectrum:[8,1,1,""],is_planar:[8,1,1,""],remove_loops:[8,1,1,""],eccentricity:[8,1,1,""],export_to_file:[8,1,1,""],layout_extend_randomly:[8,1,1,""],copy:[8,1,1,""],"__eq__":[8,1,1,""],edges_incident:[8,1,1,""],degree_iterator:[8,1,1,""],vertex_connectivity:[8,1,1,""],to_simple:[8,1,1,""],adjacency_matrix:[8,1,1,""],is_circular_planar:[8,1,1,""],allow_loops:[8,1,1,""],eulerian_orientation:[8,1,1,""],is_clique:[8,1,1,""],girth:[8,1,1,""],neighbor_iterator:[8,1,1,""],vertex_cut:[8,1,1,""],is_interval:[8,1,1,""],line_graph:[8,1,1,""],has_loops:[8,1,1,""],transitive_closure:[8,1,1,""],cycle_basis:[8,1,1,""],max_cut:[8,1,1,""],is_vertex_transitive:[8,1,1,""],has_vertex:[8,1,1,""],is_cut_edge:[8,1,1,""],set_latex_options:[8,1,1,""],delete_vertex:[8,1,1,""],coarsest_equitable_refinement:[8,1,1,""],edge_label:[8,1,1,""],subdivide_edge:[8,1,1,""],random_edge:[8,1,1,""],is_isomorphic:[8,1,1,""],merge_vertices:[8,1,1,""],eigenspaces:[8,1,1,""],average_degree:[8,1,1,""],loop_vertices:[8,1,1,""],cluster_transitivity:[8,1,1,""],layout_default:[8,1,1,""],graphviz_to_file_named:[8,1,1,""],strong_product:[8,1,1,""],edge_disjoint_spanning_trees:[8,1,1,""],edge_cut:[8,1,1,""],transitive_reduction:[8,1,1,""],edge_connectivity:[8,1,1,""],allows_multiple_edges:[8,1,1,""],is_gallai_tree:[8,1,1,""],loop_edges:[8,1,1,""],random_subgraph:[8,1,1,""],disjoint_union:[8,1,1,""],eigenvectors:[8,1,1,""],edge_iterator:[8,1,1,""],is_cut_vertex:[8,1,1,""],center:[8,1,1,""],distance_graph:[8,1,1,""],clear:[8,1,1,""],flow:[8,1,1,""],vertices:[8,1,1,""],feedback_vertex_set:[8,1,1,""],spanning_trees_count:[8,1,1,""],is_subgraph:[8,1,1,""],set_edge_label:[8,1,1,""],is_chordal:[8,1,1,""],layout_spring:[8,1,1,""],is_connected:[8,1,1,""],order:[8,1,1,""],set_vertex:[8,1,1,""]},"sage.graphs.matchpoly":{matching_polynomial:[3,2,1,""],complete_poly:[3,2,1,""]},"sage.combinat.designs.incidence_structures.IncidenceStructure":{num_points:[41,1,1,""],num_blocks:[41,1,1,""],dual_design:[41,1,1,""],block_sizes:[41,1,1,""],automorphism_group:[41,1,1,""],dual:[41,1,1,""],induced_substructure:[41,1,1,""],trace:[41,1,1,""],parameters:[41,1,1,""],edge_coloring:[41,1,1,""],is_isomorphic:[41,1,1,""],degrees:[41,1,1,""],blocks:[41,1,1,""],degree:[41,1,1,""],is_resolvable:[41,1,1,""],incidence_graph:[41,1,1,""],is_simple:[41,1,1,""],packing:[41,1,1,""],is_block_design:[41,1,1,""],canonical_label:[41,1,1,""],copy:[41,1,1,""],is_t_design:[41,1,1,""],dual_incidence_structure:[41,1,1,""],ground_set:[41,1,1,""],block_design_checker:[41,1,1,""],isomorphic_substructures_iterator:[41,1,1,""],relabel:[41,1,1,""],points:[41,1,1,""],is_connected:[41,1,1,""],incidence_matrix:[41,1,1,""]},"sage.graphs.digraph.DiGraph":{to_directed:[2,1,1,""],topological_sort:[2,1,1,""],out_degree:[2,1,1,""],is_transitive:[2,1,1,""],neighbors_in:[2,1,1,""],flow_polytope:[2,1,1,""],is_strongly_connected:[2,1,1,""],sources:[2,1,1,""],strongly_connected_component_containing_vertex:[2,1,1,""],is_aperiodic:[2,1,1,""],outgoing_edge_iterator:[2,1,1,""],outgoing_edges:[2,1,1,""],incoming_edges:[2,1,1,""],layout_acyclic_dummy:[2,1,1,""],neighbors_out:[2,1,1,""],in_degree_sequence:[2,1,1,""],neighbor_out_iterator:[2,1,1,""],reverse_edges:[2,1,1,""],is_directed_acyclic:[2,1,1,""],in_degree_iterator:[2,1,1,""],all_paths_iterator