Sage Reference Manual
Search.setIndex({envversion:42,terms:{andru:32,nfsplit:9,new_dimens:12,orthogon:9,polymod:9,nfhnfmod:9,child:17,clgp:9,four:[9,26],prefix:[32,12],sleep:17,ret:12,matpasc:4,asymp:9,is_disjoint:12,totient:9,ellidentifi:9,issquar:9,consp:26,whose:[4,32,9,25,41],typeerror:[14,17,9,20,1,26],"const":12,gen_uniform:5,parir:34,sorri:9,algnorm:9,call_python:14,concret:9,listput:9,aut:9,ecl_opt_trap_sigint:26,under:[4,9],slowest:9,worth:9,playground:23,digit:[1,16,4,20,39,9],rayclgp:9,everi:[4,32,9,15,12],"50mb":9,vastli:9,"void":4,lattic:[9,5,12],p250:9,rl_line_buff:38,berkowitz:9,sage_object:[40,0,20,2],rec:[32,23,1],affect:[36,45,9,20],manin:9,quantit:9,t_pol:[4,9],two_desc:20,deg_bound:45,nf_get_diff:9,gnu:4,protest:4,l_function_publ:41,factori:[],rnfidealdown:9,vector:[9,4,20,36,5,1,12,39,25],printtex:9,red:9,has_strict_inequ:12,content_sb:45,initialis:[],"57a1":9,cmp:9,matcompanion:9,ellan:9,p_m:9,ellak:9,"10l":46,"10m":9,miller:[32,28,9],naiv:[4,9,20],ngen:[10,2],direct:[9,2,20,12,43,46],optimal_valu:12,yacc:45,second:[17,9,4,10,5,36,20,1,12],nfeltdivrem:9,modprinit:9,"10r":[46,2],algiscommut:9,unpickle_ncgroebnerstrategy0:0,diffop:9,ellap:9,even:[17,9,4,20,21,29,12,38,26],asin:9,hide:2,"1056g4":20,neg:[17,9,4,20,36,12],gapelement_integ:[32,1],biject:25,genus2r:[4,9],prec_dec_to_bit:4,kostkanumb:25,t_padic:[9,39],compos:9,optimization_mod:12,nonetyp:39,bnfisnorm:9,"new":[40,9,2,4,32,33,20,1,12,38],symmetr:[36,32,9,25],ever:12,topolog:12,told:9,algramifiedplac:9,elimin:[4,9],singular_list:2,qflll:9,mem:[32,23,45],never:[4,32,33,9,45],atomp:26,here:[17,9,4,20,21,36,23,12,45],algabsdim:9,accur:[41,9],debugg:15,path:[17,9,16],unpublish:9,p_2:9,abstractli:9,interpret:[8,9,2,4,32,20,12,25],cdef:[36,32],nullp:26,anymor:9,dirichlet_coeffici:41,"0x4000082":45,precis:[9,16,4,20,36,5,39,12,46],galoi:[4,9],reset_default:45,bezoutr:9,permit:9,slimgb:45,fourier:9,isomorph:[4,9,1],schur:[36,25],strat:0,linearli:9,brought:4,unix:[4,31],cps_height_bound:20,total:[4,9,45],printm:14,ord:9,unit:[9,45],constuct:12,redon:4,describ:[8,9,20,36,1,12,25],would:[4,32,9,20,12],poly_hull_assign:12,hall_littlewood_symmetrica:25,hensel:9,ellmodulareqn:4,vol:[4,9],edward:9,call:[],quo:9,polrecip:9,recommend:[9,4,32,20,21,41],type:[],until:[4,9,38,17],perm_gap:1,algsimpledec:9,gen_lattic:5,correspondingli:32,allocatemem:[4,9],elladd:9,relat:[9,2,4,10,5,12,45],notic:[4,9,12],libsingularopt:45,warn:[4,45,9,20],elllseri:9,avma:4,wari:9,gammainc:46,hold:[4,9,20,12],unpack:1,ellisogeni:9,must:[28,9,4,32,10,20,23,1,12,41,25,15],springer:[9,25],join:[17,16],quartic:[9,20],restor:[4,9,38],pid:9,work:[9,16,2,4,32,20,36,46],neword:9,erf:46,erg:25,polzagi:4,rnfbasistoalg:9,transfom:9,hansen:36,root:[23,9,46,29],unnam:9,matmultodiagon:9,polylogarithm:[4,9],give:[17,9,2,4,20,41,26],household:9,"0x04000082":45,nfbasistoalg_lift:9,plethysm_symmetrica:25,ecl_opt_lisp_stack_safety_area:26,caution:[4,9],unavail:[4,32],want:[9,2,4,32,21,36,23,45],keypress:38,david:5,unsign:4,lngamma:9,setminu:9,end:[4,32,38,9,25],hoc:9,manipul:4,quot:[4,26],namedtemporaryfil:4,ordinari:[4,9,26],sigtstp:38,idealstar:9,how:[9,21],"0000000004c5efe0":9,enforc:12,bnrisgaloi:9,disappear:25,schonhag:9,answer:[4,9],verifi:[41,42,20],neccessarili:12,saved_workspac:31,updat:[40,9,4,32,5,38],bid_get_cyc:9,chines:9,after:[9,4,32,20,5,10,38,25],lab:9,diagram:36,befor:[9,2,4,15,38,43,45,26],wrong:[9,2],adic:[39,9,20],set_optimization_mod:12,law:9,arch:9,find_root:9,demonstr:[23,45],attempt:[41,9,20,12],third:[36,32,9,1,12],polhermit:4,incorrectli:9,lost:[9,12],think:[4,33,9,38],receiv:17,maintain:9,environ:[4,9],t_homsym_monomial_symmetrica:25,enter:[9,4,32,20,23,38,25],exclus:9,real_doubl:46,lambda:[14,9],ring_integer_mod:1,order:[9,2,4,32,20,1,12,41,39,45,15],harlei:9,oper:[9,4,20,23,1,6,25],"123b1":9,composit:9,deform:9,over:[0,33,9,2,4,12,36,1,11,6,39,25],fall:9,becaus:[36,4,26,9,17],cohen:[4,9],getwalltim:4,pascal:4,keyboard:4,unfeas:9,flexibl:[9,26],vari:9,pos_start:38,modpr:9,fit:[32,9],fix:[9,4,20,1,41,42,43,46],abcissa:9,randomprim:9,"__class__":2,bytecod:9,better:[4,9,45],semistandard:36,isotrop:9,totalkb:32,pari_r:34,schmidt:9,easier:9,descend:9,t_quad:9,them:[17,9,4,32,20,36,29,12,26],thei:[17,9,4,20,36,1,12,41,39,15],lambert:9,numtoperm:[4,9],safe:[4,9,45],exceedingli:9,add_space_dimensions_and_project:12,"break":[4,9],interrupt:[14,17,28,9,4,26],modularsymbol:[6,9],iterable_to_vector:36,choic:[4,9,5],float_typ:5,subalgebra:9,eact:9,"1e3":28,freealgebra:[0,2],loss:9,"1x1":9,nudupl:9,luca:9,timeout:[17,12],each:[8,9,4,32,33,20,36,12],debug:[28,9,4,32,38,12,45,15],motsak:2,d40:26,bounded_ll:5,side:[0,9,32,20,12,45],mean:[4,45,9,20,12],verrier:9,polsylvestermatrix:9,bnfisunit:9,ideallist:9,blanklin:12,doud:9,inf_n:12,vecstirling2:4,t_homsym_powsym_symmetrica:25,psynonym:9,collector:[32,9,26],inf_d:12,"90c2":9,permutationgroup:32,only_imag:9,gon:9,unbound:12,universalcyclotomicfield:1,matrixfactori:33,emul:4,symmetricgroup:[32,1],schnorr:9,gof:9,matdetint:9,content:[25,36,38,9,45],rewrit:[4,32,9],ncgroebnerstrategi:0,strict_to_odd_part_symmetrica:25,zetak:9,adapt:[9,20],reader:26,lrcalc:[],forth:4,cddr:26,multilin:4,mapget:9,linear:[36,9,20,12],written:[4,17,9,12],d_m:9,situat:9,infin:[9,1,46],free:[32,9,5,2],standard:[4,9,45,15],nth:4,fixm:[9,25],factoris:9,ellinit:[4,9],t_powsym_schur_symmetrica:25,hand:[4,12,9,45,2],matinverseimag:9,sigquit:38,polhensellift:9,zeta6:1,traceback:[14,17,28,9,16,2,4,32,10,20,21,36,23,1,12,41,39,25,26],zeta3:[32,1],pari_vers:4,sugarcrit:45,filter:9,heck:[6,9],erfc:9,isn:17,nfgaloisappli:9,zn_sqrt:9,liftpol:9,onto:9,sageobject:[40,0,20,2],mathbb:9,j_invari:9,rang:[7,14,9,40,4,34,11,1,12,39,44,25],constraint_system_iter:12,independ:[4,39,9,20],meth:20,wast:9,rank:[36,8,9,20,41],restrict:[36,4,9,5,29],hook:[38,15,25],instruct:[4,9],alreadi:[4,9,20,26],irreduc:[9,25],wrapper:[],algdisc:9,wasn:9,sturm:9,conjugaci:9,massiv:20,padicprim:9,boerner:25,cartesian:12,rewritten:9,bnf_get_cyc:9,top:[4,9],ecl_opt_trap_sigbu:26,sometim:[41,21,9,5,12],t_str:9,polredord:9,necessarili:[9,12],master:[4,23],too:[14,9,4,20,41,26],tol:20,similarli:[4,9,12],ecl_opt_frame_stack_safety_area:26,john:[11,20],kubota:9,subdiagon:9,mwrank_curv:20,inexact:[4,9],"17a":9,gp_default:4,somewhat:9,technic:[4,9],rnfdet:9,tex:9,removeprim:9,sage_matrix_over_zz:[6,33],silli:17,target:17,keyword:[4,46,9,1,12],provid:[8,0,28,9,2,4,32,5,31,34,12,13,45],expr:12,tree:9,rate:9,libsingularverboseopt:45,libgap_exit:[32,23],project:[4,29,9,12],matter:[17,9],expo:9,friend:9,old_std:45,nfroot:9,t_polynom_power_symmetrica:25,abov:[9,2,4,20,36,5,12,41,25],fold:9,py_nam:1,mind:[4,9],objtogen:9,up_to_d:31,lba:9,gequal_long:9,seed:[4,9,5],increment:9,lbi:9,seen:[4,9,17],seem:9,incompat:[4,9,1,12],seek:9,minu:[9,20],ellipticcurv:[9,11,20,39,41,29],strength:9,burcin:2,maxr:20,latter:[4,32,9,12],alginit:9,specht_dg_symmetrica:25,ellmul:9,matisdiagon:9,paris:9,nfeltmod:9,t_monomial_powsym_symmetrica:25,ulrich:9,simplifi:[4,43,9],though:[9,20],object:[],lexic:4,rsa:9,monomi:[9,25,2],regular:[25,9,45],letter:4,all_homogeneous_terms_are_zero:12,phase:9,typ:9,seralgdep:9,brien:9,mwrank_ellipticcurv:20,wish:45,don:[17,28,9,4,32,36,45],simplif:9,complex_numb:[39,46],alarm:28,lpr:9,doe:[17,9,4,32,20,36,5,1,12,45,26],dummi:[9,39,21],declar:[9,12],tech:9,shutdown_ecl:26,yann:41,section:[9,12],dot:26,quadraticfield:9,explan:9,restricion:5,plesken:9,elltaniyama:9,abl:[9,20],chapui:41,random:[17,31,28,15,2,4,32,5,46,23,34,1,12,26,25,9],sage:[],prid:9,syntax:[4,45,9,1,12],kerber:25,galoisexport:9,poldegre:[4,9],protocol:[45,26],mwrank:[],involv:[4,9,39],absolut:[4,9,29],mateigen:9,arctang:9,a_1:29,error_enter_libgap_block_twic:[32,23],delet:[4,9],explain:9,configur:9,siev:[9,20],sugar:45,setintersect:9,rich:12,is_commut:2,idealramgroup:9,congruenc:9,likewis:9,stop:[20,45,9,5],gsl_arrai:[],ceil:[9,29],galoisisnorm:9,congruent:9,report:9,reconstruct:[],msissymbol:9,carmichael:9,bar:9,cpython:15,emb:12,eamonn:9,test_write_to_fil:37,method:[],bag:32,coproduct:36,ideallog:9,dlfun:9,second_desc:20,yy1:9,septemb:35,odd_primes_onli:20,numbpart:[4,9],livekb:32,subexponenti:9,ellpadicheightmatrix:9,factorbas:9,datatyp:32,om2:9,om1:9,num:9,mandatori:4,result:[28,9,4,32,20,36,34,5,12,6,46,25,26],fail:[4,32,1,9,20],bess:9,ellformallog:9,nfhnf:9,best:[4,32,9,8],subject:[4,1],awar:8,said:9,tensor:[9,25],padicappr:9,databas:9,sigint:38,libgap:[],figur:9,eclib:[],elllog:9,padicfield:9,mul:14,awai:9,gdiv:9,algdim:9,attribut:[23,9,2],accord:[9,12],triplet:9,conjectur:9,set_debug_level:4,elleisnum:9,cuspid:[6,10,33,9],extens:[4,12,9,2],lazi:[9,45],part_part_skewschur_symmetrica:25,alghass:9,"sch\u00f6nhage":9,basecallhandl:2,protect:26,accident:32,rnfsteinitz:9,ell:9,listp:[9,26],curvedata:20,fault:[4,20],howev:[9,4,20,12,45,26],sigchld:17,against:[4,32,9],obei:4,qfbil:9,consecut:9,uni:3,algsplittingmatrix:9,col:9,con:26,pre:12,xx1:9,tough:9,kwd:[4,32,9,1],rnfidealnormrel:9,hammingweight:9,foobar:[4,32,38,21],bettina:9,t_elmsym_monomial_symmetrica:25,height:[9,20],kostka_number_symmetrica:25,permut:[9,4,32,36,1,12,25],theoret:[9,12],elleta:[4,9],vecmax:9,guid:[4,9],assum:[4,9,20,41],lll_def_eta:5,speak:9,"_pari_":9,max_loop:5,xlist:17,union:9,"kl\u00fcner":9,convolut:9,three:[4,26,9,20,17],been:[17,9,4,32,20,12,41],algtobasi:9,nf_get_zk:9,much:[4,9,8],gtoser:9,valu:[9,46,4,32,20,21,36,38,29,25,1,12,41,39,26,45,15],interest:9,basic:[9,4,20,5,39,12],kodaira:9,vecsum:9,gtovec:9,rnfdisc:9,leech:9,quickli:[4,9,5],regul:[9,20],xxx:9,math:[27,9,4,36,12,41,25],no_lll:5,argument:[14,9,2,4,20,36,46,34,1,12,26,15],is_equivalent_to:12,lift:[45,9,1],mult_schubert_schubert:25,bernoulli_numb:44,"catch":[32,23,9],libgap_funct:32,qfparam:9,rnfequat:[4,9],ident:[4,9],mathilbert:4,tanh:9,msstar:9,is_funct:1,algisdivis:9,euclidean:9,calcul:[],unsolv:9,pairwis:9,publicli:9,t_polynom_schubert_symmetrica:25,s_a:25,gamma_0:[6,10,9],nfnewprec:9,seven:9,cont:36,space_dimens:12,disprov:9,cmdline:12,kwarg:46,cond:26,ellpadiclog:9,varlow:[4,9],conj:9,polinterpol:9,sever:[28,9],descent:20,jame:25,perform:[28,9,4,32,20,5,1,12,45],"20m":9,make:[9,4,32,5,36,34,38],bnrrootnumb:9,who:[45,2],zn_issquar:9,rnfdedekind:9,preserv:38,complex:[9,4,39,12,41,46],split:[4,9],t_powsym_monomial_symmetrica:25,gen_0:9,supersingular:9,t_real:[9,39],complet:[9,4,32,5,12,25],hank:8,ellj:9,is_empti:12,nil:26,setbinop:9,gupta_nm_symmetrica:25,get_series_precis:[4,9],memory_usag:23,poly_from_gener:12,charactert:25,strtex:9,rais:[17,9,40,4,32,10,20,21,1,12,39,35,26],characterp:26,unimodular:9,refin:41,selfridg:9,studi:9,pr_get_gen:9,redefin:45,narrow:9,kept:[4,9],bewar:[4,9],catalan:4,thu:[4,12,9,8],min:9,poliscycloprod:9,is_includ:12,weakli:[36,9],greatest:9,thi:[0,2,4,5,6,14,8,9,12,13,15,17,20,21,23,1,25,26,28,29,31,32,33,35,36,38,39,41,43,45,46],lagrang:9,everyth:[8,9],left:[40,9,4,12,38,26],rayis:12,number_of_partit:44,just:[9,4,10,20,23,1,12,39],galoissubcyclo:[4,9],newton:9,skewtableau:36,rnfisnorm:9,coprod:36,yet:[20,32,1,9,16],languag:12,eulerphi:9,hal:9,ham:9,easi:[28,9,4,20,36,12],bnr:9,character:[9,12],t_closur:[14,4,9],n_aux:20,bnf_get_reg:9,shoup:[],els:[4,9,20],expon:[9,46],get_debug_level:4,bnf:9,elt:[14,9],change_r:9,opt:[23,45],applic:9,freedom:9,max_refin:41,pseudor:34,rnf:9,elltor:9,rnd:46,rplaca:26,fusion:36,parentwithbas:4,rplacd:26,prickett:20,silverman:[9,20],hanrot:9,lcm:9,apart:[9,12],measur:[9,12],max_space_dimens:12,specif:[4,9,1,17],ellpow:9,devnul:17,gsign:9,arbitrari:[40,9,4,20,12,44,26],manual:[9,4,32,21,1,12],redthrough:45,bnrclassnolist:9,nutyp:9,compute_schur_with_alphabet:25,transvers:9,minpoli:[9,24],rlocal:45,rnfidealnormab:9,"0000000004c5f010":9,underli:[36,8,9,20,12],www:9,right:[4,9,41,40],old:[9,4,32,20,12,38],deal:[9,45],sumnuminit:9,mseval:9,negat:9,stopiter:[26,1,12],printf:4,excerpt:12,maxim:[39,9,25,12],alginvbasi:9,closure_point:12,asbuch:36,intern:[9,16,4,20,5,38,26],sure:[4,9],g_i:9,indirect:[0,9,12],ellordin:9,algmult:9,bnf_get_no:9,bottom:[4,32,9],intnuminit:9,flush:4,polsturm_ful:9,subclass:12,multipli:[25,36,9,20],batut:9,galoisgetpol:4,jacobson:9,condit:[4,9,5],foo:4,polclass:9,polsym:9,core:[36,9,25],plu:9,rlist:17,nijnhui:25,add_recycled_constraint:12,confluent:9,subspac:[10,9],algindex:9,solut:[32,9],quaternion:9,descart:9,hadamard:9,"super":9,"0x57295e0":4,cornacchia:9,chapter:8,elltatepair:9,alexand:[9,2],"0x60b2c60":4,pasechnik:32,biggest:9,realdoubleel:46,literatur:9,unfortun:9,dilogarithm:9,gammah:9,algb:9,commit:4,deadkb:32,eick:9,produc:[9,20],ecl_sig_on:26,degbound:45,roundg:9,xyz:9,"float":[9,16,4,20,5,39,31,46,26],encod:9,bound:[28,9,4,32,20,36,34,29,5,12,41,45,26],ppl:[],down:[9,20,26],hermitian:9,wrap:[32,1,9,15,2],pari_rnf:9,precomput:[4,9],polresultantext:9,strict_inequ:12,accordingli:9,git:4,precdl:4,wai:[9,4,36,12,45,26],polab:9,support:[],transform:[9,26],why:[4,9],avail:[17,9,2,4,32,5,12,45],reli:9,fraction:9,parius:9,interv:[4,9,29],polrootsr:9,lowest:[40,9],medium:9,form:[0,9,4,33,12,41,26],offer:[4,9],forc:[9,38],add_on