Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Sage Reference Manual

732393 views
1
Search.setIndex({envversion:42,terms:{represent:1,all:[6,4],code:[6,4,7,2],x97:2,illustr:[6,7],global:[3,6,5,2],cdf:6,deprecationwarn:5,follow:[6,7,2],cython:[3,6],decid:7,typeerror:[6,4,5,7,2],depend:7,rewrot:6,send:6,articl:1,gupta:6,under:7,sens:7,suitabl:1,sourc:6,everi:1,string:6,fals:[2,3,4,5,6,7],ogf_to_egf:6,deglex:[4,2],veri:1,mpowerseri:[6,4,7],ticket:[1,2,3,4,5,6,7],exact:[5,2],list:[3,6,1,7,2],mpowerseriesring_gener:4,iter:[3,6,2],factori:6,"try":[1,7],arithmeticerror:[3,6],unsupport:7,initialis:2,slow:1,smaller:1,den_bound:2,natur:[6,7],ngen:[4,5,2],zero:[3,6,1,7],pass:[1,2],further:2,odd:6,even:[6,7],index:[0,1],what:7,appear:[3,6,7],polynomial_zmod_flint:1,cast:7,neg:[3,6,4,2],sum:[6,7],abl:7,uniform:[5,2],current:1,delet:1,version:[3,6],"new":[1,7],method:[],contrast:7,whatev:6,is_finit:2,absolut:[3,6],truncate_neg:3,gener:[6,4,7,2],never:[7,2],coeffici:[1,2,3,4,6,7],here:[5,7],satisfi:7,explicitli:2,ratio:1,sinc:[3,6,2],valu:7,search:0,convers:7,shift:[3,6,7],larger:6,precis:[1,2,3,4,5,6,7],rdf:[6,7],doctest:[4,5,2],variable_names_recurs:2,implement:[1,2,3,4,6,7],isomorph:[4,2],explod:6,via:6,derivative_pars:7,modul:[0,1],deprec:[6,1,5,2],residue_field:[5,2],powerseriesr:[4,6,1,7,2],total:[4,7],coercion:[6,4,7,2],unit:[3,6,1,7],x47:2,x43:2,describ:1,x41:2,laurentseriesring_field:5,doubl:[4,2],jeremi:2,two:[1,7,2],prec:[1,2,3,4,5,6,7],cho:2,live:6,call:[1,2,3,4,5,6,7],taken:6,type:[4,6,1],commut:[4,7,2],more:[3,6,5],desir:6,finit:[2,3,4,5,6,7],trail:7,particular:[3,1],known:[6,1],laurent_seri:[6,7],given:[1,2,3,4,6,7],must:[6,1,2],logarithm:7,none:[6,1,5,7,2],nonexact:[4,2],alia:[4,5,2],work:[6,7],uniqu:[6,5,7,2],recast:7,truncate_laurentseri:3,can:[1,2,3,4,5,6,7],purpos:1,root:[6,7],proof:[4,5,2],overrid:6,power_series_ring_el:[6,1,7],high:1,minimum:[3,6,7],want:7,egf_to_ogf:6,keep:[4,2],occur:7,"pad\u00e9_approxim":1,alwai:[1,7,2],differenti:6,multipl:[3,6,7],divid:[6,7],anoth:[3,4,7],ordinari:6,hom:7,length:[6,1],divis:[3,6,7],how:[3,4,2],answer:6,instead:[6,1,7,2],sourav:6,bigoh:4,map:[6,4,5,2],frac:[3,5,2],max:2,befor:[7,2],inhomogen:6,mai:[3,6],associ:6,attempt:[6,1],johnson:[4,7,2],huge_power_r:6,correspond:[3,1],element:[2,3,4,5,6,7],issu:7,x61:2,zerodivisionerror:[6,7],cannot:[3,6],combin:4,order:[1,2,3,4,6,7],multivari:[],oper:2,least:6,cyclotomic_polynomi:6,infinitepolynomialr:4,over:[1,2,3,4,5,6,7],becaus:[6,7],cdvf:5,sqrt:[6,1,7,2],equip:5,implicitli:6,paramet:1,perfect:6,is_powerseri:[6,7],chosen:1,fix:[6,5],tbg:7,therefor:7,might:7,unique_represent:2,wouldn:7,them:[3,6],good:7,"return":[1,2,3,4,5,6,7],nonneg:7,handl:[6,1],termord:4,initi:[6,4