:[2,1,1,""],topological_sort_generator:[2,1,1,""],sinks:[2,1,1,""],strongly_connected_components_subgraphs:[2,1,1,""],layout_acyclic:[2,1,1,""],reverse_edge:[2,1,1,""],period:[2,1,1,""],path_semigroup:[2,1,1,""],strongly_connected_components:[2,1,1,""],feedback_edge_set:[2,1,1,""],strongly_connected_components_digraph:[2,1,1,""],out_degree_sequence:[2,1,1,""],reverse:[2,1,1,""],level_sets:[2,1,1,""],incoming_edge_iterator:[2,1,1,""],dig6_string:[2,1,1,""],to_undirected:[2,1,1,""],all_simple_cycles:[2,1,1,""],in_degree:[2,1,1,""],all_cycles_iterator:[2,1,1,""],is_directed:[2,1,1,""],out_degree_iterator:[2,1,1,""],neighbor_in_iterator:[2,1,1,""],all_simple_paths:[2,1,1,""]},"sage.graphs.schnyder":{TreeNode:[50,4,1,""]},"sage.graphs.base.sparse_graph":{SparseGraphBackend:[28,4,1,""],SparseGraph:[28,4,1,""]},"sage.graphs.line_graph":{is_line_graph:[26,2,1,""],line_graph:[26,2,1,""],root_graph:[26,2,1,""]},"sage.graphs.bipartite_graph":{BipartiteGraph:[31,4,1,""]},"sage.graphs.base.boost_graph":{dominator_tree:[19,2,1,""],clustering_coeff:[19,2,1,""],edge_connectivity:[19,2,1,""]},"sage.graphs.pq_trees.P":{set_contiguous:[47,1,1,""],orderings:[47,1,1,""],cardinality:[47,1,1,""]},"sage.graphs.graph_coloring":{number_of_n_colorings:[16,2,1,""],chromatic_number:[16,2,1,""],acyclic_edge_coloring:[16,2,1,""],grundy_coloring:[16,2,1,""],edge_coloring:[16,2,1,""],numbers_of_colorings:[16,2,1,""],all_graph_colorings:[16,2,1,""],Test:[16,4,1,""],round_robin:[16,2,1,""],first_coloring:[16,2,1,""],b_coloring:[16,2,1,""],linear_arboricity:[16,2,1,""],vertex_coloring:[16,2,1,""]},"sage.graphs.comparability":{is_transitive:[29,2,1,""],is_comparability:[29,2,1,""],is_permutation:[29,2,1,""],is_comparability_MILP:[29,2,1,""],greedy_is_comparability_with_certificate:[29,2,1,""],greedy_is_comparability:[29,2,1,""]},"sage.graphs.linearextensions.LinearExtensions":{right:[10,1,1,""],incomparable:[10,1,1,""],move:[10,1,1,""],list:[10,1,1,""],"switch":[10,1,1,""],generate_linear_extensions:[10,1,1,""]},"sage.graphs.cliquer":{all_max_clique:[34,2,1,""],list_composition:[34,2,1,""],max_clique:[34,2,1,""],clique_number:[34,2,1,""]},"sage.graphs.base.graph_backends.NetworkXDiGraphDeprecated":{mutate:[0,1,1,""]},"sage.graphs.generic_graph":{GenericGraph:[8,4,1,""],tachyon_vertex_plot:[8,2,1,""],graph_isom_equivalent_non_edge_labeled_graph:[8,2,1,""]},"sage.graphs.base.graph_backends.GenericGraphBackend":{out_degree:[0,1,1,""],iterator_out_nbrs:[0,1,1,""],has_vertex:[0,1,1,""],has_edge:[0,1,1,""],num_edges:[0,1,1,""],set_edge_label:[0,1,1,""],iterator_out_edges:[0,1,1,""],del_edge:[0,1,1,""],iterator_edges:[0,1,1,""],loops:[0,1,1,""],iterator_in_edges:[0,1,1,""],iterator_nbrs:[0,1,1,""],del_vertex:[0,1,1,""],del_vertices:[0,1,1,""],add_vertices:[0,1,1,""],add_vertex:[0,1,1,""],add_edges:[0,1,1,""],multiple_edges:[0,1,1,""],degree:[0,1,1,""],get_edge_label:[0,1,1,""],iterator_in_nbrs:[0,1,1,""],iterator_verts:[0,1,1,""],add_edge:[0,1,1,""],num_verts:[0,1,1,""],name:[0,1,1,""],in_degree:[0,1,1,""],relabel:[0,1,1,""]},"sage.graphs.convexity_properties":{ConvexityProperties:[51,4,1,""]},"sage.graphs.graph_decompositions.bandwidth":{bandwidth:[32,2,1,""]},"sage.graphs":{spanning_tree:[22,0,0,"-"],line_graph:[26,0,0,"-"],digraph:[2,0,0,"-"],graph_database:[33