:9,xgcd:9,interpol:9,refcount:23,back:[28,9,4,32,1,46],mathnfmodid:9,supersolv:9,dead:32,heap:4,renam:12,t_schubert_polynom_symmetrica:25,classgroup:9,bitnegimpli:9,reset:[4,21,9,45,12],attr:9,understood:9,remove_higher_space_dimens:12,coeff:[29,12,9,2],maximum:[29,20,5,12,25,9],tell:9,zetamult:9,simard:9,"37a1":[9,39],mathousehold:9,p200:9,fundament:9,ellcard:9,more:[14,8,28,9,2,4,32,20,36,39,12,41,45,46],print1:4,classif:9,featur:[9,13],red_sb:45,semicolon:32,classic:[4,9],gapelement_integermod:1,"abstract":[12,9,45,2],cyclotom:[4,32,9,1],subord:9,proven:[9,5],rubinstein:[],diagnost:[9,26],incgam:9,exist:[9,2,4,12,31,26],check:[17,28,9,2,4,20,36,1,12,46,26],impos:[36,9],inde:[4,9],successfulli:20,eigenspac:9,groebnerstrategi:0,floor:[9,46],minimized_gener:12,when:[9,4,32,10,20,5,12,41,38,35,45],refactor:[41,18],ecl_opt_trap_sigil:26,pomer:9,ellchangecurv:9,test:[],presum:9,substvec:[4,9],node:9,algquoti:9,intend:[4,9,45],ellisogenyappli:9,sqr:9,dbg_err:9,norm:[9,5],rnfconductor:9,eigenvalu:9,nfull:32,list_of_funct:2,consid:[36,9,20,12],poly_gen_rel:12,c_poli:12,omega:[41,9],constrain:12,swinnerton:9,faster:[4,32,9,45],furthermor:[4,32,9,45],abscissa:9,sigma:9,heuristic_early_r:5,pseudo:[4,9,34],bnrdisclist:9,ramifi:9,qfisom:9,gforg:28,exce:[45,12],ignor:[41,4,9,5,17],time:[14,17,9,27,4,32,10,5,31,20,1,12,41,44,45,26],backward:[4,9],mpfr:5,nonstrict_inequ:12,concept:9,skewtab_to_skewtableau:36,q_core_symmetrica:25,skip:[32,9],global:[9,4,32,20,21,45,26],datum:9,ouch:9,signific:[4,9],supplement:9,customari:9,quadregul:9,lll:[9,5],classicaleqn:4,rnfcharpoli:9,subcompon:9,mapcar:26,row:[36,4,33,9,5],mathnf:9,decid:[4,9],middl:9,depend:[9,4,45,12,38,26],random_matrix:5,demey:[14,17,28,9,4,43,35],decim:[20,4,39,9,16],readabl:9,supposedli:9,retri:4,vec:[4,9],stdfglm:45,elll1:9,isinst:[31,1],sourc:[36,4,32],lre:45,string:[40,9,16,2,4,32,33,34,21,31,1,12,41,39,46,38,26],asymptot:[9,13],alginvord:9,localprec:4,feasibl:9,nfrootsof1:9,knapsack:[9,5],word:[4,9],exact:[4,9,45],degenerate_el:12,ellisoncurv:9,riemann:[41,9],level:[8,9,2,4,20,36,10,6,45],did:9,reproduc:[4,9,12],msnew:9,nagel:9,iter:[9,4,36,1,12,26],scalarproduct_schubert:25,item:[36,1],statu:[4,38,12],bnrgaloisappli:9,sine:9,quick:9,zeitschr:25,round:[4,9,46],progress:[9,45,29],upper:[41,4,9,20,34],dummy_handl:17,slower:[4,9,45,41],isogen:20,maclaurin:9,algissplit:9,sign:[9,10,33,11,6,41,46],sensibl:[4,9],python_list:9,find_zeros_via_n:41,vandermond:9,rnfidealabstorel:9,mspathgen:9,appear:[4,9,20],get_real_precis:4,"0c00000000000003":9,ispseudoprim:9,algtrac:9,ndg_symmetrica:25,matbasistoalg:9,uniform:9,current:[14,8,9,16,2,4,32,33,5,46,20,1,38,39,26,45,15],skewpartit:25,sinc:[8,9,17,4,32,2,20,21,1,12,45],wors:9,suspect:9,nine:9,componentwis:9,mergesort:9,deriv:[41,4,9,1,40],matalpha:9,necessarily_clos:12,gener:[14,0,9,2,4,32,5,36,20,1,12,41,45],coeffici:[40,9,4,20,36,5,24,12,25,41,45,29],ainv:20,galdata:9,satisfi:[4,9,41,12],slow:9,tangent:9,g_3:9,rabin:9,address:[4,32,9],t_frac:[9,39],vecsmal:[4,9,39],ecl_opt_trap_sigsegv:26,wait:[],box:36,buch:[],g2r:9,rnfinit:9,shift:[4,9,40],smithform:24,all_vector:2,bot:4,vectorv:9,trial:9,t_ffelt:9,behav:9,permlist:1,extrem:[28,9],weird:9,deg:9,"stehl\u00e9":9,unreason:9,nmax:9,semant:4,regardless:9,extra:[9,16],circumv:9,modul:[8,9,17,31,32,2,20,21,1,45],prefer:[9,20],parma:[],subgrp:9,pariinstance_auto:4,"1st":9,marker:32,instal:[17,9,4,23,38,26],smallish:9,projector:9,memori:[8,9,4,32,23,12,45],sake:9,univers:[9,1,12],leopoldt:9,perm:[25,9,1],hilbert:[4,9],rnfidealtwoelt:9,live:[9,2],handler:[17,38,2],criteria:45,scope:[4,26],bill:9,polrootsff:9,algneg:9,algchar:9,permutahedron:12,is_lll_reduc:5,ecl_opt_lisp_stack_s:26,afford:9,finit:[0,9,2,4,1,12],enhanc:2,nguyen:9,is_sage_wrapper_for_singular_r:2,t_infin:9,examin:9,matadjoint:9,classlabel:25,obj:[9,12],"thi\u00e9ri":36,logarithm:[9,20],zm_intersect:9,car:26,holomorph:9,uniqu:9,oldstd:45,descriptor:17,hardest:9,concatenate_assign:12,can:[2,4,5,14,17,9,10,15,12,20,21,1,25,26,28,29,32,34,36,37,45,39,41,38,46],purpos:[9,4,12,20,36,31,38],schoenemann:0,fibonacci:[4,9],claim:9,evaluate_objective_funct:12,risan:12,stream:9,predict:9,"14a1":9,fforder:9,"14a4":9,hcpol:9,topic:9,powsym:25,critic:[41,32,23,45],abort:[9,20],stoll:20,mult_schubert_schubert_symmetrica:25,rnfidealreltoab:9,occur:[17,9,4,5,21,35],verlag:9,first_limit:20,alwai:[17,9,4,32,20,12,45],gagern:9,intnum:[4,9],multipl:[14,17,9,4,20,45,29],inner1:36,blockmatrix:32,matsnf:9,parappli:9,write:[17,9,16,4,32,21,37,12],criterion:[4,9],pure:[8,9],tild:9,nffactor:9,snf:9,map:[45,9,1,26],product:[28,9,4,36,12,25],lrcoef:36,mat:[33,9,25],intrud:12,zimmerman:9,clone:28,"0x7fc6fa6ec480":15,spot:4,liftint:9,usabl:32,is_equ:12,pohlig:9,"4th":[4,9],uint:1,lenstra:[28,9],autom:9,data:[8,9,2,4,32,20,1,12,35,26],grow:9,man:46,hyperu:9,stress:27,algtyp:9,cdar:26,practic:[4,9],div_rem:40,besselh2:9,besselh1:9,explicit:[41,9],get_point:38,quadrant:9,inform:[28,9,4,32,10,20,36,23,1,12,45],"switch":[21,9,20,15],preced:[4,9,20],combin:[36,9,20],block:[17,9,2,32,23,38,12,45],zmodnz:1,untest:9,gapel:[32,1],irrat:9,algissemisimpl:9,cutoff:9,unfactor:9,bilu:9,graduat:9,lst:[32,1],set_precis:[20,16],is_tautolog:12,solubl:20,equip:9,singular_funct:2,still:[9,4,32,20,12,41],pointer:[9,4,15,36,23,26],dynam:[4,9],conjunct:9,ellperiod:9,group:[8,9,4,32,20,36,1,25],monitor:9,ntru:5,nfeltnorm:9,idealcoprim:9,instantli:9,polrootspadicfast:9,platform:41,m_8:9,m_2:9,main:[36,9,12],areal:41,ramanujan:9,non:[17,9,2,4,5,36,20,12,41,38,45,26],recal:9,is_satisfi:12,algrad:9,initi:[14,17,0,9,2,40,4,5,22,34,20,38,12,41,26,35,45,15],sol:9,poltschirnhau:9,libgap_foobar:32,alon:9,therebi:9,half:9,now:[17,9,4,32,20,41],hall:25,nor:[4,9,12],introduct:4,m_k:9,m_j:9,term:[40,9,2,4,10,36,12,15],name:[9,16,2,4,32,21,36,1,12,39,45],matdiagon:9,revers:9,revert:[32,21],crypto:5,lfunction_zeta:41,separ:9,januari:35,confid:41,pr_get_:9,sqrtn:9,compil:[4,9,12],domain:[4,9],siksek:20,ellzeta:9,replac:[41,38,9,20,26],individu:[4,9,1],bnfdecodemodul:9,nfeltreducemodpr:9,coprim:9,significantli:9,mattranspos:9,operand:9,resourc:12,happen:[4,9,20],prec_in_word:4,nfeltpowmodpr:9,shown:[4,2],accomplish:9,dirzetak:9,"3rd":9,space:[29,4,10,12,6,9],profit:4,storag:[32,9],hom_sym:25,parallelogram:9,barnesg:46,t_vec:[14,4,9,39],ascii_dump:12,bounds_from_below:12,formula:9,correct:[9,4,20,38,5,45],ring_rat:1,gram:9,tnf:9,earlier:9,is_nonstrict_inequ:12,colrev:9,unaffect:[4,9],hull:12,runtimeerror:[2,32,20,23,35,26],million:9,mapdelet:9,is_positive_definit:9,libsingular_opt:45,gap4:[4,9],theori:[4,9,25],org:[4,32,9,41],"byte":[4,32,9],card:9,care:[17,9,4,32,12,45],expm1:9,singular_lib:2,multiplicative_gener:1,suffici:[9,20],galpol:4,galoisidentifi:9,recov:9,pollard:9,shortest_vector:5,place:[36,9],get_fileno:17,vecextract:9,unwis:9,principl:9,typic:9,imposs:[9,20,35],frequent:9,first:[17,9,2,40,4,32,5,21,36,20,1,12,41,25],origin:[4,32,9,20,12],poldisc:9,auto_abort:5,err:[35,12],directli:[9,2,4,32,20,41,45,26],ecl_opt_trap_sigchld:26,carri:20,onc:[9,4,32,20,36,26],arrai:[4,9,12],tableaux:[36,25],yourself:[4,26,9,15],xorgen:9,fast:[9,32,5,36,12,13,45],bradshaw:[4,9,40],oppos:[17,9],ring:[],open:[17,16],lexicograph:[36,4,9],is_topologically_clos:12,size:[40,0,9,2,4,32,10,1,12,41],given:[14,17,9,2,4,32,10,20,36,34,1,12,6,41,39,46,25,26],cotang:9,silent:[4,9,12],convent:[9,1,12],factorff:9,const_iter:12,is_disjoint_from:12,inv:4,parallel:9,f_4:9,f_5:9,numberfield:[9,39],cumul:32,zagier:4,averag:[9,5],f_2:9,f_3:9,e55:9,proposit:[9,26],conveni:[22,32,23,9],e51:9,e50:9,"571a":20,ariti:9,arith:44,cope:[4,9],pseudo_div:40,copi:[4,9,38,12],bnfsignunit:9,braun:[32,12],specifi:[9,4,20,36,1,12,25],polgraeff:9,g_algebra:[0,2],enclos:12,hypergeometr:9,mostli:9,borwein:9,quad:46,than:[8,9,4,20,36,12,45],wide:9,ciphertext:9,lpari:9,hnffinal:9,rademach:9,instanc:[9,4,32,1,12,15],"_arg2":9,ellgener:9,classno2:9,redefinit:45,wwwmath:9,gapelement_boolean:1,archimedean:9,f_q:9,were:[4,32,9,20,41],posit:[28,9,16,4,10,20,1,12,41,38],elm_sym:25,uspenski:9,left_shift:40,seri:[4,9],ellbil:9,sai:[9,25,12],gammamellininvinit:9,liftal:9,algcharpoli:9,ann:36,ani:[14,17,28,9,2,4,20,36,38,12,45,46],"0x06000082":45,crystallin:9,subroutin:4,anu:9,"32a3":9,notimplementederror:[32,39,1],ring_cyclotom:1,sat:20,mislead:12,bitwis:9,engin:9,squar:[4,45,9,20,46],pari_nf:9,recompil:4,destroi:26,lisonek:9,fixnump:26,note:[9,4,32,33,20,34,12,41,25],altogeth:9,ideal:[0,9,45,2],denomin:[4,29,9,12],nfeltreduc:9,take:[14,9,4,20,38,26],advis:[14,9],epsilon:9,interior:12,properti:9,noth:[17,9,4,20,36,5,12],idealfactor:9,vecsort:9,begin:[4,32,9,25],numrel:10,importantli:4,trace:9,normal:[4,0,46,9,26],track:[32,9],kroneck:9,sagemath:[4,32,9],mordel:[9,20],compress:9,clearer:9,set_glob:[32,21],beta:[4,9],stdhilb:45,abus:9,pr3:9,ellchangepointinv:9,pair:[9,31,20,36,12,45],gapelement_list:[32,1],qfautoexport:9,allevi:9,synonym:9,"teichm\u00fcller":9,later:9,indexbound:9,quantiti:9,is_discret:12,intform:9,hear:4,axi:[41,9,12],steadi:9,patchlevel:4,translat:[26,9,12],slope:[9,5],set:[9,16,46,4,32,20,21,38,39,12,41,26,45,15],uncondit:9,show:[45,32,38,9,20],delta:[10,9,5],subprocess:[],issquareal:4,permiss:9,hack:9,threshold:9,corner:45,t_col:9,tend:9,primes_up_to_n:4,fifth:9,ground:9,slot:4,onli:[14,17,9,4,32,10,5,36,34,31,20,1,12,25,41,45,26],explicitli:[26,9,12],ratio:9,galoisisabelian:9,"true":[0,2,4,5,6,17,9,10,12,16,20,22,23,1,25,26,40,28,29,31,32,33,34,39,41,42,44,45],is_list:1,enough:[4,9,5],gp_rl:4,parametr:9,silverman_bound:20,dict:[32,1,46],elllocalr:9,analyt:[4,9,41],sighup:17,info:9,ellissupersingular:9,tmout:17,variou:[14,4,9,1,17],get:[28,9,2,4,32,20,12,41,38,26],repr:38,manuscripta:9,from_man_exp:46,cannot:[14,9,4,32,20,1,12,39,25],"import":[0,2,4,11,5,14,17,9,12,15,16,40,22,23,25,26,27,28,29,31,32,36,37,38,39,41,44,45,46],wreadi:17,gen:[],requir:[4,32,17,9,12],embedd:[],prime:[28,9,16,2,4,20,1,6],fileno:17,con_si:12,polcyclo:[4,9],gen_ntrulike2:5,yield:[36,4,9],sidewai:9,qfgaussr:9,polrootsmod:9,pari_inst:4,aris:[9,2],e_k:9,galoissubfield:9,where:[17,9,4,5,20,1,12,6,41,44,25,26],kernel:[10,9,20,2],prec_dec_to_word:4,singularkernelfunct:2,gapelement_permut:1,assumpt:9,is_closure_point:12,reserv:4,msheck:9,euclid:9,quadunit:9,parev:9,ieee:26,concern:9,infinit:[4,9],sage_ev:39,timeit:[32,12],detect:[17,9,5],ellaplist:9,enumer:[9,5,12],compute_schur_with_alphabet_symmetrica:25,label:25,getattr:9,between:[8,9,2,4,34,38,12,41,25],rank_bound:20,nondecreas:4,spars:[33,12],parent:[9,32,34,1,6,39,25,46],takagi:9,comp:9,screen:38,rerun:4,get_glob:[32,21],nfdetint:9,cycl:[4,9,1],poison:15,integermodr:1,come:[20,9,5],caar:26,unnecessari:9,sup_n:12,isogeny_class:20,elldivpol:9,buchmann:9,gettrac:15,znprimroot:9,tutori:9,improv:[4,9],stacksiz:4,not_sugar:45,getabstim:4,among:[9,46],acceler:4,masterpoint:32,polr:9,contains_integer_point:12,rescal:9,overview:26,uncondition:9,period:[41,9],insist:9,pow_trunc:40,nfalgtobasi:9,pole:[41,9],toru:9,nfsolvemodpr:9,cancel:9,curr:15,nicola:36,poll:17,mult_monomial_monomial_symmetrica:25,poli:[12,9,2],idealnumden:9,save:[17,9,45,31],lidia:9,all_singular_poly_wrapp:2,ffprimroot:9,trager:9,invert:[4,9],oder:45,ellweilpair:9,mark:38,kostka:25,workshop:32,"\u00e9tale":9,certifi:9,markedli:9,matimag:9,hyperellipt:[],emphas:20,nnc:12,resolut:[45,2],"20a1":9,"20a2":9,nfgaloisconj:[4,9],catastroph:9,qfbcompraw:9,isprim:9,workspac:[],matrix_integer_dens:33,hilbert_class_polynomi:9,thing:[9,1],evaluating_point:12,sigttou:38,former:4,those:[36,17,9,12],settrac:15,"case":[17,28,9,4,32,20,36,25,1,12,39,45],e43:9,e40:26,kappa:41,e44:9,global_context:[32,21],"352m":4,mip_problem:12,log_2:9,sup_d:12,invok:5,kostka_numb:25,gammamellininvasymp:9,current_randst:4,t_schubert_polynom:25,dirdiv:9,feitsma:9,canon:[4,9,20],worri:[45,2],equal:[9,4,20,36,1,12],is_singular_poly_wrapp:2,bnfisintnorm:9,externstr:4,algdep:9,qfbprimeform:9,theta:9,ecl_opt_thread_interrupt_sign:26,ascii:[9,12],gen_intrel:5,iferr:9,develop:[4,8],"0x00000082":45,author:[14,17,0,28,9,2,3,4,32,18,5,22,36,34,12,40,41,43,35,45,15],alphabet:[36,25],same:[17,9,40,4,32,36,45,39,12,25],log_gamma:9,binari:[4,9,20],pab:9,html:9,pad:9,not_bucket:45,ellconvertnam:9,t_powsym_elmsym_symmetrica:25,document:[28,9,2,4,36,1,12],hermit:[4,9],defr:45,mbyte:9,finish:[17,16,10,20,12,45],closest:39,currring_wrapp:15,nest:4,lutz:9,siegel:[41,5],companion:9,gapelement_methodproxi:1,algisassoci:9,mani:[14,4,9],extern:[4,9],linear_express:12,postpon:45,solvabl:9,polygon:9,appropri:[36,9,26],inconsist:[9,12],pollegendr:4,clobber:38,ellpadicheight:9,numdiv:9,polroot:9,without:[9,2,4,32,23,39,12],ecl_opt_heap_safety_area:26,morita:9,model:[20,4,9,5,11],dimension:[45,9,5,12],polsturm:9,symmetrica:[],objtoclosur:14,bittest:9,polygen:[4,9],"244m":9,execut:[4,39,9,5,26],addhelp:4,qfsign:9,initprim:16,steinitz:9,ellchangepoint:9,mult_schubert_vari:25,speed:[4,9,20],rese:9,versu:9,t_int:[4,9,39],temporarili:[4,32,9],stai:[4,9,15],hint:4,alternatinggroup:32,trigger:9,z_k_basi:9,except:[17,9,4,32,20,21,