,5,7,2],laurentseriesr:[3,5],conquer:6,make_element_from_par:3,laurent_series_ring_el:[3,6],term:[1,2,3,4,6,7],eventu:2,name:[6,4,5,2],trac:[1,2,3,4,5,6,7],revers:1,unpickl:[4,1,2],x19:2,each:[4,7,2],disregard:7,x11:2,x13:2,truncat:[1,2,3,5,6,7],valuat:[1,2,3,5,6,7],subset:4,domain:[6,4,2],is_laurentseriesr:5,replac:3,arg2:2,idea:7,functor:4,unpickle_power_series_ring_v0:2,expect:7,operand:7,our:[4,7],happen:6,out:6,variabl:[1,2,3,4,5,6,7],common_prec:[3,6],matrix:1,robert:[3,6],sqrtf:6,categori:[6,4,5,7,2],is_field:[5,2],rel:[3,6],print:[3,4,6,1,2],formula:1,laurentseri:[3,6,5],correct:7,foreground:[4,7],random_el:[7,2],laurent_polynomi:3,linear:6,advanc:6,algebrael:[3,6],manipul:7,infin:[3,6,1,7],standard:2,nth:[6,4],base:[1,2,3,4,5,6,7],dictionari:[1,7],org:5,angl:[4,2],could:3,traceback:[1,2,3,4,5,6,7],david:[3,6],thing:[6,4],perhap:7,rais:[6,1,5,7,2],unabl:6,base_extend:[6,4,5,7,2],frequent:5,first:[6,1,7,2],origin:[3,6],multi_power_series_ring_el:[6,4,7],solve_linear_d:[6,7],misc:[5,2],number:[3,4,1,2],"_deriv":[3,6],done:[6,7],construct:[4,7,2],bradshaw:[3,6],oppos:6,pade:1,lexicograph:[4,2],size:[2,3,4,5,6,7],power_series_r:[4,5,2],convens:[3,6],differ:[3,6,2],workaround:7,exponenti:[6,7],test:[1,2,3,4,5,6,7],interact:2,messag:1,numberfield:6,transcendent:7,too:[1,7,2],tol:1,termin:7,includ:6,is_zero:3,copi:6,is_nilpot:7,inexact:5,specifi:[4,6,1,7,2],part:[3,6],uniquerepresent:2,exactli:1,than:[6,1,7],king:[6,4,7,2],kind:1,keyword:2,x53:2,provid:[6,1],remov:4,x59:2,structur:[3,6,4,2],exampl:[1,2,3,4,5,6,7],serconvol:6,matter:3,posit:[1,7],is_mpowerseri:7,analysi:6,fashion:2,comput:[3,6,1,2],polynomial_r:5,do_trunc:2,ogf:[6,7],ani:[3,6,2],complet:[4,5,7,2],have:[3,6,1,7],close:7,need:[3,6,1,7],notimplementederror:[6,4,7],option:[6,1],lie:6,is_mpolynomialr:2,squar:[6,4,7,2],equival:[3,1],min:2,latter:4,note:[3,6,1,7],also:[6,5,2],ideal:4,discret:[5,2],take:[6,4,7],which:[1,2,3,4,5,6,7],functori:2,subject:2,singl:4,sure:[1,7],unless:[6,7],laruent:4,though:7,multipli:[3,6],sagemath:5,object:[6,1,7,2],oracl:7,monomi:[3,6,7],pari:[6,1],letter:2,truncate_powerseri:1,pair:7,alpha:6,"class":[1,2,3,4,5,6,7],sub:[5,7,2],default_prec:[1,2,4,5,6,7],latex:2,laurent:[],dens:[6,4,2],request:6,egf:[6,7],bracket:[4,2],univari:[1,2,3,4,5,6,7],exp:[6,1,7],undistinguish:3,fact:[3,6],quadraticfield:2,is_powerseriesr:[4,2],"pad\u00e9":1,opposit:4,verbos:1,sage:[1,2,3,4,5,6,7],syntax:7,gen1:6,find:6,homomorph:7,cdvr:2,despit:[3,6],onli:[1,2,3,5,6,7],coerc:[3,6,5,7,2],indexerror:[3,2],solut:6,valuation_zero_part:[3,6,7],should:7,term_ord:[4,2],dict:[1,7],factor:6,"__call__":6,prec_id:4,variou:4,get:[6,1,5,7],express:4,multi_power_series_r:4,commutativ:[5,2],harvei:6,increas:[3,