,0,0,"-"],hyperbolicity:[5,0,0,"-"],independent_sets:[25,0,0,"-"],graph_generators_pyx:[27,0,0,"-"],linearextensions:[10,0,0,"-"],bipartite_graph:[31,0,0,"-"],asteroidal_triples:[24,0,0,"-"],graph:[38,0,0,"-"],weakly_chordal:[18,0,0,"-"],centrality:[1,0,0,"-"],graph_plot:[7,0,0,"-"],graph_list:[40,0,0,"-"],cliquer:[34,0,0,"-"],matchpoly:[3,0,0,"-"],distances_all_pairs:[14,0,0,"-"],trees:[6,0,0,"-"],pq_trees:[47,0,0,"-"],digraph_generators:[48,0,0,"-"],graph_editor:[17,0,0,"-"],graph_coloring:[16,0,0,"-"],graph_generators:[21,0,0,"-"],graph_latex:[44,0,0,"-"],generic_graph:[8,0,0,"-"],generic_graph_pyx:[45,0,0,"-"],hypergraph_generators:[11,0,0,"-"],graph_plot_js:[39,0,0,"-"],lovasz_theta:[43,0,0,"-"],comparability:[29,0,0,"-"],tutte_polynomial:[23,0,0,"-"],isgci:[20,0,0,"-"],genus:[36,0,0,"-"],convexity_properties:[51,0,0,"-"],schnyder:[50,0,0,"-"]},"sage.graphs.hypergraph_generators":{HypergraphGenerators:[11,4,1,""]},"sage.graphs.trees":{TreeIterator:[6,4,1,""]},"sage.graphs.generic_graph_pyx":{spring_layout_fast_split:[45,2,1,""],int_to_binary_string:[45,2,1,""],binary_string_to_graph6:[45,2,1,""],small_integer_to_graph6:[45,2,1,""],SubgraphSearch:[45,4,1,""],transitive_reduction_acyclic:[45,2,1,""],binary_string_from_graph6:[45,2,1,""],binary_string_from_dig6:[45,2,1,""],GenericGraph_pyx:[45,4,1,""],find_hamiltonian:[45,2,1,""],length_and_string_from_graph6:[45,2,1,""],spring_layout_fast:[45,2,1,""]},"sage.graphs.base.graph_backends.NetworkXGraphDeprecated":{mutate:[0,1,1,""]},"sage.graphs.isgci":{GraphClasses:[20,4,1,""],GraphClass:[20,4,1,""]},"sage.graphs.base.static_dense_graph":{triangles_count:[46,2,1,""],is_strongly_regular:[46,2,1,""]},"sage.graphs.base.static_sparse_graph":{triangles_count:[15,2,1,""],strongly_connected_components:[15,2,1,""]},"sage.graphs.graph_latex":{setup_latex_preamble:[44,2,1,""],GraphLatex:[44,4,1,""],have_tkz_graph:[44,2,1,""],check_tkz_graph:[44,2,1,""]},"sage.graphs.base.graph_backends.NetworkXGraphBackend":{out_degree:[0,1,1,""],iterator_out_nbrs:[0,1,1,""],iterator_edges:[0,1,1,""],has_edge:[0,1,1,""],iterator_in_nbrs:[0,1,1,""],add_vertices:[0,1,1,""],iterator_out_edges:[0,1,1,""],del_edge:[0,1,1,""],has_vertex:[0,1,1,""],loops:[0,1,1,""],iterator_in_edges:[0,1,1,""],iterator_nbrs:[0,1,1,""],del_vertex:[0,1,1,""],del_vertices:[0,1,1,""],set_edge_label:[0,1,1,""],add_vertex:[0,1,1,""],add_edges:[0,1,1,""],multiple_edges:[0,1,1,""],degree:[0,1,1,""],get_edge_label:[0,1,1,""],num_edges:[0,1,1,""],iterator_verts:[0,1,1,""],add_edge:[0,1,1,""],num_verts:[0,1,1,""],name:[0,1,1,""],in_degree:[0,1,1,""],relabel:[0,1,1,""]},"sage.graphs.lovasz_theta":{lovasz_theta:[43,2,1,""]},"sage.graphs.independent_sets.IndependentSets":{cardinality:[25,1,1,""]},"sage.graphs.asteroidal_triples":{is_asteroidal_triple_free:[24,2,1,""]},"sage.graphs.digraph_generators.DiGraphGenerators":{ImaseItoh:[48,1,1,""],RandomDirectedGNR:[48,1,1,""],RandomDirectedGNP:[48,1,1,""],TransitiveTournament:[48,1,1,""],RandomDirectedGN:[48,1,1,""],GeneralizedDeBruijn:[48,1,1,""],Circulant:[48,1,1,""],RandomDirectedGNC:[48,1,1,""],tournaments_nauty:[48,1,1,""],Kautz:[48,1,1,""],Circuit:[48,1,1,""],Path:[48,1,1,""],RandomTournament:[48,1,1,""],ButterflyGraph:[48,1,1,""],RandomDirectedGNM:[48,1,1,""],DeBruijn:[48,1,1,""]},"sage