12,35],littl:[9,12],normlp:9,wall:4,"444m":9,factorpad:9,versa:12,writebin:4,algpolev:9,sbnf:9,real:[9,16,4,20,39,41,25,46],sizeword:9,hyperellcharpoli:9,hypothesi:9,read:[17,9,16,4,38,1,45,26],pariinst:[4,9],librai:23,mestr:9,thueinit:9,world:[9,5,26],rnfelttrac:9,psw:9,mod:[40,9,4,20,1,35],npartial:32,polcyclo_ev:4,multi_polynomial_sequ:2,is_inequ:12,integ:[],matqr:9,detx:9,norml2:9,mpmath:[],either:[28,9,2,4,10,20,1,12,6,25],bnfunit:9,output:[17,31,1,9,16,41,4,32,12,5,36,23,20,24,10,6,28,29,35,38,15],tower:9,encrypt:9,manag:[],obstruct:9,affine_dimens:12,nfgrunwaldwang:9,polylog:[4,9,46],ascend:9,ellformalw:9,vecrev:9,sym3:[32,1],magma:9,matsuppl:9,polynom:25,nonzero:[41,4,9,20,10],bestapprpad:9,isexact:9,nfeltmul:9,ellformaldifferenti:9,definit:[4,9],iff:9,legal:17,clear_sign:38,primitiveroot:1,nfeltdiveuc:9,adleman:9,gupta_nm:25,bitand:9,classord:25,complic:[32,9],test_explicit_formula:41,refer:[9,25],besselk:9,besselj:9,power:[4,9,25,40],besseln:9,bivari:4,"0x02000082":45,ration:[],setisset:9,homspac:[6,10],is_rai:12,fulli:9,immut:[12,2],qfminim:9,"throw":9,artin:9,comparison:[4,9,12],print_curr:15,central:9,sre:45,set_seed_pari:4,aco:9,meaning:9,greater:[36,9,20,12],compute_rank:41,degre:[40,9,4,45,1,25],stand:[17,9],act:[6,9,1],"2x2":9,algrandom:9,"2x7":10,routin:[],linbox_modn_spars:24,effici:[8,9,12],bareiss:9,quasi:9,permgroup_el:1,invers:[4,9,35],ring_:1,pivot:9,insuffici:[4,9],your:[9,4,32,21,36,23,12],t_elmsym_homsym_symmetrica:25,ecl_opt_sigaltstack_s:26,straightforward:9,gsldoublearrai:7,log:[9,46],area:[32,38],uniformli:9,ideallistarch:9,znf:9,lon:4,stark:9,is_inconsist:12,t_elmsym_schur_symmetrica:25,start:[],low:[36,4,9],lot:[4,9,20],besid:9,strictli:[4,38,9,20,12],gen_auto:9,strict:[25,12],atkin:[6,4,9],polytop:12,verbatim:9,elmsym:25,mantissa:[9,46],libgap_:32,coredisc:9,regard:[36,4],qfisominit:9,oscil:9,satur:[9,20,12],cryptograph:9,ecl_opt_frame_stack_s:26,conclus:20,longer:[4,9],extend:[4,9],fp_lll:5,tripl:[4,45,9,20],mathnfmod:9,ternari:9,possibl:[17,28,9,4,20,38,39,12,45],f_7:9,test_integ:25,bucket:45,valueerror:[14,17,28,9,4,32,10,21,36,23,1,12,41,39,25],laeng:25,galoisinit:[4,9],embed:[9,12],eigenvector:9,connect:9,sage_cmd:12,matsolvemod:9,taylor:9,hellman:9,creat:[17,9,4,32,20,36,1,10,45,46],tornaria:[4,9],certain:[45,9,20,2],strongli:[9,20],littlewood:[],prec_in_dec:4,decreas:[36,45,9,5],file:[],momentarili:21,matkerint:9,proport:9,x123:12,fill:[9,12],incorrect:[4,9],again:[46,9,20,15],idealprincipalunit:9,"0x04000002":45,ecl_opt_bind_stack_s:26,extract:9,bremen:3,prepend:[9,1],unramifi:9,idiom:9,freegroup:32,valid:[36,4,32,9,10],lehmer:9,denom:9,geometr:9,you:[17,31,9,4,32,20,21,36,23,38,1,12,41,25,15],architectur:[4,39],polar:9,genuin:9,isint:1,sequenc:[40,4,9,5,2],symbol:[],pocklington:9,docstr:4,polynomi:[],briefli:9,load_proc:45,nfeltmulmodpr:9,concat:[4,9],reduc:[9,4,32,20,5,45],"_test_pickl":32,idealappr:9,gequalsg:9,bnrisprincip:9,directori:16,rutger:36,descript:[4,9],isfundament:9,fromdigit:9,ellwp:9,goe:39,laplac:9,mysquar:4,potenti:[32,9],put:[36,4,9],dyer:9,alghassef:9,cpu:4,unset:9,pohst:9,compute_homsym_with_alphabet:25,represent:[9,33,36,45,39,12,25,26],all:[17,9,2,4,32,20,36,34,46,25,1,12,41,38,45,29],contfracpnqn:9,consider:9,nfcompositum:9,ali:9,illustr:[9,20],factor_proven:9,forbidden:[14,9],kostka_tafel_symmetrica:25,scalar:9,disc:[20,9,16],deprecationwarn:[4,32,9],abil:9,acosh:9,follow:[28,9,4,32,10,20,36,23,5,39,12,41,45],als:12,mazur:9,weierstrass:[9,20],chain:[4,9],albrecht:[0,15,2,3,18,5,22,45],white:9,intersection_assign:12,articl:9,lllgram:9,program:[29,4,20,23,12,9],unsurpris:9,yamanouchi:36,mapput:9,algsplittingfield:9,introduc:[9,1],ecl_opt_trap_interrupt_sign:26,mpf:46,liter:9,mpc:46,kranztafel_symmetrica:25,egyptian:9,fals:[17,33,28,9,16,2,4,32,12,5,29,20,1,10,6,41,39,45,26],determinist:9,util:[],t_polynom_schubert:25,gapelement_str:[32,1],"36a1":9,worst:9,mpq:9,veri:[9,4,20,5,1,26],ticket:[14,17,9,4,32,20,37,1,43,35,46],faa:9,al2:9,fan:9,al1:9,readstr:4,gammamellininv:9,lisp:[],unpickle_groebnerstrategy0:0,list:[17,46,1,9,16,2,40,4,32,20,36,29,25,24,12,41,39,38,45,26],arithmeticerror:20,stepsiz:41,cosin:9,stderr:12,wagstaff:9,small:[4,28,9,20,26],debug_lib:45,impract:9,s_cont:36,fast_method:34,ppl_:12,dimens:[9,10,32,33,5,12,6,25],primdec__lib:2,polrev:9,globalvariablecontext:21,unconstrain:12,past:17,bell_numb:44,zero:[9,4,32,20,36,23,5,1,12,41,38,45],design:[4,32,9,2],newtonpoli:[4,9],infimum:12,pass:[17,9,4,34,1,41,46],polrel:9,further:[36,4,9],casual:[8,9],whenc:9,bilinear:9,trick:9,what:[17,9,20,41],abc:9,compute_schur_with_alphabet_det:25,sub:[4,9],clock:4,favor:[4,9],sum:[4,44,9,25,12],hyperellpadicfrobeniu:9,set_random_se:5,kostka_tab:25,crush:9,mwrank_mordellweil:20,abbrevi:[9,1],version:[14,17,9,40,4,32,20,22,34,12,41,35,45,36],p150:9,sup:9,is_bool:1,catch_sign:38,polgaloi:9,"public":[32,9],contrast:20,get_precis:[20,16],millisecond:4,hasn:[9,20],full:[9,4,32,33,20,5,39,46],hash:[36,4,1],gruppen:25,gap_command:32,bnr2:9,behaviour:9,modular:[],test_iterable_to_vector:36,change_variable_nam:9,variad:9,ineffici:9,modifi:[4,9,5,12],mult:36,hass:9,nucomp:9,search:[20,8,9,16,41],xreadi:17,divisor:[4,23,9,1,12],popen:17,p1000:9,fp_inv:35,amount:[4,9,20],doctest:[0,9,2,4,32,12,38],perso:5,pick:9,action:9,introductori:4,symmetricfunct:36,e_domain:9,magnitud:9,quotient:[4,9,45],notbucket:45,quaddisc:9,via:[],shorthand:9,primit:[41,9,20],transit:9,readili:9,deprec:[4,32,9],bernfrac:[4,9],pythagorean:9,famili:9,heurist:[9,5],ellheight:9,establish:20,handle_error:35,select:[9,45],deadbag:32,ffnbir:9,permtonum:[4,9],darstellungen:25,proceed:9,index_first_pend:12,distinct:9,selmer:20,regist:9,two:[9,4,20,36,45,12,25],poly_2d:12,check_non_empti:12,codiff:9,cartiesian:12,taken:[9,4,32,45,12,25],minor:[4,9],algsubalg:9,reachabl:4,compute_elmsym_with_alphabet:25,desir:[9,46],henc:[9,26],hundr:9,probabilist:9,function_nam:32,flag:[4,9,20],ellneg:9,number_of_coeff:41,stick:9,particular:[8,9,4,32,5,12,26],known:[],multiset:12,lazard:9,cach:[6,9],lindep:9,none:[14,17,28,9,16,4,5,36,34,29,20,1,25,39,26,45,15],endpoint:9,rouillier:9,part_part_skewschur:25,hour:9,damien:5,skewtableaux:25,newtrans_symmetrica:25,outlin:9,det:[9,24,2],dev:17,histori:[4,9],python_list_smal:9,remain:[4,39,38,9,25],del:32,den:[4,9],nonsingular:[9,20],multiprecis:[9,26],primdecgtz:2,wkss:9,def:[14,17],instantan:9,pr_get_f:9,st_next:36,bogu:4,scan:32,ambient:[9,12],share:[],errnam:9,accept:[9,12],minimum:[9,12],buchquad:9,unreli:9,pr_get_p:9,gapelement_r:1,redtail:45,flint:[],supremum:12,longest:9,uncheck:9,huge:[9,1],cours:[25,4,9,20],awkward:[4,9],divid:[9,4,20,25,6,45],rather:[4,9],anoth:[4,1,9,20,12],isqrt:46,atanh:9,gapelement_funct:[32,1],is_lin:12,divis:[9,45],serrevers:9,poldiscreduc:9,number_:2,strong:9,simpl:[14,17,9,2,4,1],gupta_tafel_symmetrica:25,init_ecl:26,"_test_categori":32,referenc:[32,9],algebra:9,"717m":9,variant:[4,9],partb:25,duplic:9,plane:9,rnfkummer:9,associ:[29,4,11,12,38,9],sigttin:38,bkz:5,bpsw:9,stabil:9,t_homsym_elmsym_symmetrica:25,normalsubgroup:[23,1],get_end:38,confus:[32,9],squfof:9,toggl:9,libsingular:[],caus:[9,20,12],zerodivisionerror:9,spheric:9,matrixspac:39,npar:2,isd:9,egg:20,multivari:[0,9,25,2],bitsiz:[9,5],polyhedron:12,rotat:41,ith:9,qfjacobi:9,soon:9,eroc:2,ntl:[],paper:[9,25],through:[14,9,4,32,36,12,45],schertz:9,the_answ:14,parselect:9,bitor:9,implicitli:[4,9],paramet:[14,9,2,4,20,5,45],style:9,homsym:25,overhead:2,"384m":9,epoch:4,int_strategi:45,labbel:25,harmless:4,wrt:9,pend:9,rapidli:9,getpid:17,bnrdisc:9,famou:9,jacobi:9,cross:9,might:[41,17,9,20,21],nfisid:9,projh:9,idealhnf:9,good:[9,20],"return":[0,2,4,5,6,14,17,9,10,12,35,15,16,20,23,1,25,26,40,31,32,33,34,36,38,39,41,44,45,46],dim:12,t_complex:[9,39],timestamp:31,largest:[9,16],vecj:9,var_nam:2,inria:[28,9],lbasinv:9,matimagecompl:9,bigger:9,strictly_intersect:12,eventu:[4,9],load_lib:45,test_long:27,add_recycled_gener:12,infer:9,easili:[32,9,1],achiev:[36,9,20],grhbnf:9,previous_trace_func:15,compris:9,idealchines:9,found:[20,41,28,9,5],compute_deriv:4,truncat:[40,9,20],valuat:9,harm:[4,9],interleav:38,subextens:9,weight:[9,10,36,45,6,25,29],"short":[],algbasistoalg:9,hard:9,idea:9,procedur:[9,45],realli:[9,12],ring_finite_field:1,rnfisfre:9,expect:[8,28,9,4,32,1],stabl:[4,9],gequal0:9,longjmp:9,beyond:4,event:15,has_equ:12,libgap_ent:[32,23],znlog:9,meijer:9,admiss:9,algrelmult:9,ellheightmatrix:9,robert:[4,32,28,9,40],cubic:9,qfbnupow:9,idealfrobeniu:9,ecl_opt_heap_s:26,init_prim:4,is_field:34,debuglevel:9,sparingli:9,drop_some_non_integer_point:12,occurr:9,idealmin:9,difficulti:9,ring_refcount_dict:15,fiber:9,inert:9,singularfunct:2,advanc:9,bnrinit:9,guess:9,pub:9,a_invari:9,unsatlist:20,base:[0,24,2,4,5,6,7,17,9,11,12,35,15,20,22,23,1,25,26,40,32,33,34,41,45],gconj:9,lcalc:[],seriesprecis:[4,9],ask:[4,28,9,20,46],approach:[9,45,2],dreyer:2,basi:[0,9,20,5,12,25,45],thrown:12,pernet:9,"_mw":16,eta1:[4,9],eta2:9,omit:[4,23,9,20],perhap:9,neccesarili:12,lrskew:36,bnfinit:9,gtzmod:2,qfnorm:9,test_ecl_opt:26,assign:[4,45,1,12],integrand:9,cadr:26,obviou:[32,9,12],perturb:9,mccurlei:9,"5077a1":9,schubert:[36,25],mersenn:28,misc:[4,34],number:[2,4,5,6,9,10,12,35,16,20,1,25,28,29,32,33,36,39,41,44,45,46],"3776l":1,vetor:1,done:[4,9,20,10],least:[4,32,12,9,10],balanc:9,"65a1":9,miss:[],gpl:8,is_bound:12,differ:[9,2,4,21,25,1,12,45],vecmin:9,setunion:9,jet:2,exponenti:9,tate:[9,20],interact:[4,9,10],unrestrict:[4,9],reentrant:4,checkpoint:[4,9],transcendent:[4,9],statement:[36,4,9,1,17],cfg:4,illeg:[9,15],qfbnucomp:9,scheme:9,cancelunit:45,stirl:4,option:[],bigomega:9,groebner:[],generator_system_iter:12,johndo:9,pari:[],part:[8,9,4,36,39,12,41,25],pars:[4,8,2],dirichletgroup:41,"396b2":9,cosh:9,loadproc:45,std:[0,12,45,2],albeit:9,kind:[14,4,9,12],freekb:32,contrari:9,doubli:26,cyclic:[9,45,2],cb_pari_err_handl:35,remov:[9,4,32,25,12,38],horizont:9,verb:16,reus:4,berlekamp:9,store:[9,4,20,23,1,26,15],str:[40,9,16,4,33,1,6,26],consumpt:32,toward:9,intfuncinit:9,zerodivisor:9,randomli:9,cleaner:4,stehl:5,comput:[8,0,9,16,4,32,12,25,5,21,36,20,10,6,41,45],t_schur_monomial_symmetrica:25,pol:[4,9],pselect:[],packag:[4,9,2],dedekind_sum:44,rg_to_fp:9,brickenstein:[0,2],"null":[36,4,9,25,17],lie:9,gen_si:12,built:[4,15,9,5,2],lib:[],randint:44,trip:9,lim:9,self:[40,9,4,33,1,12,26],violat:12,x_i:25,also:[],useless:[9,45],jacobian:9,analogu:9,brace:[4,9],selmer_rank:20,distribut:[9,34],pujol:5,sumpo:4,reach:12,def_r:45,polcompositum:9,most:[14,17,31,28,9,16,2,4,32,10,20,21,36,23,25,1,12,41,39,45,26],plai:[23,9],walker:[4,9],rho:9,alpha:[9,5],qfbred:9,not_warn_sb:45,dai:32,rnfbasi:9,clear:[4,9,38,12],cover:4,setsearch:9,destruct:26,roughli:[9,20],ext:17,sizebyt:9,poly_1d:12,exp:[4,46,9,39,40],gapelement_recorditer:1,uniquerepresent:34,usual:[9,2,4,32,36,1,12,45],set_point:38,ncusp:10,chebyshev:4,algord:9,hyper:46,ffelt:9,parisizemax:9,consult:[4,12],nfelttrac:9,python:[],albrect:9,heegner:9,algtableinit:9,cdr:26,hermite_form:5,unsort:9,"_sage_":5,zncoppersmith:9,penalti:4,parierror:[14,4,9,35],galoissubgroup:9,coerc:[4,20,46],indexerror:[4,1],staircas:45,"0000000004c5efc8":9,mpmath_to_sag:46,matmuldiagon:9,linbox_integer_dens:24,cursor:38,gen_ajtai:5,oleksandr:2,multbound:45,test_skewtab_to_skewtableau:36,resp:[4,9],abelian:[4,9],hit:38,unus:[4,9],king:[34,45,2],contfrac:9,groebner_basi:45,express:[4,26,9,1,12],jeroen:[14,17,28,9,4,43,35],interprocess:[8,2],thereof:9,maxnumrel:10,codeword:4,bnrisconductor:9,sumform:9,rnfeltreltoab:9,sill:9,quadhilbert:9,bnfcompress:9,malb:3,ordering_str:2,rl_catch_sign:38,matrixqz:9,redsb:45,bordeaux1:9,dilog:9,ellord:9,common:[],kill:[4,39,17],isogeni:[9,20],ellgroup:9,readvec:4,certif:9,ecl_opt_set_gmp_memory_funct:26,ser:9,dump:[0,12,34,2],odg_symmetrica:25,startup:[4,23,9],fflog:9,subsum:12,matid:[14,4,9],emac:4,wrap_r:15,sea:9,arg:[17,9,4,32,12,46,15],transpar:9,close:[17,9,12],riski:26,random_partition_symmetrica:25,whatsoev:9,analog:[4,9,12],gcdext:9,strchr:9,nfsubfield:9,wow:4,compute_schur_with_alphabet_det_symmetrica:25,mckai:9,engel:9,smallest:[9,1,12],listsort:9,subdir:9,vecsearch:9,experi:4,dein:9,poly_con_rel:12,altern:[4,9,17],signatur:9,sugar_crit:45,appreci:9,leadcoef:2,numer:[4,29,26,9,12],notsugar:45,induc:9,isom:9,isol:9,sumdivk:9,succeed:9,m_i:9,red_tail:45,arrang:9,kostka_tafel:25,getheap:4,compute_monomial_with_alphabet_symmetrica:25,minut:9,"568m":9,xlab:9,informatik:3,last:[14,17,28,9,16,2,4,32,10,20,21,36,23,1,12,41,39,25,26],nfeltpow:9,set_verbos:20,lambertw:9,initzeta:9,context:[],pdf:9,contfracinit:9,whole:[4,9,25],lfunction_from_elliptic_curv:41,load:[4,0,34,45,2],notregular:45,simpli:[4,32,9,17],point:[],instanti:[41,32,26,12],matfrobeniu:9,mwrank_initprim:16,"0x00000002":45,provok:4,suppli:[4,9],mstd:45,poltchebi:4,zeta:[41,9,34],throughout:9,along:9,simpler:9,backend:12,intnumgaussinit:4,matsiz:9,gequal:9,polresult:[4,9],libsingularoptions_abstract:45,stamp:31,help:[4,32,9],futur:[9,20],get_owned_object:23,due:9,calculu:9,pari_polynomi:9,is_cuspid:6,prec_in_bit:4,xab:9,double_to_gen:4,diophantin:5,strategi:[],addison:25,asinh:9,qfbhclassno:9,cantor:9,hurwitz:9,imag:[41,9,39,46],qfsolv:9,remark:9,f_p:9,gap:[],coordin:[29,9,20,12],gal:9,understand:[9,46],allombert:9,func:[46,12],tangenti:9,ellminimalmodel:9,rai:[9,12],msinit:9,imap:45,opt_verb:45,polynomialsequence_gener:2,msqexpans:9,look:[32,9,20],invit:9,rel_i:12,parent_bas:4,rel_j:12,ramif:9,"while":[9,4,32,10,38,1,12,39,45,29],unifi:8,t_schur_powsym_symmetrica:25,behavior:[4,9,45,21],bnrgaloismatrix:9,fun:4,anonym:9,nth_prime:4,rnfeltdown:9,loop:[4,32,9,5],bezout:9,subsect:9,earli:5,genu:[4,9],quadrai:9,"116a1":9,readi:[17,32],von:[9,25],c_polyhedron:12,check_not_empti:12,itself:[4,26,9,15,12],costli:9,identifi:[4,9,12],quadrat:[41,9,20],vanish:[41,9],minr:45,around:[41,26,9,2],add_scalar:33,irrelev:9,grant:9,modrevers:9,maxprim:4,belong:9,shorten:9,makeshift:9,shorter:45,libc:4,lengthi:9,decod:9,eclobject:26,higher:[9,2,4,20,12,45],maxord:9,maneuv:9,optim:[28,9,12],sym:[4,32],mseisenstein:9,temporari:[9,46],user:[14,8,9,2,4,45],coercion:4,birch:9,polcyclofactor:9,robust:[4,9,8],provabl:[20,9,5],stack:[4,32,9,45],recent:[14,17,31,28,9,16,2,4,32,10,20,21,36,23,1,12,41,39,25,26],lower:[9,4,32,20,34,5,41,45],serlaplac:9,equival:[32,39,9,1,12],older:[9,1],set_objective_funct:12,entri:[9,4,32,33,20,36,5,10,25],noncommut:2,brauer:9,set_real_precis:[4,9,39],expens:9,unconditionn:9,sumalt:4,compute_elmsym_with_alphabet_symmetrica:25,kranztafel:25,gsl:[],propos:9,hecke_matrix:[6,33],bitcount:46,construct:[40,9,2,4,32,10,21,36,1,12,41,39,26,15],t_qfi:9,a_0:29,pseudo_div_rem:40,prompt:[4,9,38],reduct:[20,4,45,9,5],ecl_opt_c_stack_s:26,set_immut:12,test_execut:12,shape:[36,9,25],objective_funct:12,behind:38,groebner_strategi:0,record_name_to_index:1,t_qfr:9,debuglib:45,gtm:9,cut:9,vector_to_list:36,complexnumb:[39,46],liu:9,demonst:9,"_mutable_or_immut":12,shortcut:[4,9],dixon:9,theorem:9,pollead:9,input:[2,4,5,6,17,9,10,12,15,16,20,21,1,25,28,29,32,33,34,36,45,39,41,38,46],unlik:[4,9],subsequ:9,t_elmsym_powsym_symmetrica:25,euler:[4,9],build:[9,12],bin:17,obsolet:[4,9],stein:[4,32,9,34,40],format:[40,9,26],big:[4,9],subfield:[9,1],ecllistiter:26,alias:4,primelimit:9,bitxor:9,ellglobalr:9,a_n:29,bit:[9,4,20,5,39,12],characterist:[34,33,9,45,2],formal:[9,12],division_polynomi:29,"0000000004c5efb0":9,residu:[41,9],divdiff_schubert_symmetrica:25,semi:9,space_dim:12,command_str:23,signal:[17,28,38],gap_root:23,resolv:[9,20],elaps:4,ringa:1,collect:[27,32,9,26],princip:9,isprimepow:9,valenc:9,ivan:32,uwaterloo:41,bruin:[4,9,35],souvigni:9,encount:[9,1],setrand:[4,9],nffactorback:9,often:9,creation:[4,41,40],some:[8,28,9,2,4,32,5,36,20,39,12,41,43],addprim:9,bach:9,generator_system:12,trait_nam:[22,32,1],gourdon:9,sampl:9,"0x5875c38":4,factornf:9,surpris:[4,9],brent:9,diff:9,scale:4,min_x_denom:29,stabler:9,mult_bound:45,prot:45,per:[4,32,9],prop:9,substitut:9,mathemat:9,larg:[4,28,9,1,41],proj:9,singularfunctionfactori:22,prod:[9,20],frobeniu:9,machin:[4,9,20],previou:[9,4,20,21,23,45,26],run:[8,9,4,32,10,5,20,12,26,15],zzz:9,realprecis:[4,9],step:[4,28,9,5,41],weil:[9,20],prerequisit:9,cyclotomicfield:[9,1],automorph:9,major:4,idealpow:9,hulpk:9,ncol:[33,9],gp2c:4,pos_end:38,idx:9,constraint:[36,9,12],transpos:[6,9],proce:9,prove:[20,9,5],selmer_onli:20,rnfeltnorm:9,"27a3":9,microsecond:12,inhomogen:[45,12],cecm:9,useag:23,gamma:[41,9,46],idealdiv:9,no_such_el:1,bailli:9,emphasi:9,within:[4,15,45,26],suppl:9,scalarproduct_schur_symmetrica:25,ecmodularsymbol:11,bck:45,ensur:[26,9,15],factor:[],python_int:9,coppersmith:9,t_schur_homsym_symmetrica:25,occupi:[4,9],inclus:[9,34],span:9,xpm:9,eleven:9,element_class:34,bodi:32,fibo:26,ecl_opt_trap_sigpip:26,custom:4,polisirreduc:9,subst:[4,9],chartafel_symmetrica:25,arithmet:[],includ:[8,28,9,2,4,20,36,12,13,26],suit:9,highli:[28,9],polmod:9,tradit:9,myfunc:9,properli:4,repeatedli:9,cooeffici:12,ecl_opt_incremental_gc:26,interleaved_output:38,gauss:[4,9],decomposit:[9,25],butler:9,state:[4,45,38,9,5],link:[4,26,9,8],early_r:5,newer:20,atom:26,line:[],subgp:9,neron:9,rnfgaloisconj:9,"24a1":9,concaten:[9,12],"24a2":9,"24a5":9,"24a4":9,consist:[9,2,4,36,31,25],fast_early_r:5,explos:9,sumdiv:9,satisfactori:9,bernreal:[4,9],prec_words_to_bit:4,sumdedekind:9,"export":9,readlin:[],similar:[4,32,9,45],add_gener:12,primdec:2,curv:[],enlarg:[4,9],constant:[40,4,9,45,12],error_exit_libgap_block_without_ent:23,retriev:[4,9],parser:4,doesn:[17,9,31],repres:[17,9,4,20,36,1,12,41],"char":[4,9],incomplet:9,clever:4,"264m":4,home:[23,9],serprec:9,idealintersect:9,ecl_opt_trap_sigfp:26,idempot:9,upper_bound_assign:12,not_necessarily_clos:12,conductor:[9,20],tufu:9,lehner:[6,4,9],titl:[],modules_build:4,nan:46,objwrapp:23,invalid:[4,31,9,17],qfperfect:9,priori:9,unexpectedli:9,nfisisom:9,dirmul:9,grh:9,catch_sigwinch:38,draw:9,clean:[9,2],elementv:9,msfromel:9,fast_hc:45,polynomialr:[42,0,9,45,2],william:[4,32,9,34,40],ellfromj:9,cotan:9,eval:[32,9,1,26],vigil:32,algpow:9,deserv:9,svn:4,agm:9,rnfpolredbest:9,dvi:4,"389a1":9,algorithm:[0,9,4,33,20,36,5,25,45],vice:12,divdiff_schubert:25,weightm:45,orbit:9,notion:9,discrimin:9,depth:9,came:4,ring_wrapper_pi:15,far:[4,32,20],t_monomial_elmsym_symmetrica:25,i_2:9,hello:[26,9,2],breakloop:9,prototyp:4,cdd:12,katz:9,code:[15,2,4,32,5,21,36,23,20,12,41,9],t_homsym_schur_symmetrica:25,"11b":9,leak:9,scratch:9,recomput:[4,9],nnc_polyhedron:12,ellipt:[],singularlibraryfunct:2,cmpf:9,edu:[36,9],idealfactorback:9,compact:[4,33,9,29],cython:[],privat:9,simon:[34,45,2],ringwrap:2,sensit:9,polyhedr:12,elsewher:9,nfeltdiv:9,young:[36,32],notwarnsb:45,bnfisprincip:9,st_new:36,adjoin:9,optimizing_point:12,opposit:9,exit:[4,9,20,17],new_with_bits_prec:4,factorint:9,sent:9,polredab:9,nfinit:[4,9],whichev:4,sdg_symmetrica:25,intstrategi:45,ecl_opt_signal_handling_thread:26,speedup:9,prime_list:4,rnfidealhnf:9,nextprim:9,nf_subst:9,padicdisc:9,polsubcyclo:[4,9],relev:[4,45,9,20],conjug:9,tri:[28,9,20,12,45,26],nfeltadd:9,divdiff_perm_schubert_symmetrica:25,polyhedra:[],scalarproduct_schubert_symmetrica:25,ajtai:5,bessel:9,michael:[41,0,20,2],fewer:9,newform:[],pullback:9,session:4,sumdigit:9,vertic:[9,12],mpz_t:5,particularli:9,nfbasis_d:9,freed:[4,25],loadlib:45,pleas:[4,32,9],regain:4,impli:[4,9,12],smaller:[20,4,28,9,5],natur:[9,45],"0x0":15,faddeev:9,sizedigit:9,nnc_poli:12,radic:9,mre:[45,2],ellnonsingularmultipl:9,pseudoprim:9,cft:9,odd:[25,4,9,20,29],rnfpseudobasi:9,victor:[],compat:[4,9,12],index:[8,9,4,32,20,36,1,12,25],charvalue_symmetrica:25,znstar:9,compar:[4,32,9],fine:[9,12],wavelettransform:7,han:[0,9],feedback:9,both:[9,2,4,34,36,12,25],find:[],access:[8,9,4,32,20,23,5,12,29],experiment:9,returnsb:45,juggl:4,relation_with:12,garbag:[27,32,9,26],deduc:9,hkz:5,centerlift:9,unmask:4,nffactormod:9,vecstirl:4,old_prec:4,tschirnhausen:9,len:[17,9,2,4,32,1],closur:[],"n\u00e9ron":9,"_pari_bid_":9,let:[4,9,21],sinh:9,not_regular:45,lex:[4,9,2],ioerror:[17,16],safer:[36,9],becom:[9,25,12],implicit:9,divrem:[4,9],convert:[],dmitrii:32,convers:[],libgap_mark_stack_bottom:32,larger:[4,1,9,20],f_25:9,converg:[4,9],cert:9,rdf:[9,46],cerr:12,meaningfulli:9,schur_schur_plet_symmetrica:25,gettim:4,chang:[9,4,32,12,20,36,39,31,41,45],coercibl:9,chanc:28,add_constraint:12,mspathlog:9,hardi:[41,9],see:[37,28,9,4,32,10,20,36,23,5,12,41,43],nearest:[4,9],appli:[14,9,4,32,36,25,26],approxim:[20,9,5],inequ:12,pxi:43,api:12,zkmodul:9,rnfhnfbasi:9,prec_bits_to_dec:4,fed:[4,26],from:[],commun:[4,9,2],chi:[41,9],doubl:[41,4,9,5,26],upgrad:[4,9],zpfm:9,few:[4,9,12],val_gvar:32,doubt:[41,12],usr:9,"_curvedata":16,debugstack:4,imprecis:9,ineq:12,libpari:4,commut:[9,2],remaind:9,sort:[36,4,9,12],pencil:9,livebag:32,msatkinlehn:9,babi:9,forced_update_displai:38,about:[17,28,9,2,4,32,10,20,23,1,12,45,29],qflllgram:9,fglm:45,trail:[32,9],contfracev:9,tamagawa:9,rare:9,iii:9,nfdisc:9,had:9,is_c_int:1,account:9,debugmem:9,alia:[4,32,9,34],libsingular_verbos:45,"0x6000082":45,cumbersom:4,annoi:4,primdecsi:2,obvious:[4,9],mwrank_get_precis:20,quadgen:9,squarefre:[4,9],fmpz_poli:[],fetch:45,aliv:32,proof:[9,34],control:[4,9,20,21],empti:[17,9,4,36,12,25],weaker:9,nfgener:9,gpfile:4,ellpadicl:9,conjvec:9,process:[8,17,9,20,12],high:[9,20],subquadrat:9,tab:9,rnfisabelian:9,onlin:4,tan:9,kwankyu:15,max_prim:20,bacher:9,everywher:9,chop:9,gcd:[4,9],is_str:1,prevent:[4,9,20],tableau:36,cardin:[32,9],rreadi:17,need:[17,9,2,4,32,20,36,1,12,41,39,45,26],hoeij:9,laurentseriesr:9,instead:[17,9,2,4,32,20,26,45,15],ffinit:9,sin:[4,9],nfhilbert:9,delai:12,next_prim:9,nfbasistoalg:9,frac:9,duco:9,watch:[9,12],precalcul:25,gasman:32,differenti:9,codiffer:9,semisimpl:9,cylindrif:12,subgrouplist:9,inner2:36,mscuspid:9,philosophi:[8,9],elldata:9,physic:9,fplll:[],cokernel:9,alloc:[4,32,9],essenti:[4,9],nativ:46,counter:9,idealnorm:9,correspond:[9,2,4,32,33,36,1,12,35,25,46],element:[],issu:9,skewtab:36,allow:[17,9,2,4,10,20,38,12,45],normal_form:0,fallback:39,bnfsunit:9,factorback:[4,9],fastest:[9,5],paramt:25,bnrl1:9,adjust:[4,12],cyclotomic_polynomi:4,ouput:12,mute:9,solv:[4,9,12],move:[8,43,9],algissimpl:9,kbd:[4,9],"17a1":9,symbolp:26,algisramifi:9,liabl:[4,9],height_limit:20,avaibl:4,cohomolog:36,perfect:9,syz:[45,2],cremonamodularsymbol:[6,10,33],outer:[36,25],chosen:[36,1,9,5],algaut:9,alarminterrupt:[17,28],"2e5":28,elementari:[9,25],max_x_denom:29,restart:4,primal:9,sig:17,therefor:[14,4,9],weber:9,cusp:[6,10,9],crash:4,fourth:17,cosmet:9,nonneg:9,handl:[],bernoulli:[4,9,44],overal:[12,2],factorcantor:9,smallsol:9,matconcat:9,subresult:9,compositum:9,shiftmul:9,par_nam:2,polrootspad:9,p19:9,alginv:9,issquarefre:9,copy_text:38,strive:9,ecuy:9,lfunction_c:41,multiprocess:17,somewher:9,trac:[14,17,9,4,32,20,37,1,42,43,35,46],strictly_contain:12,edit:9,matrixof:4,lfunction_i:41,ecl_opt_bind_stack_safety_area:26,nameerror:[39,2],nfisincl:9,mode:[4,17,9,12],truth:9,batch:9,disregard:9,bnf_get_gen:9,nfz:9,subset:[4,17,9,12],expans:[36,4,32,9,25],arxiv:41,themselv:[4,26,9,12],intellig:[41,9],surviv:32,meta:4,"static":[4,12],eisenstein:9,t_mat:[9,39],our:[4,9,21],prec:[4,39,46],sigalrm:[17,38],bounds_from_abov:12,out:[17,9,4,20,1,12],variabl:[9,2,4,32,21,25,12,45],compute_powsym_with_alphabet_symmetrica:25,ratpoint:[],giant:9,atan:[4,9],reload:4,some_str:9,pr2:9,rep:9,singular:[],bad:9,algmul:9,categori:9,z_k:9,posteriori:9,s_b:25,suitabl:[1,9,4,39,12,45],rel:[9,12],max:[29,2,20,12,25,9],hardwar:12,test_loop_2:27,test_loop_1:27,plural:2,reg:9,matric:[],statist:[32,9],random_el:34,gonzalo:[4,9],getstack:4,volker:[32,12],insid:[4,27,5,17],quadregula:9,ecm:[],ecl:[],primes_abov:9,undo:38,dictionari:[32,23,9,39,12],latest:23,releas:[4,9,5],legendr:[4,9],queri:[4,9],prime_rang:[20,16],afterward:[9,21],shortest:5,richardson:[],algdecomposit:9,dirichlet:[41,9],finck:9,transposit:9,cremona:[],could:[25,4,9,20],divdiff_perm_schubert:25,gapelement_finitefield:1,nfsnf:9,keep:[4,32,9,45],counterpart:[4,9],length:[9,4,20,45,12,25],ellpointtoz:9,matintersect:9,intmod:9,ringlist:2,algsplittingdata:9,no_such_nam:1,softwar:5,t_polynom_schur_symmetrica:25,rishikesh:41,ellrootno:9,hex:45,qualiti:9,echo:9,sage_to_mpmath:46,mai:[28,9,4,20,36,31,45,39,12,25,46],linbox:[],"1e2":28,is_zero:12,syzygi:45,"1e7":28,f_11:9,is_line_or_rai:12,toi:9,redund:[36,12],utc:4,prioriti:[4,9],"long":[],bracket:45,gtopoli:[4,9],unknown:[9,12],adjoint:9,algtensor:9,system:[],messag:[9,4,32,12,35,45],attach:[4,9,11],attack:9,teichmul:9,sadli:4,zero_el:32,minimized_constraint:12,termin:[4,9],free_flint_stack:42,"final":[36,38,9,20,12],inner:[36,25],shell:[4,9],cddlib:12,zetakinit:9,is_univers:12,ffgen:9,set_sign:38,algdegre:9,cyc:9,pow_sym:25,constraint_system:12,shall:9,vbraun:23,exactli:[14,4,32,9],herself:9,shut:26,mechan:9,thetanullk:9,compute_monomial_with_alphabet:25,bid:9,idealtyp:9,ndigit:1,test_loop_3:27,idealprimedec:9,villega:9,galoispermtopol:9,nonconst:9,structur:[40,0,9,2,4,32,20,34,1,26],charact:[9,4,45,41,25,26],serconvol:9,sens:[9,34],poly_difference_assign:12,histor:9,dubiou:9,ellsigma:9,return_sb:45,t_rfrac:9,bernvec:[4,9],ellanalyticrank:9,bnrconductorofchar:9,memoryerror:4,eqn:4,mpir:43,have:[17,28,9,2,4,32,20,31,1,12,41,39,46,45,26],ringel:[34,9,1],disjoint:[9,12],"_mpmath_":46,turn:[9,20],ellpadics2:9,ecl_opt_signal_queue_s:26,taniyama:9,sel:17,idealadd:9,unexpect:9,idealtwoelt:9,schurfunct:25,rnfisnorminit:9,zeta_get_n0:9,lll_def_delta:5,accuraci:[4,9],tighten:12,mix:[4,26,9,12],especi:[4,9],discret:[9,12],right_shift:40,which:[2,4,5,14,8,9,12,15,17,20,21,23,1,25,26,28,32,33,36,39,41,45,46],tupl:[17,9,32,20,12,46,26],"440mb":9,mip:12,cofactor:9,ellpadicfrobeniu:9,bundl:9,singl:[8,9,4,36,31,1,12,26],montgomeri:9,pyx:[],do_neg:41,unless:[4,9,41],rnfnormgroup:9,mult_schur_schur_symmetrica:25,sfu:9,add_space_dimensions_and_emb:12,callabl:14,eight:9,new_galois_format:9,realnumb:46,topological_closure_assign:12,"26b1":9,"try":[17,28,9,2,4,20,35],segment:[4,20],"class":[],randstat:4,homogen:[25,29,9,45,12],lee:15,"11a3":9,laurent:9,slightli:[4,9],dens:[33,9,39,12],r_1:9,difference_assign:12,request:[4,9],dimension_schur_symmetrica:25,t_polynom_monomial_symmetrica:25,"32m":9,pipe:17,univari:9,determin:[9,2,4,20,12,45],ooba:38,xavier:5,bordeaux:9,someth:12,fact:[4,9,20],gain:20,mathess:9,x_0:9,precprim:9,text:[4,9,38],verbos:[28,29,16,10,20,5,6,45],affin:[9,12],is_point:12,suffer:9,print_object:26,trivial:[4,9,20,12],anywai:9,"11a1":9,sh1:36,sh2:36,"11a2":9,locat:[31,23],fasthc:45,contentsb:45,tpu:9,print:[4,6,14,17,9,10,35,15,16,12,20,21,25,26,40,28,29,32,33,45,38,46],greedi:9,qfbredsl2:9,genus2reduct:9,jan:9,lemma:20,won:4,suppos:[41,21],ispow:9,t_polmod:9,local:[9,2,4,32,23,39,45],bnfissunit:9,meant:[4,9,12],cube:[14,9],defaultprecis:9,contribut:[4,9,20],outerproduct_schur:25,notat:[4,9,2],nontrivi:20,qfauto:9,padicprec:9,chartafel:25,bnrconductor:9,t_list:9,increas:[4,45,9,20,12],cade:5,matindexrank:9,lucki:9,dimension_symmetrization_symmetrica:25,dirti:9,triangl:4,enabl:[9,12],organ:9,twice:[32,23,9,20],ellformalpoint:9,bitneg:9,rnfalgtobasi:9,maxrow:36,sha:[9,20],dpe:5,print_statu:38,integr:[4,29,9,25,12],partit:[9,4,32,36,44,25],contain:[9,4,32,36,12,15],opt_ctx:45,idgroup:9,intmat:2,view:[33,9,12],moduli:9,modulo:[4,45,1,9,20],charpoli:[6,33,9,24],ellsub:9,smooth:[4,9],frame:[17,15],knowledg:9,redisplai:38,fomula:41,endomorph:9,"2i_0":9,dedekind:[4,9,44],gen_ntrulik:5,lgefint:9,aprcl:9,libecm:28,modulu:9,danger:9,lyon:5,ppl_linear_express:12,twosid:0,bnrclassno:9,correctli:[9,4,20,36,42,26],sage_loc:[17,9],algalgtobasi:9,pattern:32,hessenberg:9,ecl_opt_boot:26,"0x00002851":45,tpuexpo:9,"1812l":1,list_str:9,t_intmod:[9,39],bruno:9,"00007fae8a2eb840":9,crude:9,gapelement_record:1,neither:[9,12],rigor:[41,9],complement:9,tent:9,algdivl:9,zassenhau:9,kei:[4,32,9,1],"960d1":20,lfunction_d:41,sigwinch:38,e15:9,tempfil:4,moebiu:9,entir:[9,12],nfmodprinit:9,mod4:9,algdivr:9,ker:[9,20],addit:[36,41,9,45,12],perm_gp:1,logfil:4,anyth:[32,21,12],algcentralproj:9,ellztopoint:9,etc:[4,10,9,2],eta:[4,9,5],equat:[29,4,20,12,41,9],odd_to_strict_part_symmetrica:25,sigterm:38,coefficientwis:9,byt:9,qfb:9,comment:29,modlo:9,sat_g:12,sat_c:12,realfield:[4,9,46],complementari:9,ellsearch:9,arriv:26,sylvest:9,is_prim:28,distinguish:9,ismatrix:1,t_vecsmal:[4,9,39],shimura:9,respect:[4,0,9,20,12],lllgramint:9,cxl:9,append:[9,12],torsion:[20,9,16],rnfidealup:9,quit:[4,9,20],basistoalg:9,slowli:9,evalu:[9,4,32,15,1,12,41,26],nfcertifi:9,addition:36,gfloor:9,quotat:26,rume:9,inertia:9,compon:[9,16,4,39,46,35,29],bdg_symmetrica:25,eint1:9,treat:9,modif:9,weight_m:45,t_monomial_homsym_symmetrica:25,immedi:[17,9,4,1,45,26],date:[31,12],partial:[32,9],field:[0,9,2,4,33,1,11,6,39,46],mike:36,kostka_tab_symmetrica:25,ecart:45,oto:41,unsaf:9,coincid:[41,9],lgd:4,deliber:20,psi:9,togeth:[8,9,12],t_ser:9,x_1:9,skew:[36,25],present:[4,9],ecl_ev:26,bnfcertifi:9,is_princip:9,matdet:9,align:9,harder:9,metacommand:9,set_series_precis:4,defin:[14,17,0,9,2,11,32,12,20,21,39,4],sqrtint:9,snbf:9,wilf:25,polmodular:4,ill:9,rnfeltup:9,gapelement_cyclotom:1,bnfnarrow:9,helper:[23,1,12],t_1009:9,almost:[32,9],bid_get_gen:9,"5th":4,charvalu:25,irreduz:25,rnfidealmul:9,ueno:9,thue:9,idealmul:9,complexfield:[9,39,46],ecmfactor:28,parta:25,uniti:9,second_limit:20,not_sort:12,lfunction_from_charact:41,t_schur_elmsym_symmetrica:25,defun:26,sqrt:[4,9],member:[9,12],is_record:1,whenev:[36,9],fixnum:26,auto:[4,9,5],factormod:9,failur:[9,25],poison_curr:15,schill:36,difficult:[9,26],innermost:4,phi:9,inhomogeneous_term:12,http:[28,9,4,32,5,36,41],sopt:45,denot:[4,9,12],strexpand:9,upon:[9,26],effect:[9,4,32,20,36,45],matrix_integer_spars:33,block_siz:5,bernpol:4,exot:39,is_strict_inequ:12,generatorsofgroup:[32,1],matalgtobasi:9,algadd:9,ecl_opt_c_stack_safety_area:26,expand:[4,9],test_sigint_before_ecl_sig_on:26,setf:26,off:[4,9,20,15],center:[41,9],nevertheless:[9,20],keyboardinterrupt:26,nonetheless:12,well:[4,26,9,12],morri:25,krasner:9,part1:36,part2:36,exampl:[0,2,4,5,6,7,8,9,10,11,12,35,14,15,16,17,20,21,22,23,1,25,26,27,28,29,31,32,33,34,36,37,38,39,40,41,44,45,46],command:[17,9,4,32,20,23,38,39,10,6,45,15],choos:[4,9],undefin:[4,9,46],conquer:[4,9],znorder:9,leverri:9,revis:4,subgroup:[9,20],next:[9,4,20,36,1,12,39,26],distanc:9,clear_undo:38,less:[4,9,20,12],"boolean":[17,9,31,32,1,12,26],gaussian:9,rnfpolr:9,obtain:[4,33,9,20,12],mult_schubert_variable_symmetrica:25,should:[17,9,8,4,32,20,23,1,31,41,46,45,26],virtual:9,caveat:9,schubertpolynomi:25,rest:[36,9],simultan:[9,5],pari_prim:9,librarycallhandl:2,outerproduct_schur_symmetrica:25,web:36,quadpoli:9,find_zero:41,idealaddtoon:9,mssplit:9,rnfpolredab:9,tight:20,t_error:[9,35],bell:[9,44],smith:9,binomi:[4,9],bestappr:9,script:[4,23,9],add:[40,9,4,20,36,1,12,25],other:[8,0,9,40,4,32,20,36,12,45],is_al:17,densiti:10,reason:[4,32,9,5,12],rnfeltabstorel:9,gmp:[43,28,9,1],t_monomial_schur_symmetrica:25,match:9,twostd:2,candid:9,delta_:25,branch:[4,9],drawn:9,prec_words_to_dec:4,immens:9,piec:[32,9],graeff:9,nf_get_pol:9,assert:[9,1,12],poly_from_constraint:12,realiz:9,five:[32,9],know:[41,9,12],cm_minpoli:9,"2nd":9,recurs:[4,32,9,46],qfbclassno:9,desc:[4,9],insert:[9,5,12],tail:45,like:[9,4,32,20,5,1,12],success:[4,9,20],incred:13,daubechi:7,nfeltdivmodpr:9,function_factori:[22,32,45,2],varhigh:[4,9],gen_simdioph:5,qfrep:9,red_through:45,nfdiv:9,primepi:9,necessari:[8,9,4,20,12,38,46],nfkermodpr:9,martin:[0,15,2,3,18,5,22,45,9],gm2:9,hardy_z_funct:41,page:[36,4,9,8],batteri:9,"141592653589793j":46,exceed:5,drop:12,intersect:[9,45,12],"lov\u00e1sz":9,nfk:9,seadata:[4,9],is_permut:1,pariti:9,lcalc_lfunct:41,idealv:9,convex:12,proper:[4,9,34,26],guarante:[9,5],peter:[4,9,35],nf_get_sign:9,mainli:4,tmp:4,hypothes:9,tautolog:12,summat:9,lead:[9,45,2],esp:9,addii:4,galoisfixedfield:9,avoid:[4,9,45],"__getattr__":1,"729m":9,mzv:9,estim:9,leav:[4,9],iso:9,"505ab9b":4,kernelcallhandl:2,errtext:35,algbasi:9,t_polynom_elmsym_symmetrica:25,polredbest:9,weslei:25,"11a":[11,9],polchebyshev:4,slight:32,imaginari:[41,9],usag:[32,9,45],faithfulli:12,noisi:41,p38:4,replace_lin:38,mellin:9,although:[4,9],p18:9,number_foobar:2,p100:9,diagonal_matrix:9,wlist:17,stage:[9,20],continu:[4,9],unset_glob:32,redraw:38,actual:[4,17,9,20,12],justin:[4,9],testsuit:32,column:[33,9,5],matsolv:9,count_gap_object:32,facstd:45,gen_pi:39,ander:[],constructor:[10,12],discard:[9,12],certainti:20,disabl:[9,45],qfbsolv:9,own:[9,4,32,23,39,12],polcoeff:9,compute_powsym_with_alphabet:25,besseljh:9,builtin:9,vdir:9,automat:[9,4,32,20,11,5,1,12,41,45],diagon:[33,9],ellxn:9,gl_n:25,algsqr:9,checknf:9,pitfal:[9,12],boom:32,libsingularoptionscontext:45,poliscyclo:9,getrand:[4,9],qfbpowraw:9,ring_integ:1,pari_hnf:9,van:9,val:[4,1],ellformalexp:9,matrank:9,mrubinst:41,bump:4,libmp:46,matker:9,laigl:41,active_children:17,"var":[39,33,9,1,12],algcent:9,lrcoef_unsaf:36,besch:9,sumnum:9,"function":[],intnumgauss:4,rnflllgram:9,shank:9,errnum:35,triangular:[4,9,5],getenv:4,alghassei:9,sage_tmp:16,number_of_cusp:6,nfbasi:9,relmat:10,overflow:[4,9,20],highest:[4,9,45,12],lfunction:41,bug:[43,9],count:[36,4,9,41],namikawa:9,succe:[4,28,9],made:[9,12],wise:9,cleanup:9,"0000000004c5eff8":9,whether:[9,2,4,33,20,31,1,12,6,38],shrunk:4,incgamc:9,rc0:23,displai:[4,9,38,10],t_powsym_homsym_symmetrica:25,asynchron:38,record:[32,1],below:[9,2,4,36,12,41],rl_catch_sigwinch:38,limit:[9,4,5,36,1,41],indefinit:9,error:[],p500:9,otherwis:[9,4,39,12,6,41,26],problem:[9,5,12],ellfromeqn:9,unconditionali:9,kpari:9,context_manag:21,reciproc:9,dual:[6,9],"int":[9,16,4,20,36,1,41,39,45,46],mask:[4,9],dure:[17,45,32,9,20],filenam:[4,16,31],meaningless:9,twist:9,qfa:9,implement:[14,8,0,43,28,9,2,4,32,5,21,20,1,12,25,17,26,45,15],rule:[4,9],hyperbol:9,permutationgroupel:1,inf:46,quadclassunit:9,mprimdec:2,probabl:[4,9,34,8],algprimesubalg:9,gpname:4,permtogp:9,pseudobasi:9,minim:[9,11,20,36,5,1,12],detail:[9,2,4,32,23,41],"0000000004c5ef90":9,substpol:9,"default":[17,28,9,16,4,33,10,5,20,1,12,6,41,39,46,45,26],algsub:9,book:9,bool:[20,31,1,9,16],special:[17,28,9,4,32,1,12],rememb:20,ispseudoprimepow:9,errdata:35,idealinv:9,junk:9,repeat:[4,9],star:9,listinsert:9,what_type_l:41,pari_bnf:9,hopefulli:9,max_tim:5,sqrtnint:9,q_3:9,ellheegn:9,monic:9,singleton:34,involut:[6,4,9],vein:9,matrix:[33,9,2,4,32,12,5,1,10,6,39,25,15],irreducib:25,prec_bits_to_word:4,biquadrat:9,nrow:[33,9,5,2],hnf:9,mwrank_set_precis:20,reliabl:9,mult_schubert:36,bnrstark:9,preimag:9,auxiliari:[9,1],kummer:9,idealr:9,long_max:9,invari:[4,9,20,12],"_test_el":32,compute_homsym_with_alphabet_symmetrica:25},objtypes:{"0":"py:module","1":"py:method","2":"py:function","3":"py:attribute","4":"py:class","5":"py:staticmethod","6":"py:exception"},objnames:{"0":["py","module","Python module"],"1":["py","method","Python method"],"2":["py","function","Python function"],"3":["py","attribute","Python attribute"],"4":["py","class","Python class"],"5":["py","staticmethod","Python static method"],"6":["py","exception","Python exception"]},filenames:["sage/libs/singular/groebner_strategy","sage/libs/gap/element","sage/libs/singular/function","sage/libs/singular/singular","sage/libs/pari/pari_instance","sage/libs/fplll/fplll","sage/libs/cremona/homspace","sage/gsl/gsl_array","index","sage/libs/pari/gen","sage/libs/cremona/constructor","sage/libs/cremona/newforms","sage/libs/ppl","sage/libs/ntl/all","sage/libs/pari/closure","sage/libs/singular/ring","sage/libs/mwrank/mwrank","sage/ext/pselect","sage/libs/singular/polynomial","sage/libs/gap/gap_functions","sage/libs/mwrank/interface","sage/libs/gap/context_managers","sage/libs/singular/function_factory","sage/libs/gap/util","sage/libs/linbox/linbox","sage/libs/symmetrica/symmetrica","sage/libs/ecl","sage/libs/gap/test_long","sage/libs/libecm","sage/libs/ratpoints","sage/ext/interrupt","sage/libs/gap/saved_workspace","sage/libs/gap/libgap","sage/libs/cremona/mat","sage/rings/pari_ring","sage/libs/pari/handle_error","sage/libs/lrcalc/lrcalc","sage/libs/gap/test","sage/libs/readline","sage/libs/pari/gen_py","sage/libs/flint/fmpz_poly","sage/libs/lcalc/lcalc_Lfunction","sage/libs/flint/flint","sage/libs/gmp/rational_reconstruction","sage/libs/flint/arith","sage/libs/singular/option","sage/libs/mpmath/utils"],titles:["Singular’s Groebner Strategy Objects","libGAP element wrapper","libSingular: Functions","libSingular conversion routines and initialisation.","PARI C-library interface","fpLLL library","Cremona modular symbols","File: sage/gsl/gsl_array.pyx (starting at line 1)","C/C++ Library Interfaces","Sage class for PARI’s GEN type","Cremona modular symbols","Modular symbols using eclib newforms","Cython wrapper for the Parma Polyhedra Library (PPL)","Victor Shoup’s NTL C++ Library","Convert Python functions to PARI closures","Wrapper for Singular’s Rings","Cython interface to Cremona’s <tt class=\"docutils literal\"><span class=\"pre\">eclib</span></tt> library (also known as <tt class=\"docutils literal\"><span class=\"pre\">mwrank</span></tt>)","Interface to the <tt class=\"docutils literal\"><span class=\"pre\">pselect()</span></tt> system call","Wrapper for Singular’s Polynomial Arithmetic","Gap functions","Sage interface to Cremona’s eclib library (also known as mwrank)","Context Managers for LibGAP","libSingular: Function Factory.","Utility functions for libGAP","Linbox interface","File: sage/libs/symmetrica/symmetrica.pyx (starting at line 1)","Library interface to Embeddable Common Lisp (ECL)","Long tests for libGAP","The Elliptic Curve Method for Integer Factorization (ECM)","Hyperelliptic Curve Point Finding, via ratpoints.","MISSING TITLE","LibGAP Workspace Support","libGAP shared library Interface to GAP","Cremona matrices","Ring of pari objects","Functions for handling PARI errors","An interface to Anders Buch’s Littlewood-Richardson Calculator <tt class=\"docutils literal\"><span class=\"pre\">lrcalc</span></tt>","Short tests for libGAP","Readline","Pari objects","FLINT fmpz_poly class wrapper","Rubinstein’s lcalc library","TESTS:","Rational reconstruction","FLINT Arithmetic Functions","libSingular: Options","File: sage/libs/mpmath/utils.pyx (starting at line 