6,7],use_lazy_mpoly_r:2,gen:[1,2,3,4,5,6,7],requir:6,prime:2,powerseriesring_gener:[4,2],whenev:6,"default":[1,2,3,5,6,7],stuff:3,integr:[1,2,3,4,6,7],contain:7,clean:6,where:[3,6,2],set:[1,5,7,2],modulo:[3,4,1,7,2],dump:[3,4,1,5,2],set_default_prec:5,is_integral_domain:4,accord:[4,2],see:[1,2,3,4,5,6,7],result:[6,4,7],arg:[3,6,1,7,2],fail:1,powerseri:[6,1,7],modulu:6,deriv:[3,6,7],infinit:[3,6,1,7],extend:[6,4],correctli:1,someth:[3,6],iteritem:7,wikipedia:1,tend:6,enough:[6,1],won:2,x29:2,simplest:6,"import":[6,4,5,7,2],hold:7,x23:2,altern:3,spars:[6,4,5,7,2],kei:[1,7],extens:[6,4,2],lazi:6,integermodr:4,solv:6,come:7,laurent_series_r:[4,5,2],addit:1,both:[6,1,7],last:[1,2,3,4,5,6,7],howev:7,set_verbos:1,equal:[6,1,7,2],nile:[4,7,2],etc:[3,6],instanc:6,equat:6,mani:[3,4,7,2],load:[3,4,1,5,2],simpli:1,is_monomi:[3,6],is_laurentseri:3,residu:[3,5,2],screwi:6,suppli:[3,6,7],cancel:7,respect:[3,6,7,2],trust:7,assum:[6,5,7,2],poli:2,most:[1,2,3,4,5,6,7],huge_r:6,second:6,invert:[6,5,7],invers:[3,6,1,7],been:[6,7],much:2,legit:7,valueerror:[6,1,7,2],strategi:6,laurentseriesring_gener:5,convert:7,argument:[1,2],rational_reconstruct:1,lift:1,rang:6,make_element_from_parent_v0:6,"case":[6,5,7,2],expon:[3,6,7],laurentseriesring_domain:5,is_spars:[6,4,5,2],set_series_precis:[5,2],defin:[3,6,4,7,2],"while":[3,6,7],gen2:6,abov:[4,7,2],error:[6,1,5,7,2],report:7,exist:[6,1,7],power_series_poli:[6,1],power_ring2:6,canon:[5,2],non:[6,7],zmod:[1,7],itself:[6,7],crash:6,noetherian:4,parent:[1,2,3,4,6,7],add_bigoh:[3,6,4,7],author:[3,6,4,7,2],perform:[6,1],make:[1,5,7,2],belong:[6,2],same:[6,4,5,7,2],python:6,complex:[3,1,5],document:[3,6],fraction_field:2,x83:2,phi:7,is_exact:[5,2],optim:3,expans:3,x89:2,is_noetherian:4,change_var:2,power_seri:3,indetermin:2,defn:7,recent:[1,2,3,4,5,6,7],power_ring1:6,lower:[6,7],appropri:[5,2],serlaplac:6,whose:[4,2],framework:[6,4,7,2],random:[7,2],well:6,inherit:2,trailing_monomi:7,pickl:1,without:[3,7,2],thi:[1,2,3,4,5,6,7],lagrang:1,quotient:[6,1,7],self:[1,2,3,4,5,6,7],is_mpowerseriesr:4,left:[3,6,2],just:[1,2,3,5,6,7],less:[6,7],newton:6,obtain:[6,1,7],constant_coeffici:7,yet:[4,7],kwd:[6,1,2],versu:2,got:6,is_gen:[6,1,7],help:7,except:3,littl:6,add:4,denomin:7,rmul:6,appli:7,input:[1,2,3,4,6,7],save:3,approxim:[6,1,2],change_r:[2,3,4,5,6,7],real:[4,1],stein:[3,6,2],big:[3,4],symbolicr:7,poly_ring2:6,poly_ring1:6,is_dens:[6,4,5,2],catalan:1,know:6,background:[4,7],bit:[3,4,6,1,5],characterist:[1,2,4,5,6,7],you:[6,1,5,7,2],mod:[6,2],like:6,integ:[1,2,3,4,5,6,7],necessari:[6,5],either:[6,7],output:[6,1,7,2],page:0,underli:[6,1,7,2],right:[3,6,5],nilpot:7,some:[3,6,1,7,2],intern:[3,1],sen:6,indirect:[4,2],nonzero:[3,6],lead:[6,1],"function