.graphs.base.graph_backends":{unpickle_graph_backend:[0,2,1,""],GenericGraphBackend:[0,4,1,""],NetworkXGraphBackend:[0,4,1,""],NetworkXGraphDeprecated:[0,4,1,""],NetworkXDiGraphDeprecated:[0,4,1,""]},"sage.graphs.centrality":{centrality_betweenness:[1,2,1,""]},"sage.graphs.pq_trees.Q":{set_contiguous:[47,1,1,""],orderings:[47,1,1,""],cardinality:[47,1,1,""]},"sage.graphs.graph_decompositions.vertex_separation":{vertex_separation:[42,2,1,""],vertex_separation_MILP:[42,2,1,""],lower_bound:[42,2,1,""],is_valid_ordering:[42,2,1,""],vertex_separation_BAB:[42,2,1,""],width_of_path_decomposition:[42,2,1,""],path_decomposition:[42,2,1,""],vertex_separation_exp:[42,2,1,""]},"sage.graphs.schnyder.TreeNode":{append_child:[50,1,1,""],compute_depth_of_self_and_children:[50,1,1,""],compute_number_of_descendants:[50,1,1,""]},"sage.graphs.base.c_graph.CGraph":{has_arc:[30,1,1,""],in_neighbors:[30,1,1,""],realloc:[30,1,1,""],has_vertex:[30,1,1,""],add_vertices:[30,1,1,""],del_all_arcs:[30,1,1,""],check_vertex:[30,1,1,""],add_arc:[30,1,1,""],current_allocation:[30,1,1,""],all_arcs:[30,1,1,""],out_neighbors:[30,1,1,""],add_vertex:[30,1,1,""],del_vertex:[30,1,1,""],verts:[30,1,1,""]},"sage.graphs.graph_decompositions.graph_products":{is_cartesian_product:[37,2,1,""]},"sage.graphs.base.c_graph.Search_iterator":{next:[30,1,1,""]},"sage.graphs.tutte_polynomial":{underlying_graph:[23,2,1,""],removed_loops:[23,2,1,""],removed_multiedge:[23,2,1,""],MinimizeSingleDegree:[23,4,1,""],VertexOrder:[23,4,1,""],EdgeSelection:[23,4,1,""],contracted_edge:[23,2,1,""],MinimizeDegree:[23,4,1,""],tutte_polynomial:[23,2,1,""],removed_edge:[23,2,1,""],MaximizeDegree:[23,4,1,""],Ear:[23,4,1,""],edge_multiplicities:[23,2,1,""]},"sage.graphs.isgci.GraphClass":{forbidden_subgraphs:[20,1,1,""],description:[20,1,1,""]},"sage.graphs.graph_latex.GraphLatex":{dot2tex_picture:[44,1,1,""],latex:[44,1,1,""],get_option:[44,1,1,""],set_options:[44,1,1,""],set_option:[44,1,1,""],tkz_picture:[44,1,1,""]},"sage.graphs.base.static_sparse_backend":{StaticSparseBackend:[13,4,1,""],StaticSparseCGraph:[13,4,1,""]},"sage.graphs.graph.Graph":{is_perfect:[38,1,1,""],bipartite_sets:[38,1,1,""],cliques_vertex_clique_number:[38,1,1,""],cliques_get_clique_bipartite:[38,1,1,""],has_homomorphism_to:[38,1,1,""],is_asteroidal_triple_free:[38,1,1,""],chromatic_polynomial:[38,1,1,""],chromatic_symmetric_function:[38,1,1,""],rank_decomposition:[38,1,1,""],independent_set:[38,1,1,""],ihara_zeta_function_inverse:[38,1,1,""],is_distance_regular:[38,1,1,""],is_forest:[38,1,1,""],is_edge_transitive:[38,1,1,""],matching:[38,1,1,""],treewidth:[38,1,1,""],is_tree:[38,1,1,""],bridges:[38,1,1,""],vertex_cover:[38,1,1,""],coloring:[38,1,1,""],two_factor_petersen:[38,1,1,""],clique_number:[38,1,1,""],random_spanning_tree:[38,1,1,""],bipartite_color:[38,1,1,""],to_directed:[38,1,1,""],is_long_antihole_free:[38,1,1,""],cliques_containing_vertex:[38,1,1,""],is_line_graph:[38,1,1,""],odd_girth:[38,1,1,""],is_half_transitive:[38,1,1,""],spanning_trees:[38,1,1,""],cliques_maximal:[38,1,1,""],is_triangle_free:[38,1,1,""],to_partition:[38,1,1,""],minor:[38,1,1,""],write_to_eps:[38,1,1,""],centrality_degree:[38,1,1,""],chromatic_number:[38,1,1,""],maximum_average_degree:[38,1,1,""],is_overfull:[38,1,1,""],clique_complex:[38,1,1,""],matching_polynomial:[38,1,1,""],sparse6_string:[38,1,1,""],is_semi_symmetric:[38,1,1,""],kirchhoff_symanzik_polynomial:[38,1,1,""],independent_set_of_representatives:[38,1,1,""],clique_maximum:[38,1,1,""],is_strongly_regular:[38,1,1,""],strong_orientation:[38,1,1,""],is_split:[38,1,1,""],cliques_get_max_clique_graph:[38,1,1,""],is_arc_transitive:[38,1,1,""],fractional_chromatic_index:[38,1,1,""],modular_decomposition:[38,1,1,""],is_even_hole_free:[38,1,1,""],centrality_closeness:[38,1,1,""],is_odd_hole_free:[38,1,1,""],minimum_outdegree_orientation:[38,1,1,""],join:[38,1,1,""],to_undirected:[38,1,1,""],is_weakly_chordal:[38,1,1,""],is_prime:[38,1,1,""],cliques_number_of:[38,1,1,""],is_long_hole_free:[38,1,1,""],graph6_string:[38,1,1,""],gomory_hu_tree:[38,1,1,""],lovasz_theta:[38,1,1,""],convexity_properties:[38,1,1,""],degree_constrained_subgraph:[38,1,1,""],tutte_polynomial:[38,1,1,""],is_directed:[38,1,1,""],bounded_outdegree_orientation:[38,1,1,""],cores:[38,1,1,""],topological_minor:[38,1,1,""],is_cartesian_product:[38,1,1,""],cliques_maximum:[38,1,1,""],is_bipartite:[38,1,1,""],clique_polynomial:[38,1,1,""]},"sage.graphs.graph_generators.GraphGenerators":{F26AGraph:[21,3,1,""],RandomBarabasiAlbert:[21,3,1,""],EllinghamHorton54Graph:[21,3,1,""],HararyGraph:[21,3,1,""],PathGraph:[21,3,1,""],Klein7RegularGraph:[21,3,1,""],LCFGraph:[21,3,1,""],ThomsenGraph:[21,3,1,""],BlanusaFirstSnarkGraph:[21,3,1,""],McLaughlinGraph:[21,3,1,""],KnightGraph:[21,3,1,""],RandomBoundedToleranceGraph:[21,3,1,""],HouseGraph:[21,3,1,""],RandomNewmanWattsStrogatz:[21,3,1,""],OddGraph:[21,3,1,""],HerschelGraph:[21,3,1,""],PaleyGraph:[21,3,1,""],CoxeterGraph:[21,3,1,""],MoserSpindle:[21,3,1,""],Klein3RegularGraph:[21,3,1,""],HigmanSimsGraph:[21,3,1,""],MycielskiStep:[21,3,1,""],HoltGraph:[21,3,1,""],RandomHolmeKim:[21,3,1,""],SylvesterGraph:[21,3,1,""],WagnerGraph:[21,3,1,""],SymplecticGraph:[21,3,1,""],ChessboardGraphGenerator:[21,3,1,""],IntersectionGraph:[21,3,1,""],RandomToleranceGraph:[21,3,1,""],DodecahedralGraph:[21,3,1,""],FibonacciTree:[21,3,1,""],Balaban11Cage:[21,3,1,""],NKStarGraph:[21,3,1,""],Toroidal6RegularGrid2dGraph:[21,3,1,""],HarriesGraph:[21,3,1,""],BiggsSmithGraph:[21,3,1,""],GrayGraph:[21,3,1,""],KingGraph:[21,3,1,""],RandomLobster:[21,3,1,""],FranklinGraph:[21,3,1,""],HarborthGraph:[21,3,1,""],RandomTriangulation:[21,3,1,""],ClebschGraph:[21,3,1,""],HeawoodGraph:[21,3,1,""],fusenes:[21,1,1,""],planar_graphs:[21,1,1,""],CompleteMultipartiteGraph:[21,3,1,""],WellsGraph:[21,3,1,""],quadrangulations:[21,1,1,""],M22Graph:[21,3,1,""],NStarGraph:[21,3,1,""],MeredithGraph:[21,3,1,""],KrackhardtKiteGraph:[21,3,1,""],Grid2dGraph:[21,3,1,""],HexahedralGraph:[21,3,1,""],HoffmanSingletonGraph:[21,3,1,""],RookGraph:[21,3,1,""],CompleteGraph:[21,3,1,""],ButterflyGraph:[21,3,1,""],MoebiusKantorGraph:[21,3,1,""],RandomTreePowerlaw:[21,3,1,""],CameronGraph:[21,3,1,""],triangulations:[21,1,1,""],GeneralizedPetersenGraph:[21,3,1,""],HanoiTowerGraph:[21,3,1,""],DegreeSequenceBipartite:[21,3,1,""],RandomIntervalGraph:[21,3,1,""],HarriesWongGraph:[21,3,1,""],TetrahedralGraph:[21,3,1,""],DyckGraph:[21,3,1,""],BullGraph:[21,3,1,""],CycleGraph:[21,3,1,""],BrinkmannGraph:[21,3,1,""],BidiakisCube:[21,3,1,""],GrotzschGraph:[21,3,1,""],BarbellGraph:[21,3,1,""],RingedTree:[21,3,1,""],cospectral_graphs:[21,1,1,""],BishopGraph:[21,3,1,""],DiamondGraph:[21,3,1,""],ClawGraph:[21,3,1,""],BalancedTree:[21,3,1,""],DesarguesGraph:[21,3,1,""],line_graph_forbidden_subgraphs:[21,3,1,""],TutteGraph:[21,3,1,""],BubbleSortGraph:[21,3,1,""],GossetGraph:[21,3,1,""],SzekeresSnarkGraph:[21,3,1,""],DegreeSequenceConfigurationModel:[21,3,1,""],WheelGraph:[21,3,1,""],Cell120:[21,3,1,""],PappusGraph:[21,3,1,""],HortonGraph:[21,3,1,""],HoffmanGraph:[21,3,1,""],QueenGraph:[21,3,1,""],SimsGewirtzGraph:[21,3,1,""],RandomTree:[21,3,1,""],WorldMap:[21,3,1,""],DoubleStarSnark:[21,3,1,""],TietzeGraph:[21,3,1,""],Balaban10Cage:[21,3,1,""],chang_graphs:[21,3,1,""],LollipopGraph:[21,3,1,""],HouseXGraph:[21,3,1,""],fullerenes:[21,1,1,""],FlowerSnark:[21,3,1,""],CubeGraph:[21,3,1,""],IcosahedralGraph:[21,3,1,""],LivingstoneGraph:[21,3,1,""],EmptyGraph:[21,3,1,""],PerkelGraph:[21,3,1,""],ToleranceGraph:[21,3,1,""],RandomShell:[21,3,1,""],LadderGraph:[21,3,1,""],FosterGraph:[21,3,1,""],nauty_geng:[21,1,1,""],AffineOrthogonalPolarGraph:[21,3,1,""],CompleteBipartiteGraph:[21,3,1,""],SchlaefliGraph:[21,3,1,""],MycielskiGraph:[21,3,1,""],SierpinskiGasketGraph:[21,3,1,""],BlanusaSecondSnarkGraph:[21,3,1,""],StarGraph:[21,3,1,""],LocalMcLaughlinGraph:[21,3,1,""],NauruGraph:[21,3,1,""],KneserGraph:[21,3,1,""],DejterGraph:[21,3,1,""],FolkmanGraph:[21,3,1,""],petersen_family:[21,3,1,""],FruchtGraph:[21,3,1,""],GoldnerHararyGraph:[21,3,1,""],GridGraph:[21,3,1,""],OrthogonalPolarGraph:[21,3,1,""],TutteCoxeterGraph:[21,3,1,""],PoussinGraph:[21,3,1,""],EllinghamHorton78Graph:[21,3,1,""],DegreeSequenceExpected:[21,3,1,""],ErreraGraph:[21,3,1,""],RandomRegular:[21,3,1,""],BuckyBall:[21,3,1,""],JohnsonGraph:[21,3,1,""],MarkstroemGraph:[21,3,1,""],DorogovtsevGoltsevMendesGraph:[21,3,1,""],FriendshipGraph:[21,3,1,""],RobertsonGraph:[21,3,1,""],KittellGraph:[21,3,1,""],WienerArayaGraph:[21,3,1,""],LjubljanaGraph:[21,3,1,""],Cell600:[21,3,1,""],Tutte12Cage:[21,3,1,""],DegreeSequence:[21,3,1,""],IntervalGraph:[21,3,1,""],ShrikhandeGraph:[21,3,1,""],FuzzyBallGraph:[21,3,1,""],DurerGraph:[21,3,1,""],SousselierGraph:[21,3,1,""],WatkinsSnarkGraph:[21,3,1,""],RandomBipartite:[21,3,1,""],trees:[21,3,1,""],McGeeGraph:[21,3,1,""],ChvatalGraph:[21,3,1,""],FoldedCubeGraph:[21,3,1,""],BrouwerHaemersGraph:[21,3,1,""],ToroidalGrid2dGraph:[21,3,1,""],CirculantGraph:[21,3,1,""],PermutationGraph:[21,3,1,""],CircularLadderGraph:[21,3,1,""],OrthogonalArrayBlockGraph:[21,3,1,""],OctahedralGraph:[21,3,1,""],RandomGNM:[21,3,1,""],PetersenGraph:[21,3,1,""],HallJankoGraph:[21,3,1,""],HyperStarGraph:[21,3,1,""],RandomGNP:[21,3,1,""],DegreeSequenceTree:[21,3,1,""]},"sage.graphs.base.sparse_graph.SparseGraph":{del_arc_label:[28,1,1,""],has_arc_label:[28,1,1,""],in_neighbors:[28,1,1,""],in_degree:[28,1,1,""],all_arcs:[28,1,1,""],del_all_arcs:[28,1,1,""],add_arc:[28,1,1,""],arc_label:[28,1,1,""],add_arc_label:[28,1,1,""],realloc:[28,1,1,""],out_neighbors:[28,1,1,""],has_arc:[28,1,1,""],out_degree:[28,1,1,""]},"sage.graphs.linearextensions":{LinearExtensions:[10,4,1,""]},"sage.graphs.independent_sets":{IndependentSets:[25,4,1,""]},"sage.graphs.graph_database":{subgraphs_to_query:[33,2,1,""],GenericGraphQuery:[33,4,1,""],graph_db_info:[33,2,