1)"],objects:{"sage.libs.cremona.mat.Matrix":{add_scalar:[33,1,1,""],charpoly:[33,1,1,""],ncols:[33,1,1,""],nrows:[33,1,1,""],str:[33,1,1,""],sage_matrix_over_ZZ:[33,1,1,""]},"sage.libs.singular.groebner_strategy.GroebnerStrategy":{ring:[0,1,1,""],ideal:[0,1,1,""],normal_form:[0,1,1,""]},"sage.libs.ppl":{Polyhedron:[12,4,1,""],Linear_Expression:[12,4,1,""],Constraint_System_iterator:[12,4,1,""],Poly_Gen_Relation:[12,4,1,""],Generator:[12,4,1,""],Constraint:[12,4,1,""],equation:[12,2,1,""],point:[12,2,1,""],C_Polyhedron:[12,4,1,""],Constraint_System:[12,4,1,""],strict_inequality:[12,2,1,""],Generator_System:[12,4,1,""],closure_point:[12,2,1,""],NNC_Polyhedron:[12,4,1,""],inequality:[12,2,1,""],Poly_Con_Relation:[12,4,1,""],Variable:[12,4,1,""],line:[12,2,1,""],Generator_System_iterator:[12,4,1,""],MIP_Problem:[12,4,1,""],ray:[12,2,1,""]},"sage.libs.flint.fmpz_poly":{Fmpz_poly:[40,4,1,""]},"sage.gsl":{gsl_array:[7,0,0,"-"]},"sage.libs.gap.element.GapElement_Rational":{sage:[1,1,1,""]},"sage.libs.symmetrica":{symmetrica:[25,0,0,"-"]},"sage.libs.singular.option":{LibSingularVerboseOptions:[45,4,1,""],LibSingularOptionsContext:[45,4,1,""],LibSingularOptions:[45,4,1,""],LibSingularOptions_abstract:[45,4,1,""]},"sage.libs.singular":{"function":[2,0,0,"-"],option:[45,0,0,"-"],singular:[3,0,0,"-"],groebner_strategy:[0,0,0,"-"],function_factory:[22,0,0,"-"],polynomial:[18,0,0,"-"],ring:[15,0,0,"-"]},"sage.libs.flint":{arith:[44,0,0,"-"],fmpz_poly:[40,0,0,"-"],flint:[42,0,0,"-"]},"sage.libs.singular.option.LibSingularVerboseOptions":{reset_default:[45,1,1,""]},"sage.libs.ppl.Generator_System_iterator":{next:[12,1,1,""]},"sage.libs.pari":{closure:[14,0,0,"-"],gen_py:[39,0,0,"-"],gen:[9,0,0,"-"],pari_instance:[4,0,0,"-"],handle_error:[35,0,0,"-"]},"sage.libs.gmp":{rational_reconstruction:[43,0,0,"-"]},"sage.libs.pari.handle_error":{PariError:[35,6,1,""]},"sage.libs.singular.function.Converter":{ring:[2,1,1,""]},"sage.libs.gap.element.GapElement_IntegerMod":{lift:[1,1,1,""],sage:[1,1,1,""]},"sage.libs.lcalc":{lcalc_Lfunction:[41,0,0,"-"]},"sage.libs.gap.util":{memory_usage:[23,2,1,""],ObjWrapper:[23,4,1,""],error_enter_libgap_block_twice:[23,2,1,""],gap_root:[23,2,1,""],error_exit_libgap_block_without_enter:[23,2,1,""],command:[23,2,1,""],get_owned_objects:[23,2,1,""]},"sage.libs.gap.element.GapElement_String":{sage:[1,1,1,""]},"sage.rings":{pari_ring:[34,0,0,"-"]},"sage.libs.singular.option.LibSingularOptions":{reset_default:[45,1,1,""]},"sage.libs.ppl.Linear_Expression":{coefficient:[12,1,1,""],OK:[12,1,1,""],inhomogeneous_term:[12,1,1,""],space_dimension:[12,1,1,""],ascii_dump:[12,1,1,""],is_zero:[12,1,1,""],all_homogeneous_terms_are_zero:[12,1,1,""],coefficients:[12,1,1,""]},"sage.libs.gap.context_managers":{GlobalVariableContext:[21,4,1,""]},"sage.libs.singular.function_factory":{SingularFunctionFactory:[22,4,1,""]},"sage.ext":{interrupt:[30,0,0,"-"],pselect:[17,0,0,"-"]},"sage.libs.ppl.Poly_Gen_Relation":{nothing:[12,5,1,""],implies:[12,1,1,""],subsumes:[12,5,1,""],ascii_dump:[12,1,1,""],OK:[12,1,1,""]},"sage.libs.gap.element.GapElement_Record":{record_name_to_index:[1,1,1,""],sage:[1,1,1,""]},"sage.libs.singular.groebner_strategy.NCGroebnerStrategy":{ring:[0,1,1,""],normal_form:[0,1,1,""],ideal:[0,1,1,""]},"sage.libs.linbox.linbox":{Linbox_modn_sparse:[24,4,1,""],Linbox_integer_dense:[24,4,1,""]},"sage.libs.ppl.Poly_Con_Relation":{implies:[12,1,1,""],is_included:[12,5,1,""],strictly_intersects:[12,5,1,""],nothing:[12,5,1,""],saturates:[12,5,1,""],ascii_dump:[12,1,1,""],is_disjoint:[12,5,1,""],OK:[12,1,1,""]},"sage.libs.gap.element.GapElement_Integer":{is_C_int:[1,1,1,""],sage:[1,1,1,""]},"sage.libs.ppl.Polyhedron":{minimized_constraints:[12,1,1,""],contains_integer_point:[12,1,1,""],drop_some_non_integer_points:[12,1,1,""],concatenate_assign:[12,1,1,""],maximize:[12,1,1,""],unconstrain:[12,1,1,""],upper_bound_assign:[12,1,1,""],add_generators:[12,1,1,""],difference_assign:[12,1,1,""],contains:[12,1,1,""],intersection_assign:[12,1,1,""],space_dimension:[12,1,1,""],is_disjoint_from:[12,1,1,""],ascii_dump:[12,1,1,""],poly_hull_assign:[12,1,1,""],is_universe:[12,1,1,""],relation_with:[12,1,1,""],constraints:[12,1,1,""],add_generator:[12,1,1,""],generators:[12,1,1,""],is_discrete:[12,1,1,""],strictly_contains:[12,1,1,""],bounds_from_below:[12,1,1,""],affine_dimension:[12,1,1,""],add_space_dimensions_and_project:[12,1,1,""],remove_higher_space_dimensions:[12,1,1,""],is_empty:[12,1,1,""],max_space_dimension:[12,1,1,""],minimized_generators:[12,1,1,""],constrains:[12,1,1,""],OK:[12,1,1,""],bounds_from_above:[12,1,1,""],topological_closure_assign:[12,1,1,""],minimize:[12,1,1,""],add_constraints:[12,1,1,""],is_bounded:[12,1,1,""],poly_difference_assign:[12,1,1,""],add_space_dimensions_and_embed:[12,1,1,""],is_topologically_closed:[12,1,1,""],add_constraint:[12,1,1,""]},"sage.libs.cremona":{homspace:[6,0,0,"-"],newforms:[11,0,0,"-"],mat:[33,0,0,"-"],constructor:[10,0,0,"-"]},"sage.libs.ppl.Constraint":{is_equality:[12,1,1,""],coefficient:[12,1,1,""],OK:[12,1,1,""],is_inconsistent:[12,1,1,""],type:[12,1,1,""],inhomogeneous_term:[12,1,1,""],is_tautological:[12,1,1,""],space_dimension:[12,1,1,""],is_equivalent_to:[12,1,1,""],ascii_dump:[12,1,1,""],is_strict_inequality:[12,1,1,""],is_inequality:[12,1,1,""],is_nonstrict_inequality:[12,1,1,""],coefficients:[12,1,1,""]},"sage.libs.singular.groebner_strategy":{NCGroebnerStrategy:[0,4,1,""],unpickle_GroebnerStrategy0:[0,2,1,""],GroebnerStrategy:[0,4,1,""],unpickle_NCGroebnerStrategy0:[0,2,1,""]},"sage.libs.singular.option.LibSingularOptions_abstract":{load:[45,1,1,""],save:[45,1,1,""]},"sage.libs.flint.arith":{bernoulli_number:[44,2,1,""],dedekind_sum:[44,2,1,""],number_of_partitions:[44,2,1,""],bell_number:[44,2,1,""]},"sage.libs.symmetrica.symmetrica":{t_POLYNOM_SCHUR_symmetrica:[25,2,1,""],odd_to_strict_part_symmetrica:[25,2,1,""],q_core_symmetrica:[25,2,1,""],bdg_symmetrica:[25,2,1,""],odg_symmetrica:[25,2,1,""],t_ELMSYM_MONOMIAL_symmetrica:[25,2,1,""],mult_schubert_variable_symmetrica:[25,2,1,""],plethysm_symmetrica:[25,2,1,""],scalarproduct_schur_symmetrica:[25,2,1,""],t_MONOMIAL_ELMSYM_symmetrica:[25,2,1,""],mult_schubert_schubert_symmetrica:[25,2,1,""],t_HOMSYM_POWSYM_symmetrica:[25,2,1,""],random_partition_symmetrica:[25,2,1,""],t_POLYNOM_POWER_symmetrica:[25,2,1,""],t_ELMSYM_HOMSYM_symmetrica:[25,2,1,""],outerproduct_schur_symmetrica:[25,2,1,""],scalarproduct_schubert_symmetrica:[25,2,1,""],charvalue_symmetrica:[25,2,1,""],t_POWSYM_HOMSYM_symmetrica:[25,2,1,""],mult_monomial_monomial_symmetrica:[25,2,1,""],kostka_tafel_symmetrica:[25,2,1,""],compute_schur_with_alphabet_det_symmetrica:[25,2,1,""],ndg_symmetrica:[25,2,1,""],compute_schur_with_alphabet_symmetrica:[25,2,1,""],t_ELMSYM_SCHUR_symmetrica:[25,2,1,""],end:[25,2,1,""],start:[25,2,1,""],chartafel_symmetrica:[25,2,1,""],t_MONOMIAL_HOMSYM_symmetrica:[25,2,1,""],t_SCHUR_POWSYM_symmetrica:[25,2,1,""],t_POWSYM_SCHUR_symmetrica:[25,2,1,""],divdiff_perm_schubert_symmetrica:[25,2,1,""],t_POLYNOM_MONOMIAL_symmetrica:[25,2,1,""],t_POLYNOM_ELMSYM_symmetrica:[25,2,1,""],kranztafel_symmetrica:[25,2,1,""],sdg_symmetrica:[25,2,1,""],specht_dg_symmetrica:[25,2,1,""],kostka_number_symmetrica:[25,2,1,""],gupta_nm_symmetrica:[25,2,1,""],t_SCHUR_ELMSYM_symmetrica:[25,2,1,""],compute_homsym_with_alphabet_symmetrica:[25,2,1,""],part_part_skewschur_symmetrica:[25,2,1,""],mult_schur_schur_symmetrica:[25,2,1,""],t_HOMSYM_SCHUR_symmetrica:[25,2,1,""],t_POLYNOM_SCHUBERT_symmetrica:[25,2,1,""],compute_monomial_with_alphabet_symmetrica:[25,2,1,""],t_MONOMIAL_SCHUR_symmetrica:[25,2,1,""],dimension_symmetrization_symmetrica:[25,2,1,""],t_SCHUR_MONOMIAL_symmetrica:[25,2,1,""],kostka_tab_symmetrica:[25,2,1,""],t_HOMSYM_ELMSYM_symmetrica:[25,2,1,""],t_MONOMIAL_POWSYM_symmetrica:[25,2,1,""],divdiff_schubert_symmetrica:[25,2,1,""],test_integer:[25,2,1,""],t_SCHUR_HOMSYM_symmetrica:[25,2,1,""],newtrans_symmetrica:[25,2,1,""],dimension_schur_symmetrica:[25,2,1,""],t_ELMSYM_POWSYM_symmetrica:[25,2,1,""],compute_powsym_with_alphabet_symmetrica:[25,2,1,""],strict_to_odd_part_symmetrica:[25,2,1,""],gupta_tafel_symmetrica:[25,2,1,""],schur_schur_plet_symmetrica:[25,2,1,""],t_POWSYM_MONOMIAL_symmetrica:[25,2,1,""],t_POWSYM_ELMSYM_symmetrica:[25,2,1,""],compute_elmsym_with_alphabet_symmetrica:[25,2,1,""],t_SCHUBERT_POLYNOM_symmetrica:[25,2,1,""],hall_littlewood_symmetrica:[25,2,1,""],t_HOMSYM_MONOMIAL_symmetrica:[25,2,1,""]},"sage.libs.gap.libgap.Gap":{one:[32,1,1,""],unset_global:[32,1,1,""],show:[32,1,1,""],mem:[32,1,1,""],count_GAP_objects:[32,1,1,""],global_context:[32,1,1,""],get_global:[32,1,1,""],zero:[32,1,1,""],function_factory:[32,1,1,""],collect:[32,1,1,""],trait_names:[32,1,1,""],eval:[32,1,1,""],set_global:[32,1,1,""],Element:[32,3,1,""],zero_element:[32,1,1,""]},"sage.libs.pari.gen.gen_auto":{ellgenerators:[9,1,1,""],contfracpnqn:[9,1,1,""],nfcompositum:[9,1,1,""],bnrisconductor:[9,1,1,""],nfhnfmod:[9,1,1,""],rnfcharpoly:[9,1,1,""],matsize:[9,1,1,""],acosh:[9,1,1,""],idealfactorback:[9,1,1,""],primes:[9,1,1,""],mathnf:[9,1,1,""],chinese:[9,1,1,""],Colrev:[9,1,1,""],algnorm:[9,1,1,""],idealval:[9,1,1,""],algsplittingfield:[9,1,1,""],padicprec:[9,1,1,""],factorint:[9,1,1,""],matisdiagonal:[9,1,1,""],tanh:[9,1,1,""],nfinit:[9,1,1,""],algissemisimple:[9,1,1,""],nfrootsof1:[9,1,1,""],sumdigits:[9,1,1,""],rnfidealhnf:[9,1,1,""],poldegree:[9,1,1,""],ellL1:[9,1,1,""],nfeltadd:[9,1,1,""],matdiagonal:[9,1,1,""],bnrgaloisapply:[9,1,1,""],polgraeffe:[9,1,1,""],msnew:[9,1,1,""],rnfidealdown:[9,1,1,""],algtensor:[9,1,1,""],idealmin:[9,1,1,""],factorpadic:[9,1,1,""],cmp:[9,1,1,""],matcompanion:[9,1,1,""],besseli:[9,1,1,""],bestapprPade:[9,1,1,""],ellak:[9,1,1,""],newtonpoly:[9,1,1,""],centerlift:[9,1,1,""],algissplit:[9,1,1,""],algtype:[9,1,1,""],cosh:[9,1,1,""],polred:[9,1,1,""],fold:[9,1,1,""],hyperellpadicfrobenius:[9,1,1,""],nfeltdivrem:[9,1,1,""],algsqr:[9,1,1,""],diffop:[9,1,1,""],ellap:[9,1,1,""],asin:[9,1,1,""],rnfisabelian:[9,1,1,""],algadd:[9,1,1,""],matbasistoalg:[9,1,1,""],qfsolve:[9,1,1,""],setintersect:[9,1,1,""],randomprime:[9,1,1,""],bnfisnorm:[9,1,1,""],msissymbol:[9,1,1,""],rnfbasistoalg:[9,1,1,""],nffactormod:[9,1,1,""],gcdext:[9,1,1,""],component:[9,1,1,""],lambertw:[9,1,1,""],idealadd:[9,1,1,""],sinh:[9,1,1,""],lex:[9,1,1,""],sinc:[9,1,1,""],digits:[9,1,1,""],divrem:[9,1,1,""],Polrev:[9,1,1,""],rnfinit:[9,1,1,""],bnrgaloismatrix:[9,1,1,""],issquarefree:[9,1,1,""],factormod:[9,1,1,""],algprimesubalg:[9,1,1,""],binomial:[9,1,1,""],bezout:[9,1,1,""],ellweilpairing:[9,1,1,""],isprime:[9,1,1,""],mspathlog:[9,1,1,""],quaddisc:[9,1,1,""],rnfhnfbasis:[9,1,1,""],ellgroup:[9,1,1,""],rnfequation:[9,1,1,""],Vec:[9,1,1,""],factornf:[9,1,1,""],select:[9,1,1,""],permtonum:[9,1,1,""],rnfidealtwoelt:[9,1,1,""],galoisisabelian:[9,1,1,""],bnfisprincipal:[9,1,1,""],intformal:[9,1,1,""],type:[9,1,1,""],algneg:[9,1,1,""],qfisom:[9,1,1,""],algsimpledec:[9,1,1,""],algchar:[9,1,1,""],incgam:[9,1,1,""],elladd:[9,1,1,""],ellisogeny:[9,1,1,""],qflllgram:[9,1,1,""],bnrdisclist:[9,1,1,""],ellneg:[9,1,1,""],quadpoly:[9,1,1,""],nfdisc:[9,1,1,""],lindep:[9,1,1,""],polrecip:[9,1,1,""],polroots:[9,1,1,""],polresultant:[9,1,1,""],rnfidealmul:[9,1,1,""],bnfisintnorm:[9,1,1,""],norm:[9,1,1,""],quadgen:[9,1,1,""],idealfactor:[9,1,1,""],elltaniyama:[9,1,1,""],conjvec:[9,1,1,""],polrootsff:[9,1,1,""],fforder:[9,1,1,""],rnfbasis:[9,1,1,""],nfsnf:[9,1,1,""],tan:[9,1,1,""],rnfeltnorm:[9,1,1,""],thue:[9,1,1,""],serreverse:[9,1,1,""],gcd:[9,1,1,""],ellidentify:[9,1,1,""],atanh:[9,1,1,""],idealstar:[9,1,1,""],nfalgtobasis:[9,1,1,""],ffinit:[9,1,1,""],sin:[9,1,1,""],nfhilbert:[9,1,1,""],frac:[9,1,1,""],idealprimedec:[9,1,1,""],atan:[9,1,1,""],max:[9,1,1,""],polredbest:[9,1,1,""],vecextract:[9,1,1,""],List:[9,1,1,""],liftint:[9,1,1,""],nfbasistoalg:[9,1,1,""],qfrep:[9,1,1,""],rnfkummer:[9,1,1,""],subgrouplist:[9,1,1,""],msfromell:[9,1,1,""],polredabs:[9,1,1,""],elllocalred:[9,1,1,""],gammah:[9,1,1,""],hyperu:[9,1,1,""],besselh2:[9,1,1,""],besselh1:[9,1,1,""],idealnorm:[9,1,1,""],ellglobalred:[9,1,1,""],ellnonsingularmultiple:[9,1,1,""],idealappr:[9,1,1,""],factorback:[9,1,1,""],Strchr:[9,1,1,""],qfjacobi:[9,1,1,""],Vecsmall:[9,1,1,""],parselect:[9,1,1,""],bitor:[9,1,1,""],nfcertify:[9,1,1,""],qfperfection:[9,1,1,""],algaut:[9,1,1,""],moebius:[9,1,1,""],nextprime:[9,1,1,""],bnrdisc:[9,1,1,""],weber:[9,1,1,""],pareval:[9,1,1,""],factorcantor:[9,1,1,""],matconcat:[9,1,1,""],nfeltreduce:[9,1,1,""],matimagecompl:[9,1,1,""],qfgaussred:[9,1,1,""],mshecke:[9,1,1,""],gammamellininv:[9,1,1,""],matmultodiagonal:[9,1,1,""],nffactor:[9,1,1,""],nfeltmul:[9,1,1,""],nfisincl:[9,1,1,""],parapply:[9,1,1,""],ellj:[9,1,1,""],ellzeta:[9,1,1,""],algbasistoalg:[9,1,1,""],sizedigit:[9,1,1,""],bnfisunit:[9,1,1,""],ideallist:[9,1,1,""],nfeltreducemodpr:[9,1,1,""],polisirreducible:[9,1,1,""],mssplit:[9,1,1,""],contfraceval:[9,1,1,""],idealinv:[9,1,1,""],bnrL1:[9,1,1,""],znlog:[9,1,1,""],nfeltmulmodpr:[9,1,1,""],dirzetak:[9,1,1,""],qfbnupow:[9,1,1,""],matdetint:[9,1,1,""],algmul:[9,1,1,""],poliscyclo:[9,1,1,""],content:[9,1,1,""],zetak:[9,1,1,""],bnrisprincipal:[9,1,1,""],nfeltdivmodpr:[9,1,1,""],bnrinit:[9,1,1,""],algabsdim:[9,1,1,""],bitand:[9,1,1,""],isfundamental:[9,1,1,""],Qfb:[9,1,1,""],polhensellift:[9,1,1,""],expm1:[9,1,1,""],poltschirnhaus:[9,1,1,""],nfgaloisapply:[9,1,1,""],liftall:[9,1,1,""],length:[9,1,1,""],ellpointtoz:[9,1,1,""],erfc:[9,1,1,""],matintersect:[9,1,1,""],bnfinit:[9,1,1,""],qfnorm:[9,1,1,""],matrixqz:[9,1,1,""],liftpol:[9,1,1,""],algsplittingdata:[9,1,1,""],qfbclassno:[9,1,1,""],poldisc:[9,1,1,""],ellan:[9,1,1,""],variables:[9,1,1,""],algdisc:[9,1,1,""],ellheightmatrix:[9,1,1,""],ellheegner:[9,1,1,""],mapget:[9,1,1,""],ellinit:[9,1,1,""],setunion:[9,1,1,""],ellsub:[9,1,1,""],polredord:[9,1,1,""],polcompositum:[9,1,1,""],qfbnucomp:[9,1,1,""],algdecomposition:[9,1,1,""],addprimes:[9,1,1,""],zetakinit:[9,1,1,""],bigomega:[9,1,1,""],modreverse:[9,1,1,""],bnrstark:[9,1,1,""],alginv:[9,1,1,""],sign:[9,1,1,""],rnfdet:[9,1,1,""],thetanullk:[9,1,1,""],ellformaldifferential:[9,1,1,""],Set:[9,1,1,""],Ser:[9,1,1,""],qfbredsl2:[9,1,1,""],galoispermtopol:[9,1,1,""],serconvol:[9,1,1,""],elleisnum:[9,1,1,""],powers:[9,1,1,""],ellsigma:[9,1,1,""],algsplittingmatrix:[9,1,1,""],ellbil:[9,1,1,""],gammamellininvinit:[9,1,1,""],matker:[9,1,1,""],ellanalyticrank:[9,1,1,""],rnfdisc:[9,1,1,""],galoisidentify:[9,1,1,""],mapdelete:[9,1,1,""],mathouseholder:[9,1,1,""],algcharpoly:[9,1,1,""],ellpadics2:[9,1,1,""],ellorder:[9,1,1,""],min:[9,1,1,""],rnfidealnormabs:[9,1,1,""],alginit:[9,1,1,""],ellmul:[9,1,1,""],nfelttrace:[9,1,1,""],nfeltmod:[9,1,1,""],bnrclassnolist:[9,1,1,""],idealdiv:[9,1,1,""],vecsort:[9,1,1,""],algisramified:[9,1,1,""],ellconvertname:[9,1,1,""],trace:[9,1,1,""],bnfsignunit:[9,1,1,""],denominator:[9,1,1,""],idealpow:[9,1,1,""],simplify:[9,1,1,""],ellchangepointinv:[9,1,1,""],qfbred:[9,1,1,""],serlaplace:[9,1,1,""],qfautoexport:[9,1,1,""],algiscommutative:[9,1,1,""],ellisogenyapply:[9,1,1,""],zetamult:[9,1,1,""],setsearch:[9,1,1,""],Pol:[9,1,1,""],exp:[9,1,1,""],sigma:[9,1,1,""],sumformal:[9,1,1,""],mathess:[9,1,1,""],rnfpseudobasis:[9,1,1,""],random:[9,1,1,""],idealaddtoone:[9,1,1,""],algtableinit:[9,1,1,""],galoisexport:[9,1,1,""],idealramgroups:[9,1,1,""],matinverseimage:[9,1,1,""],zncoppersmith:[9,1,1,""],nfroots:[9,1,1,""],mateigen:[9,1,1,""],matsolve:[9,1,1,""],teichmuller:[9,1,1,""],nfisideal:[9,1,1,""],abs:[9,1,1,""],factor:[9,1,1,""],matadjoint:[9,1,1,""],bnfissunit:[9,1,1,""],Mod:[9,1,1,""],galoisisnormal:[9,1,1,""],ellissupersingular:[9,1,1,""],matsnf:[9,1,1,""],contfrac:[9,1,1,""],matsupplement:[9,1,1,""],ceil:[9,1,1,""],idealmul:[9,1,1,""],algradical:[9,1,1,""],matindexrank:[9,1,1,""],quadhilbert:[9,1,1,""],bnfcompress:[9,1,1,""],algisassociative:[9,1,1,""],algmultable:[9,1,1,""],dilog:[9,1,1,""],ideallog:[9,1,1,""],matalgtobasis:[9,1,1,""],bitneg:[9,1,1,""],numbpart:[9,1,1,""],matmuldiagonal:[9,1,1,""],ellrootno:[9,1,1,""],ellpadicheightmatrix:[9,1,1,""],ellperiods:[9,1,1,""],bnrisgalois:[9,1,1,""],bnrconductorofchar:[9,1,1,""],charpoly:[9,1,1,""],arg:[9,1,1,""],nffactorback:[9,1,1,""],ellformallog:[9,1,1,""],qfbhclassno:[9,1,1,""],nfhnf:[9,1,1,""],deriv:[9,1,1,""],rnfnormgroup:[9,1,1,""],polgalois:[9,1,1,""],bnrclassno:[9,1,1,""],padicappr:[9,1,1,""],elltors:[9,1,1,""],bnrrootnumber:[9,1,1,""],algcenter:[9,1,1,""],vecsearch:[9,1,1,""],theta:[9,1,1,""],ellformalpoint:[9,1,1,""],algdim:[9,1,1,""],fflog:[9,1,1,""],algdivl:[9,1,1,""],rnfidealreltoabs:[9,1,1,""],rnfpolred:[9,1,1,""],rnfelttrace:[9,1,1,""],rnfeltup:[9,1,1,""],nfdetint:[9,1,1,""],polrootsmod:[9,1,1,""],algcentralproj:[9,1,1,""],nfmodprinit:[9,1,1,""],precprime:[9,1,1,""],nfsolvemodpr:[9,1,1,""],algbasis:[9,1,1,""],cos:[9,1,1,""],galoissubfields:[9,1,1,""],nfeltpow:[9,1,1,""],ispowerful:[9,1,1,""],matfrobenius:[9,1,1,""],ellztopoint:[9,1,1,""],znprimroot:[9,1,1,""],qfbil:[9,1,1,""],alginvbasis:[9,1,1,""],polcyclofactors:[9,1,1,""],contfracinit:[9,1,1,""],rnfisfree:[9,1,1,""],algrelmultable:[9,1,1,""],idealcoprime:[9,1,1,""],errname:[9,1,1,""],rnfidealnormrel:[9,1,1,""],hammingweight:[9,1,1,""],bnrconductor:[9,1,1,""],ellsearch:[9,1,1,""],rnfdedekind:[9,1,1,""],elleta:[9,1,1,""],zeta:[9,1,1,""],rnfidealup:[9,1,1,""],algdivr:[9,1,1,""],algrandom:[9,1,1,""],besseljh:[9,1,1,""],ellxn:[9,1,1,""],idealprincipalunits:[9,1,1,""],eint1:[9,1,1,""],kronecker:[9,1,1,""],vecsum:[9,1,1,""],mathnfmod:[9,1,1,""],lngamma:[9,1,1,""],asinh:[9,1,1,""],qfbsolve:[9,1,1,""],imag:[9,1,1,""],precision:[9,1,1,""],nfgaloisconj:[9,1,1,""],lift:[9,1,1,""],qfbcompraw:[9,1,1,""],msinit:[9,1,1,""],rnfalgtobasis:[9,1,1,""],elltatepairing:[9,1,1,""],algdegree:[9,1,1,""],matdet:[9,1,1,""],algtrace:[9,1,1,""],msstar:[9,1,1,""],setminus:[9,1,1,""],sqrtint:[9,1,1,""],gammamellininvasymp:[9,1,1,""],shift:[9,1,1,""],genus2red:[9,1,1,""],rnfeltdown:[9,1,1,""],dirdiv:[9,1,1,""],nfnewprec:[9,1,1,""],algisdivision:[9,1,1,""],psi:[9,1,1,""],quadray:[9,1,1,""],ellpadiclog:[9,1,1,""],algdep:[9,1,1,""],qfbprimeform:[9,1,1,""],conj:[9,1,1,""],binary:[9,1,1,""],poldiscreduced:[9,1,1,""],allocatemem:[9,1,1,""],idealintersect:[9,1,1,""],nfsplitting:[9,1,1,""],sqrt:[9,1,1,""],eta:[9,1,1,""],idealhnf:[9,1,1,""],algissimple:[9,1,1,""],msatkinlehner:[9,1,1,""],polsylvestermatrix:[9,1,1,""],matimage:[9,1,1,""],setbinop:[9,1,1,""],mseisenstein:[9,1,1,""],mscuspidal:[9,1,1,""],Col:[9,1,1,""],mattranspose:[9,1,1,""],idealtwoelt:[9,1,1,""],ellpadicheight:[9,1,1,""],quadregulator:[9,1,1,""],substpol:[9,1,1,""],seralgdep:[9,1,1,""],znorder:[9,1,1,""],polsturm:[9,1,1,""],bittest:[9,1,1,""],rnfisnorminit:[9,1,1,""],galoissubcyclo:[9,1,1,""],qfsign:[9,1,1,""],ellchangepoint:[9,1,1,""],rnfisnorm:[9,1,1,""],eulerphi:[9,1,1,""],bnfdecodemodule:[9,1,1,""],removeprimes:[9,1,1,""],algsub:[9,1,1,""],bestappr:[9,1,1,""],normlp:[9,1,1,""],pollead:[9,1,1,""],rnfeltabstorel:[9,1,1,""],real:[9,1,1,""],algpoleval:[9,1,1,""],poliscycloprod:[9,1,1,""],hyperellcharpoly:[9,1,1,""],bitxor:[9,1,1,""],thueinit:[9,1,1,""],numdiv:[9,1,1,""],nfsubfields:[9,1,1,""],ellpadicfrobenius:[9,1,1,""],ellpow:[9,1,1,""],minpoly:[9,1,1,""],norml2:[9,1,1,""],primepi:[9,1,1,""],rnfpolredbest:[9,1,1,""],setrand:[9,1,1,""],sumnuminit:[9,1,1,""],mseval:[9,1,1,""],nfgrunwaldwang:[9,1,1,""],elldivpol:[9,1,1,""],ellformalw:[9,1,1,""],sizebyte:[9,1,1,""],algalgtobasis:[9,1,1,""],ellcard:[9,1,1,""],apply:[9,1,1,""],msqexpansion:[9,1,1,""],elllseries:[9,1,1,""],intnuminit:[9,1,1,""],agm:[9,1,1,""],nfeltdiveuc:[9,1,1,""],polrootspadic:[9,1,1,""],algramifiedplaces:[9,1,1,""],polrootsreal:[9,1,1,""],polclass:[9,1,1,""],polsym:[9,1,1,""],core:[9,1,1,""],besselk:[9,1,1,""],besselj:[9,1,1,""],znstar:[9,1,1,""],besseln:[9,1,1,""],algindex:[9,1,1,""],setisset:[9,1,1,""],ellheight:[9,1,1,""],elllog:[9,1,1,""],idealfrobenius:[9,1,1,""],qfminim:[9,1,1,""],hilbert:[9,1,1,""],matqr:[9,1,1,""],algquotient:[9,1,1,""],nfisisom:[9,1,1,""],numerator:[9,1,1,""],Vecrev:[9,1,1,""],sqrtnint:[9,1,1,""],algb:[9,1,1,""],acos:[9,1,1,""],ellpadicL:[9,1,1,""],gamma:[9,1,1,""],rnfeltreltoabs:[9,1,1,""],ellchangecurve:[9,1,1,""],polcoeff:[9,1,1,""],fromdigits:[9,1,1,""],shiftmul:[9,1,1,""],padicfields:[9,1,1,""],ispseudoprime:[9,1,1,""],polresultantext:[9,1,1,""],qfbpowraw:[9,1,1,""],log:[9,1,1,""],ellformalexp:[9,1,1,""],ideallistarch:[9,1,1,""],matrank:[9,1,1,""],factorff:[9,1,1,""],subst:[9,1,1,""],concat:[9,1,1,""],ffgen:[9,1,1,""],mspathgens:[9,1,1,""],rnflllgram:[9,1,1,""],rnfidealabstorel:[9,1,1,""],coredisc:[9,1,1,""],qfisominit:[9,1,1,""],bitnegimply:[9,1,1,""],mathnfmodid:[9,1,1,""],dirmul:[9,1,1,""],valuation:[9,1,1,""],divisors:[9,1,1,""],qfauto:[9,1,1,""],qfparam:[9,1,1,""],characteristic:[9,1,1,""],incgamc:[9,1,1,""],quadunit:[9,1,1,""],galoisinit:[9,1,1,""],sumdedekind:[9,1,1,""],algsubalg:[9,1,1,""],ellfromeqn:[9,1,1,""],bnfcertify:[9,1,1,""],matsolvemod:[9,1,1,""],taylor:[9,1,1,""],idealnumden:[9,1,1,""],bnfnarrow:[9,1,1,""],matkerint:[9,1,1,""],quadclassunit:[9,1,1,""],Map:[9,1,1,""],Mat:[9,1,1,""],floor:[9,1,1,""],nfeltnorm:[9,1,1,""],bnfsunit:[9,1,1,""],nfkermodpr:[9,1,1,""],qflll:[9,1,1,""],rnfpolredabs:[9,1,1,""],alghasse:[9,1,1,""],substvec:[9,1,1,""],nfeltpowmodpr:[9,1,1,""],idealchinese:[9,1,1,""],sqr:[9,1,1,""],idealred:[9,1,1,""],rnfconductor:[9,1,1,""],ellfromj:[9,1,1,""],cotan:[9,1,1,""],ffnbirred:[9,1,1,""],ellisoncurve:[9,1,1,""],variable:[9,1,1,""],ellordinate:[9,1,1,""],omega:[9,1,1,""],algpow:[9,1,1,""],lcm:[9,1,1,""],bezoutres:[9,1,1,""],rnfsteinitz:[9,1,1,""],nfeltdiv:[9,1,1,""],alghassei:[9,1,1,""],galoisfixedfield:[9,1,1,""],galoissubgroups:[9,1,1,""],alghassef:[9,1,1,""],ellwp:[9,1,1,""]},"sage.ext.pselect":{PSelecter:[17,4,1,""],get_fileno:[17,2,1,""]},"sage.libs":{ratpoints:[29,0,0,"-"],readline:[38,0,0,"-"],ecl:[26,0,0,"-"],libecm:[28,0,0,"-"],ppl:[12,0,0,"-"]},"sage.libs.ppl.Constraint_System_iterator":{next:[12,1,1,""]},"sage.libs.singular.function.RingWrap":{npars:[2,1,1,""],characteristic:[2,1,1,""],var_names:[2,1,1,""],is_commutative:[2,1,1,""],ngens:[2,1,1,""],par_names:[2,1,1,""],ordering_string:[2,1,1,""]},"sage.libs.gap.element.GapElement_List":{sage:[1,1,1,""]},"sage.libs.gap.element.GapElement":{matrix:[1,1,1,""],is_function:[1,1,1,""],is_list:[1,1,1,""],sage:[1,1,1,""],is_string:[1,1,1,""],trait_names:[1,1,1,""],vector:[1,1,1,""],is_permutation:[1,1,1,""],is_bool:[1,1,1,""],is_record:[1,1,1,""]},"sage.libs.lrcalc":{lrcalc:[36,0,0,"-"]},"sage.libs.gap.element.GapElement_RecordIterator":{next:[1,1,1,""]},"sage.libs.flint.flint":{free_flint_stack:[42,2,1,""]},"sage.libs.mwrank":{"interface":[20,0,0,"-"],mwrank:[16,0,0,"-"]},"sage.rings.pari_ring.PariRing":{characteristic:[34,1,1,""],zeta:[34,1,1,""],is_field:[34,1,1,""],random_element:[34,1,1,""],Element:[34,3,1,""]},"sage.libs.ppl.Variable":{space_dimension:[12,1,1,""],OK:[12,1,1,""],id:[12,1,1,""]},"sage.libs.gap.element.GapElement_Ring":{ring_cyclotomic:[1,1,1,""],ring_rational:[1,1,1,""],ring_integer:[1,1,1,""],sage:[1,1,1,""],ring_finite_field:[1,1,1,""],ring_integer_mod:[1,1,1,""]},"sage.libs.ppl.Constraint_System":{insert:[12,1,1,""],OK:[12,1,1,""],clear:[12,1,1,""],has_strict_inequalities:[12,1,1,""],space_dimension:[12,1,1,""],has_equalities:[12,1,1,""],ascii_dump:[12,1,1,""],empty:[12,1,1,""]},"sage.libs.mwrank.interface.mwrank_MordellWeil":{search:[20,1,1,""],process:[20,1,1,""],saturate:[20,1,1,""],rank:[20,1,1,""],regulator:[20,1,1,""],points:[20,1,1,""]},"sage.libs.ecl.EclObject":{consp:[26,1,1,""],cadr:[26,1,1,""],cons:[26,1,1,""],cdar:[26,1,1,""],eval:[26,1,1,""],nullp:[26,1,1,""],car:[26,1,1,""],atomp:[26,1,1,""],listp:[26,1,1,""],fixnump:[26,1,1,""],python:[26,1,1,""],rplaca:[26,1,1,""],symbolp:[26,1,1,""],rplacd:[26,1,1,""],characterp:[26,1,1,""],cdr:[26,1,1,""],caar:[26,1,1,""],cddr:[26,1,1,""]},"sage.libs.gap.element.GapElement_Permutation":{sage:[1,1,1,""]},"sage.libs.libecm":{ecmfactor:[28,2,1,""]},"sage.libs.ppl.Generator":{coefficient:[12,1,1,""],is_point:[12,1,1,""],OK:[12,1,1,""],divisor:[12,1,1,""],point:[12,5,1,""],is_line_or_ray:[12,1,1,""],closure_point:[12,5,1,""],space_dimension:[12,1,1,""],is_equivalent_to:[12,1,1,""],is_ray:[12,1,1,""],ascii_dump:[12,1,1,""],is_closure_point:[12,1,1,""],is_line:[12,1,1,""],type:[12,1,1,""],line:[12,5,1,""],coefficients:[12,1,1,""],ray:[12,5,1,""]},"sage.libs.pari.pari_instance":{prec_dec_to_bits:[4,2,1,""],prec_words_to_dec:[4,2,1,""],prec_words_to_bits:[4,2,1,""],prec_dec_to_words:[4,2,1,""],PariInstance_auto:[4,4,1,""],prec_bits_to_words:[4,2,1,""],prec_bits_to_dec:[4,2,1,""],PariInstance:[4,4,1,""]},"sage.libs.gap.test_long":{test_loop_3:[27,2,1,""],test_loop_2:[27,2,1,""],test_loop_1:[27,2,1,""]},"sage.libs.pari.gen_py":{python:[39,2,1,""],pari:[39,2,1,""]},"sage.libs.gap.element.GapElement_Cyclotomic":{sage:[1,1,1,""]},"sage.libs.fplll":{fplll:[5,0,0,"-"]},"sage.libs.cremona.newforms":{ECModularSymbol:[11,4,1,""]},"sage.libs.gap":{test_long:[27,0,0,"-"],element:[1,0,0,"-"],util:[23,0,0,"-"],context_managers:[21,0,0,"-"],test:[37,0,0,"-"],gap_functions:[19,0,0,"-"],saved_workspace:[31,0,0,"-"],libgap:[32,0,0,"-"]},"sage.libs.lcalc.lcalc_Lfunction":{Lfunction_C:[41,4,1,""],Lfunction_D:[41,4,1,""],Lfunction_I:[41,4,1,""],Lfunction_Zeta:[41,4,1,""],Lfunction_from_elliptic_curve:[41,2,1,""],Lfunction_from_character:[41,2,1,""],Lfunction:[41,4,1,""]},"sage.libs.pari.handle_error.PariError":{errnum:[35,1,1,""],errdata:[35,1,1,""],errtext:[35,1,1,""]},"sage.rings.pari_ring":{PariRing:[34,4,1,""],Pari:[34,4,1,""]},"sage.libs.singular.ring":{print_currRing:[15,2,1,""],currRing_wrapper:[15,2,1,""],poison_currRing:[15,2,1,""],ring_wrapper_Py:[15,4,1,""]},"sage.libs.mpmath":{utils:[46,0,0,"-"]},"sage.libs.ratpoints":{ratpoints:[29,2,1,""]},"sage.libs.pari.gen.gen":{ellchangecurve:[9,1,1,""],bittest:[9,1,1,""],poldisc:[9,1,1,""],sage:[9,1,1,""],ellminimalmodel:[9,1,1,""],ellchangepoint:[9,1,1,""],ispseudoprimepower:[9,1,1,""],nfbasis:[9,1,1,""],Vecsmall:[9,1,1,""],acosh:[9,1,1,""],Mat:[9,1,1,""],Zn_sqrt:[9,1,1,""],bitor:[9,1,1,""],mathnf:[9,1,1,""],content:[9,1,1,""],issquare:[9,1,1,""],Colrev:[9,1,1,""],elementval:[9,1,1,""],idealval:[9,1,1,""],teichmuller:[9,1,1,""],polrootspadicfast:[9,1,1,""],lllgram:[9,1,1,""],bnf_get_reg:[9,1,1,""],listput:[9,1,1,""],nextprime:[9,1,1,""],factor:[9,1,1,""],polisirreducible:[9,1,1,""],mod:[9,1,1,""],padicprec:[9,1,1,""],weber:[9,1,1,""],Mod:[9,1,1,""],galoisisnormal:[9,1,1,""],psi:[9,1,1,""],nfinit:[9,1,1,""],matsnf:[9,1,1,""],python:[9,1,1,""],nf_get_pol:[9,1,1,""],nrows:[9,1,1,""],bnfunit:[9,1,1,""],bitxor:[9,1,1,""],mathnfmod:[9,1,1,""],nf_subst:[9,1,1,""],lcm:[9,1,1,""],poldegree:[9,1,1,""],quadhilbert:[9,1,1,""],rnfinit:[9,1,1,""],ellbil:[9,1,1,""],ellpow:[9,1,1,""],nf_get_diff:[9,1,1,""],tanh:[9,1,1,""],list:[9,1,1,""],sin:[9,1,1,""],dilog:[9,1,1,""],rnfidealdown:[9,1,1,""],primepi:[9,1,1,""],printtex:[9,1,1,""],sumdivk:[9,1,1,""],truncate:[9,1,1,""],nfbasis_d:[9,1,1,""],fflog:[9,1,1,""],round:[9,1,1,""],sqrtn:[9,1,1,""],ellan:[9,1,1,""],j:[9,1,1,""],ellak:[9,1,1,""],newtonpoly:[9,1,1,""],ellsub:[9,1,1,""],ellzeta:[9,1,1,""],sumdiv:[9,1,1,""],polylog:[9,1,1,""],centerlift:[9,1,1,""],sizedigit:[9,1,1,""],thetanullk:[9,1,1,""],sizebyte:[9,1,1,""],listinsert:[9,1,1,""],python_list:[9,1,1,""],ellheight:[9,1,1,""],gequal0:[9,1,1,""],idealchinese:[9,1,1,""],polsturm_full:[9,1,1,""],nf_get_sign:[9,1,1,""],nfhnf:[9,1,1,""],ellap:[9,1,1,""],bnf_get_no:[9,1,1,""],bnrclassno:[9,1,1,""],rnfisnorm:[9,1,1,""],ellaplist:[9,1,1,""],ellheightmatrix:[9,1,1,""],elltors:[9,1,1,""],nfroots:[9,1,1,""],qfsolve:[9,1,1,""],getattr:[9,1,1,""],ideallog:[9,1,1,""],python_list_small:[9,1,1,""],sqr:[9,1,1,""],theta:[9,1,1,""],Set:[9,1,1,""],factorpadic:[9,1,1,""],besseli:[9,1,1,""],besselk:[9,1,1,""],besselj:[9,1,1,""],rnfpolred:[9,1,1,""],znstar:[9,1,1,""],besseln:[9,1,1,""],list_str:[9,1,1,""],arg:[9,1,1,""],component:[9,1,1,""],galoispermtopol:[9,1,1,""],debug:[9,1,1,""],bitand:[9,1,1,""],binomial:[9,1,1,""],nfeltreduce:[9,1,1,""],sinh:[9,1,1,""],ellinit:[9,1,1,""],qfminim:[9,1,1,""],Qfb:[9,1,1,""],Polrev:[9,1,1,""],galoissubfields:[9,1,1,""],nfisisom:[9,1,1,""],reverse:[9,1,1,""],simplify:[9,1,1,""],matsolve:[9,1,1,""],bid_get_gen:[9,1,1,""],matfrobenius:[9,1,1,""],ellztopoint:[9,1,1,""],matadjoint:[9,1,1,""],idealstar:[9,1,1,""],eta:[9,1,1,""],erfc:[9,1,1,""],gammah:[9,1,1,""],vecextract:[9,1,1,""],acos:[9,1,1,""],gamma:[9,1,1,""],Strchr:[9,1,1,""],pr_get_f:[9,1,1,""],idealcoprime:[9,1,1,""],polcoeff:[9,1,1,""],ellrootno:[9,1,1,""],besseljh:[9,1,1,""],sign:[9,1,1,""],numdiv:[9,1,1,""],nfgenerator:[9,1,1,""],bernfrac:[9,1,1,""],Vec:[9,1,1,""],issquarefree:[9,1,1,""],factornf:[9,1,1,""],lllgramint:[9,1,1,""],elleta:[9,1,1,""],gequal:[9,1,1,""],vecmin:[9,1,1,""],log:[9,1,1,""],bnf_get_cyc:[9,1,1,""],omega:[9,1,1,""],atan:[9,1,1,""],Strexpand:[9,1,1,""],subst:[9,1,1,""],Col:[9,1,1,""],nf_get_zk:[9,1,1,""],Strtex:[9,1,1,""],galoisisabelian:[9,1,1,""],matker:[9,1,1,""],ffgen:[9,1,1,""],nfeltdiveuc:[9,1,1,""],isprimepower:[9,1,1,""],vecmax:[9,1,1,""],eint1:[9,1,1,""],polinterpolate:[9,1,1,""],lngamma:[9,1,1,""],asinh:[9,1,1,""],incgam:[9,1,1,""],elladd:[9,1,1,""],xgcd:[9,1,1,""],change_variable_name:[9,1,1,""],precision:[9,1,1,""],bitnegimply:[9,1,1,""],nfgaloisconj:[9,1,1,""],mathnfmodid:[9,1,1,""],lift:[9,1,1,""],ffprimroot:[9,1,1,""],tan:[9,1,1,""],Str:[9,1,1,""],ellpointtoz:[9,1,1,""],zeta:[9,1,1,""],cosh:[9,1,1,""],valuation:[9,1,1,""],nfdisc:[9,1,1,""],Zn_issquare:[9,1,1,""],qfparam:[9,1,1,""],polroots:[9,1,1,""],Ser:[9,1,1,""],matdet:[9,1,1,""],type:[9,1,1,""],padicprime:[9,1,1,""],incgamc:[9,1,1,""],ispower:[9,1,1,""],ideallist:[9,1,1,""],bernreal:[9,1,1,""],besselh2:[9,1,1,""],sqrtint:[9,1,1,""],galoisinit:[9,1,1,""],elleisnum:[9,1,1,""],ncols:[9,1,1,""],qfbclassno:[9,1,1,""],ellsigma:[9,1,1,""],bezout:[9,1,1,""],bnfcertify:[9,1,1,""],elltaniyama:[9,1,1,""],matsolvemod:[9,1,1,""],pr_get_e:[9,1,1,""],abs:[9,1,1,""],conjvec:[9,1,1,""],bernvec:[9,1,1,""],ellanalyticrank:[9,1,1,""],ispseudoprime:[9,1,1,""],fforder:[9,1,1,""],bitneg:[9,1,1,""],nfbasistoalg_lift:[9,1,1,""],qfbhclassno:[9,1,1,""],gequal_long:[9,1,1,""],sizeword:[9,1,1,""],fibonacci:[9,1,1,""],pr_get_p:[9,1,1,""],algdep:[9,1,1,""],trace:[9,1,1,""],matkerint:[9,1,1,""],Vecrev:[9,1,1,""],quadclassunit:[9,1,1,""],conj:[9,1,1,""],serreverse:[9,1,1,""],binary:[9,1,1,""],ellorder:[9,1,1,""],gcd:[9,1,1,""],floor:[9,1,1,""],cos:[9,1,1,""],atanh:[9,1,1,""],znprimroot:[9,1,1,""],sqrt:[9,1,1,""],log_gamma:[9,1,1,""],ellmul:[9,1,1,""],rnfpolredabs:[9,1,1,""],nfsubfields:[9,1,1,""],ffinit:[9,1,1,""],imag:[9,1,1,""],nfhilbert:[9,1,1,""],disc:[9,1,1,""],ellj:[9,1,1,""],phi:[9,1,1,""],frac:[9,1,1,""],idealprimedec:[9,1,1,""],elllseries:[9,1,1,""],asin:[9,1,1,""],bid_get_cyc:[9,1,1,""],denominator:[9,1,1,""],List:[9,1,1,""],numbpart:[9,1,1,""],nfbasistoalg:[9,1,1,""],cotan:[9,1,1,""],qfrep:[9,1,1,""],eval:[9,1,1,""],ellisoncurve:[9,1,1,""],variable:[9,1,1,""],ellordinate:[9,1,1,""],ceil:[9,1,1,""],elllocalred:[9,1,1,""],isprime:[9,1,1,""],pr_get_gen:[9,1,1,""],mattranspose:[9,1,1,""],hyperu:[9,1,1,""],agm:[9,1,1,""],bezoutres:[9,1,1,""],idealintersection:[9,1,1,""],besselh1:[9,1,1,""],ellglobalred:[9,1,1,""],bnf_get_gen:[9,1,1,""],order:[9,1,1,""],Pol:[9,1,1,""],nfrootsof1:[9,1,1,""],exp:[9,1,1,""],galoisfixedfield:[9,1,1,""],galoissubgroups:[9,1,1,""],ellwp:[9,1,1,""]},"sage.libs.gap.element":{GapElement_Integer:[1,4,1,""],GapElement_MethodProxy:[1,4,1,""],GapElement_Permutation:[1,4,1,""],GapElement_IntegerMod:[1,4,1,""],GapElement_Function:[1,4,1,""],GapElement_FiniteField:[1,4,1,""],GapElement_RecordIterator:[1,4,1,""],GapElement_Cyclotomic:[1,4,1,""],GapElement_Boolean:[1,4,1,""],GapElement_Rational:[1,4,1,""],GapElement_List:[1,4,1,""],GapElement_Record:[1,4,1,""],GapElement_Ring:[1,4,1,""],GapElement_String:[1,4,1,""],GapElement:[1,4,1,""]},"sage.libs.mwrank.interface.mwrank_EllipticCurve":{selmer_rank:[20,1,1,""],isogeny_class:[20,1,1,""],conductor:[20,1,1,""],certain:[20,1,1,""],ainvs:[20,1,1,""],saturate:[20,1,1,""],gens:[20,1,1,""],rank:[20,1,1,""],regulator:[20,1,1,""],silverman_bound:[20,1,1,""],two_descent:[20,1,1,""],CPS_height_bound:[20,1,1,""],rank_bound:[20,1,1,""],set_verbose:[20,1,1,""]},"sage.libs.linbox":{linbox:[24,0,0,"-"]},"sage.libs.singular.function_factory.SingularFunctionFactory":{trait_names:[22,1,1,""]},"sage.libs.gap.element.GapElement_Boolean":{sage:[1,1,1,""]},"sage.ext.pselect.PSelecter":{sleep:[17,1,1,""],pselect:[17,1,1,""]},"sage.libs.gap.element.GapElement_FiniteField":{lift:[1,1,1,""],sage:[1,1,1,""]},"sage.libs.gap.test":{test_write_to_file:[37,2,1,""]},"sage.libs.pari.pari_instance.PariInstance":{setrand:[4,1,1,""],debugstack:[4,1,1,""],pari_version:[4,1,1,""],set_real_precision:[4,1,1,""],poltchebi:[4,1,1,""],set_debug_level:[4,1,1,""],primes_up_to_n:[4,1,1,""],getrand:[4,1,1,""],matrix:[4,1,1,""],allocatemem:[4,1,1,""],get_real_precision:[4,1,1,""],read:[4,1,1,""],complex:[4,1,1,""],stacksize:[4,1,1,""],new_with_bits_prec:[4,1,1,""],get_debug_level:[4,1,1,""],euler:[4,1,1,""],get_series_precision:[4,1,1,""],polchebyshev:[4,1,1,""],factorial:[4,1,1,""],pollegendre:[4,1,1,""],init_primes:[4,1,1,""],polsubcyclo:[4,1,1,""],pi:[4,1,1,""],"default":[4,1,1,""],set_series_precision:[4,1,1,""],polcyclo:[4,1,1,""],prime_list:[4,1,1,""],double_to_gen:[4,1,1,""],vector:[4,1,1,""],polcyclo_eval:[4,1,1,""],nth_prime:[4,1,1,""],genus2red:[4,1,1,""]},"sage.libs.ppl.Generator_System":{insert:[12,1,1,""],OK:[12,1,1,""],clear:[12,1,1,""],space_dimension:[12,1,1,""],ascii_dump:[12,1,1,""],empty:[12,1,1,""]},"sage.libs.cremona.constructor":{CremonaModularSymbols:[10,2,1,""]},"sage.libs.fplll.fplll.FP_LLL":{HKZ:[5,1,1,""],heuristic:[5,1,1,""],proved:[5,1,1,""],heuristic_early_red:[5,1,1,""],wrapper:[5,1,1,""],shortest_vector:[5,1,1,""],fast:[5,1,1,""],LLL:[5,1,1,""],fast_early_red:[5,1,1,""],BKZ:[5,1,1,""]},"sage.libs.ntl":{all:[13,0,0,"-"]},"sage.libs.linbox.linbox.Linbox_integer_dense":{minpoly:[24,1,1,""],smithform:[24,1,1,""],det:[24,1,1,""],charpoly:[24,1,1,""]},"sage.libs.pari.gen":{objtogen:[9,2,1,""],gen_auto:[9,4,1,""],gen:[9,4,1,""]},"sage.libs.fplll.fplll":{FP_LLL:[5,4,1,""],gen_uniform:[5,2,1,""],gen_ntrulike2:[5,2,1,""],gen_simdioph:[5,2,1,""],gen_ajtai:[5,2,1,""],gen_ntrulike:[5,2,1,""],gen_intrel:[5,2,1,""]},"sage.libs.flint.fmpz_poly.Fmpz_poly":{degree:[40,1,1,""],truncate:[40,1,1,""],div_rem:[40,1,1,""],pseudo_div:[40,1,1,""],pseudo_div_rem:[40,1,1,""],list:[40,1,1,""],right_shift:[40,1,1,""],pow_truncate:[40,1,1,""],derivative:[40,1,1,""],left_shift:[40,1,1,""]},"sage.libs.ecl":{print_objects:[26,2,1,""],test_ecl_options:[26,2,1,""],EclListIterator:[26,4,1,""],shutdown_ecl:[26,2,1,""],init_ecl:[26,2,1,""],EclObject:[26,4,1,""],ecl_eval:[26,2,1,""],test_sigint_before_ecl_sig_on:[26,2,1,""]},"sage.gsl.gsl_array":{GSLDoubleArray:[7,4,1,""]},"sage.libs.lrcalc.lrcalc":{lrcoef:[36,2,1,""],skew:[36,2,1,""],mult_schubert:[36,2,1,""],test_iterable_to_vector:[36,2,1,""],lrskew:[36,2,1,""],lrcoef_unsafe:[36,2,1,""],coprod:[36,2,1,""],test_skewtab_to_SkewTableau:[36,2,1,""],mult:[36,2,1,""]},"sage.libs.pari.closure":{objtoclosure:[14,2,1,""]},"sage.libs.singular.function":{RingWrap:[2,4,1,""],SingularFunction:[2,4,1,""],KernelCallHandler:[2,4,1,""],Converter:[2,4,1,""],lib:[2,2,1,""],is_sage_wrapper_for_singular_ring:[2,2,1,""],all_singular_poly_wrapper:[2,2,1,""],BaseCallHandler:[2,4,1,""],list_of_functions:[2,2,1,""],LibraryCallHandler:[2,4,1,""],singular_function:[2,2,1,""],is_singular_poly_wrapper:[2,2,1,""],SingularLibraryFunction:[2,4,1,""],all_vectors:[2,2,1,""],Resolution:[2,4,1,""],SingularKernelFunction:[2,4,1,""]},"sage.libs.pari.pari_instance.PariInstance_auto":{addhelp:[4,1,1,""],bernvec:[4,1,1,""],polylog:[4,1,1,""],numtoperm:[4,1,1,""],getabstime:[4,1,1,""],polhermite:[4,1,1,""],matid:[4,1,1,""],varlower:[4,1,1,""],bernfrac:[4,1,1,""],kill:[4,1,1,""],fibonacci:[4,1,1,""],externstr:[4,1,1,""],poltchebi:[4,1,1,""],Pi:[4,1,1,""],getrand:[4,1,1,""],getwalltime:[4,1,1,""],intnumgaussinit:[4,1,1,""],polzagier:[4,1,1,""],Catalan:[4,1,1,""],gettime:[4,1,1,""],system:[4,1,1,""],ellmodulareqn:[4,1,1,""],read:[4,1,1,""],version:[4,1,1,""],Euler:[4,1,1,""],galoisgetpol:[4,1,1,""],input:[4,1,1,""],getstack:[4,1,1,""],polchebyshev:[4,1,1,""],I:[4,1,1,""],pollegendre:[4,1,1,""],getenv:[4,1,1,""],matpascal:[4,1,1,""],localprec:[4,1,1,""],varhigher:[4,1,1,""],extern:[4,1,1,""],getheap:[4,1,1,""],polsubcyclo:[4,1,1,""],readvec:[4,1,1,""],partitions:[4,1,1,""],prime:[4,1,1,""],mathilbert:[4,1,1,""],readstr:[4,1,1,""],"default":[4,1,1,""],polcyclo:[4,1,1,""],stirling:[4,1,1,""],bernreal:[4,1,1,""],bernpol:[4,1,1,""],install:[4,1,1,""],factorial:[4,1,1,""],polmodular:[4,1,1,""]},"sage.libs.gap.libgap":{Gap:[32,4,1,""]},"sage.libs.mpmath.utils":{normalize:[46,2,1,""],bitcount:[46,2,1,""],mpmath_to_sage:[46,2,1,""],isqrt:[46,2,1,""],sage_to_mpmath:[46,2,1,""],from_man_exp:[46,2,1,""],call:[46,2,1,""]},"sage.libs.ppl.MIP_Problem":{optimal_value:[12,1,1,""],evaluate_objective_function:[12,1,1,""],is_satisfiable:[12,1,1,""],objective_function:[12,1,1,""],clear:[12,1,1,""],set_objective_function:[12,1,1,""],add_constraints:[12,1,1,""],space_dimension:[12,1,1,""],solve:[12,1,1,""],set_optimization_mode:[12,1,1,""],add_space_dimensions_and_embed:[12,1,1,""],OK:[12,1,1,""],optimizing_point:[12,1,1,""],optimization_mode:[12,1,1,""],add_constraint:[12,1,1,""]},"sage.libs.cremona.homspace":{ModularSymbols:[6,4,1,""]},"sage.libs.ecl.EclListIterator":{next:[26,1,1,""]},"sage.libs.mwrank.mwrank":{initprimes:[16,2,1,""],set_precision:[16,2,1,""],get_precision:[16,2,1,""]},"sage.libs.gap.saved_workspace":{timestamp:[31,2,1,""],workspace:[31,2,1,""]},"sage.libs.lcalc.lcalc_Lfunction.Lfunction":{compute_rank:[41,1,1,""],hardy_z_function:[41,1,1,""],find_zeros_via_N:[41,1,1,""],value:[41,1,1,""],find_zeros:[41,1,1,""]},"sage.libs.readline":{print_status:[38,2,1,""],forced_update_display:[38,2,1,""],set_point:[38,2,1,""],get_end:[38,2,1,""],get_point:[38,2,1,""],interleaved_output:[38,4,1,""],clear_signals:[38,2,1,""],replace_line:[38,2,1,""],initialize:[38,2,1,""],set_signals:[38,2,1,""],copy_text:[38,2,1,""]},"sage.libs.mwrank.interface":{set_precision:[20,2,1,""],mwrank_MordellWeil:[20,4,1,""],get_precision:[20,2,1,""],mwrank_EllipticCurve:[20,4,1,""]},"sage.libs.singular.option.LibSingularOptionsContext":{opt:[45,3,1,""]},"sage.libs.cremona.homspace.ModularSymbols":{hecke_matrix:[6,1,1,""],level:[6,1,1,""],number_of_cusps:[6,1,1,""],is_cuspidal:[6,1,1,""],sign:[6,1,1,""],dimension:[6,1,1,""]},"sage.libs.cremona.mat":{Matrix:[33,4,1,""],MatrixFactory:[33,4,1,""]}},titleterms:{symmetrica:25,sage:[7,25,9,20,46],subprocess:17,ellipt:28,mwrank:[20,16],libgap:[27,37,31,32,21,23,1],cython:[32,16,12],shoup:13,factor:28,python:14,gsl_arrai:7,util:[23,46],flint:[40,44],reconstruct:43,gen:9,embedd:26,polyhedra:12,lisp:26,integ:28,method:28,mpmath:46,common:26,manag:21,newform:11,todo:36,librari:[8,16,4,32,5,20,12,41,13,26],victor:13,find:29,eclib:[11,20,16],lrcalc:36,factori:22,matric:33,ration:43,ecm:28,ecl:26,closur:14,modular:[6,10,11],ntl:13,lcalc:41,wait:17,buch:36,convers:3,cremona:[6,10,33,20,16],initialis:3,ander:36,context:21,routin:3,via:29,point:29,parma:12,ppl:12,linbox:24,wrapper:[40,18,15,1,12],ring:[15,34],miss:30,from:32,support:31,system:17,"long":27,start:[7,25,46],interfac:[17,16,8,4,32,20,36,24,26],handl:35,call:17,type:9,strategi:0,"function":[14,2,44,22,23,35,19],hyperellipt:29,option:45,groebner:0,convert:14,pari:[14,9,4,34,39,35],gap:[32,19],workspac:31,known:[20,16],line:[7,25,46],pselect:17,calcul:36,error:35,readlin:38,fmpz_poli:40,curv:[28,29],share:32,indic:8,rubinstein:41,littlewood:36,file:[7,25,46],tabl:8,lib:[25,46],titl:30,also:[20,16],test:[27,42,37],pyx:[7,25,46],ratpoint:29,singular:[0,18,15],symbol:[6,10,11],object:[0,39,34],polynomi:18,arithmet:[18,44],"class":[40,9],fplll:5,"short":37,libsingular:[3,22,45,2],element:1,richardson:36,gsl:7}})12