1,""],graph6_to_plot:[33,2,1,""],data_to_degseq:[33,2,1,""],GraphQuery:[33,4,1,""],degseq_to_data:[33,2,1,""],GraphDatabase:[33,4,1,""]},"sage.graphs.graph_generators":{canaug_traverse_edge:[21,2,1,""],canaug_traverse_vert:[21,2,1,""],check_aut_edge:[21,2,1,""],GraphGenerators:[21,4,1,""],check_aut:[21,2,1,""]},"sage.graphs.base.static_sparse_backend.StaticSparseBackend":{num_verts:[13,1,1,""],allows_loops:[13,1,1,""],out_degree:[13,1,1,""],degree:[13,1,1,""],in_degree:[13,1,1,""],iterator_out_nbrs:[13,1,1,""],has_vertex:[13,1,1,""],has_edge:[13,1,1,""],multiple_edges:[13,1,1,""],iterator_in_nbrs:[13,1,1,""],iterator_out_edges:[13,1,1,""],num_edges:[13,1,1,""],get_edge_label:[13,1,1,""],iterator_edges:[13,1,1,""],iterator_verts:[13,1,1,""],iterator_in_edges:[13,1,1,""],add_vertex:[13,1,1,""],iterator_nbrs:[13,1,1,""],del_vertex:[13,1,1,""],relabel:[13,1,1,""]},"sage.graphs.genus.simple_connected_genus_backtracker":{genus:[36,1,1,""],get_embedding:[36,1,1,""]},"sage.graphs.bipartite_graph.BipartiteGraph":{load_afile:[31,1,1,""],plot:[31,1,1,""],delete_vertex:[31,1,1,""],to_undirected:[31,1,1,""],matching_polynomial:[31,1,1,""],reduced_adjacency_matrix:[31,1,1,""],save_afile:[31,1,1,""],add_vertices:[31,1,1,""],bipartition:[31,1,1,""],project_right:[31,1,1,""],project_left:[31,1,1,""],delete_vertices:[31,1,1,""],add_edge:[31,1,1,""],add_vertex:[31,1,1,""]},"sage.graphs.digraph_generators":{DiGraphGenerators:[48,4,1,""]},"sage.graphs.base.c_graph":{Search_iterator:[30,4,1,""],CGraphBackend:[30,4,1,""],CGraph:[30,4,1,""]},"sage.graphs.graph_database.GraphQuery":{number_of:[33,1,1,""],show:[33,1,1,""],get_graphs_list:[33,1,1,""],query_iterator:[33,1,1,""]},"sage.graphs.graph_coloring.Test":{random_all_graph_colorings:[16,1,1,""],random:[16,1,1,""]},"sage.graphs.generic_graph_pyx.SubgraphSearch":{cardinality:[45,1,1,""],next:[45,1,1,""]},"sage.graphs.hyperbolicity":{hyperbolicity_distribution:[5,2,1,""],hyperbolicity:[5,2,1,""]},"sage.graphs.base":{static_dense_graph:[46,0,0,"-"],overview:[49,0,0,"-"],static_sparse_graph:[15,0,0,"-"],dense_graph:[4,0,0,"-"],static_sparse_backend:[13,0,0,"-"],graph_backends:[0,0,0,"-"],c_graph:[30,0,0,"-"],sparse_graph:[28,0,0,"-"],boost_graph:[19,0,0,"-"]},"sage.graphs.graph_decompositions.rankwidth":{rank_decomposition:[35,2,1,""],mkgraph:[35,2,1,""]},"sage.graphs.tutte_polynomial.Ear":{s:[23,5,1,""],find_ear:[23,3,1,""],vertices:[23,5,1,""],unlabeled_edges:[23,1,1,""],removed_from:[23,1,1,""]},"sage.graphs.base.dense_graph":{DenseGraphBackend:[4,4,1,""],DenseGraph:[4,4,1,""]},"sage.graphs.graph_editor":{graph_editor:[17,2,1,""],graph_to_js:[17,2,1,""]},"sage.graphs.graph_list":{show_graphs:[40,2,1,""],to_graphics_array:[40,2,1,""],to_sparse6:[40,2,1,""],from_whatever:[40,2,1,""],from_graph6:[40,2,1,""],to_graph6:[40,2,1,""],from_sparse6:[40,2,1,""]},"sage.graphs.graph_decompositions":{vertex_separation:[42,0,0,"-"],bandwidth:[32,0,0,"-"],cutwidth:[9,0,0,"-"],graph_products:[37,0,0,"-"],rankwidth:[35,0,0,"-"]},"sage.graphs.graph":{Graph:[38,4,1,""]},"sage.graphs.distances_all_pairs":{shortest_path_all_pairs:[14,2,1,""],diameter:[14,2,1,""],distances_all_pairs:[14,2,1,""],is_distance_regular:[14,2,1,""],distances_and_predecessors_all_pairs:[14,2,1,""],floyd_warshall:[14,2,1,""],eccentricity:[14,2,1,""],wiener_index:[14,2,1,""],distances_distribution:[14,2,1,""]},"sage.graphs.base.sparse_graph.SparseGraphBackend":{add_edges:[28,1,1,""],multiple_edges:[28,1,1,""],get_edge_label:[28,1,1,""],has_edge:[28,1,1,""],set_edge_label:[28,1,1,""],iterator_out_edges:[28,1,1,""],del_edge:[28,1,1,""],iterator_edges:[28,1,1,""],iterator_in_edges:[28,1,1,""],add_edge:[28,1,1,""]},"sage.graphs.weakly_chordal":{is_long_hole_free:[18,2,1,""],is_long_antihole_free:[18,2,1,""],is_weakly_chordal:[18,2,1,""]},"sage.graphs.graph_generators_pyx":{RandomGNP:[27,2,1,""]},"sage.graphs.isgci.GraphClasses":{inclusions:[20,1,1,""],get_class:[20,1,1,""],show_all:[20,1,1,""],smallgraphs:[20,1,1,""],update_db:[20,1,1,""],classes:[20,1,1,""],inclusion_digraph:[20,1,1,""]},"sage.graphs.graph_plot":{"_line_embedding":[7,2,1,""],GraphPlot:[7,4,1,""],"_circle_embedding":[7,2,1,""]},"sage.graphs.pq_trees":{set_contiguous:[47,2,1,""],PQ:[47,4,1,""],new_P:[47,2,1,""],new_Q:[47,2,1,""],Q:[47,4,1,""],P:[47,4,1,""],flatten:[47,2,1,""],reorder_sets:[47,2,1,""]},"sage.graphs.spanning_tree":{random_spanning_tree:[22,2,1,""],kruskal:[22,2,1,""]},"sage.graphs.pq_trees.PQ":{ordering:[47,1,1,""],simplify:[47,1,1,""],number_of_children:[47,1,1,""],flatten:[47,1,1,""],reverse:[47,1,1,""]},"sage.graphs.hypergraph_generators.HypergraphGenerators":{nauty:[11,1,1,""]}},titleterms:{all:14,distanc:14,partial:32,milp:42,sage:[0,20],cgraph:49,bandwidth:32,incid:41,cython:[27,15,45],hypergraph:[41,12,11],acycl:10,graph:[0,2,4,7,8,40,10,12,13,15,16,17,18,20,21,26,27,28,29,30,31,32,33,46,35,37,38,39,43,44,49,51],color:16,main:14,match:[32,3],format:38,python:15,genericgraph:45,tutt:23,introduct:[28,4],level:12,list:40,separ:42,common:[27,48,8,21],isgci:20,view:20,compil:30,certif:29,set:[41,25],direct:[8,2,10],mutabl:38,"static":[15,46,13],convex:51,hyperbol:5,todo:[3,39,20,21,38,8,26],librari:12,index:46,what:15,compar:29,databas:[38,12,33],definit:[23,32,24,26],label:38,recognit:[29,20,37],version:44,between:14,theta:43,boost:19,method:[2,3,5,7,42,8,21,12,13,16,9,18,20,22,25,0,29,34,35,37,38,41,47,48,51],refer:[29,24,42],spars:[15,28,13],run:19,linear:10,cliquer:34,gener:[27,38,8,6,11],javascript:39,usag:[28,4],satisfi:32,extens:10,theori:12,solv:32,path:14,vertic:14,embed:50,shortest:14,central:1,polynomi:[23,3],genu:36,chordal:18,constructor:12,implement:[12,29],assign:32,underli:[28,4],point:15,digraph:[27,48],overview:49,modul:[15,14],independ:25,bound:42,rank:35,two:13,permut:29,predefin:20,backend:[0,49,13],plot:[39,7],inclus:20,cartesian:37,span:22,exponenti:[9,42],support:38,system:[41,20],fast:[30,28,4],asteroid:24,interfac:[19,34],cgraphbackend:49,cliqu:34,low:12,"function":[39,14,45,15,43,44,32,19,46,26,48,23,1,24,47,21],option:44,relat:34,decomposit:35,visual:38,line:[50,26],editor:17,cutwidth:9,technic:15,tripl:24,straight:50,properti:51,tree:[47,22,6],structur:[28,41,15,30,4,49],problem:[32,34,37],root:26,undirect:[32,38,8],planar:50,formul:42,indic:12,bipartit:31,tabl:12,author:[9,20,42],detail:[15,29],how:20,branch:42,graphlatex:44,"lov\u00e1sz":43,product:37,object:12,vertex:42,developp:20,pair:14,data:[49,15,30,28,4],"class":[0,13,29,44,20,7,25],latex:44,algorithm:[12,29,50,32,19,37,9,24,42],dens:[46,4],descript:20,inform:20,weakli:18,thi:15,schnyder:50}})
2