":[3,4,6,1,7],definit:[3,6],x37:2,powerseriesring_domain:2,track:[4,7],substitut:7,mathemat:[5,7],larg:1,condit:[6,7],base_r:[6,4,5,2],quo_rem:7,complic:6,plu:6,mpowerseriesring_generic_with_categori:4,run:[6,4,5,7,2],ration:[1,2,3,4,5,6,7],usag:4,boundari:6,immut:3,between:[3,6],comparison:7,about:7,x31:2,actual:[6,5,7,2],would:7,testsuit:[6,4,5,2],joyner:3,http:5,precision_rel:[3,6],num_bound:2,degre:[1,2,3,4,6,7],awai:2,discard:6,x17:2,morphism:7,remove_var:4,subr:4,bound:2,automat:[1,5,7,2],square_root:[6,7],x67:2,chang:[1,2,3,4,5,6,7],your:6,log:[6,1,7],suffici:7,element_class:4,support:6,question:4,fast:2,avail:[6,2],arithmet:[4,7,2],low:1,fraction:[6,1,5,2],"var":[4,6,1,2],lowest:7,from:[1,2,3,4,5,6,7],form:[3,4,6,1,7],tupl:7,padded_list:[6,7],make_powerseries_poly_v0:[6,1],don:7,highest:7,"true":[1,2,3,4,5,6,7],inject_vari:[7,2],count:[3,6,7],notat:[4,5,2],succe:6,consist:[3,6],possibl:[6,1,7],whether:[6,4,2],displai:[4,2],below:6,limit:7,otherwis:[1,2,4,5,6,7],remaind:7,lmul:6,constant:[3,6,1,7,2],creat:[6,2],negdeglex:[4,2],doesn:[3,7],repres:[3,7,2],decreas:[3,6],behavior:[6,2],doe:[2,3,4,5,6,7],check:[6,5,7],probabl:6,higher:[3,6,2],when:[6,1,5,2],detail:[3,6,1,5],is_polynomialr:2,field:[1,2,3,4,5,6,7],other:[6,7],bool:6,num_gen:[4,2],is_unit:[3,6,7],deseri:[4,2],powerseries_poli:[6,1,2],determin:[4,1,5,7,2],integraldomain:[5,2],sequenc:[4,7],symbol:[4,7,2],name_list:4,berlekamp_massei:1,polynomialr:[1,2,3,4,6,7],william:[3,6,2],polynomi:[1,2,3,4,5,6,7],consid:[3,6,4],formal:[3,6,1,7],is_squar:[6,7],stai:7,reduc:6,simon:[6,4,7,2],algorithm:[3,6,1,7,2],x79:2,unpickle_multi_power_series_ring_v0:4,precision_absolut:[3,6],x73:2,x71:2,powerseriesring_over_field:2,depth:2,ignor:[4,7],time:[3,6,7],far:7,laurent_polynomial_r:5,mpfr:3},objtypes:{"0":"py:module","1":"py:method","2":"py:class","3":"py:function","4":"py:attribute"},objnames:{"0":["py","module","Python module"],"1":["py","method","Python method"],"2":["py","class","Python class"],"3":["py","function","Python function"],"4":["py","attribute","Python attribute"]},filenames:["index","sage/rings/power_series_poly","sage/rings/power_series_ring","sage/rings/laurent_series_ring_element","sage/rings/multi_power_series_ring","sage/rings/laurent_series_ring","sage/rings/power_series_ring_element","sage/rings/multi_power_series_ring_element"],titles:["Power Series Rings","Power Series Methods","Power Series Rings","Laurent Series","Multivariate Power Series Rings","Laurent Series Rings","Power Series","Multivariate Power Series."],objects:{"sage.rings":{laurent_series_ring:[5,0,0,"-"],power_series_ring:[2,0,0,"-"],multi_power_series_ring_element:[7,0,0,"-"],power_series_poly:[1,0,0,"-"],multi_power_series_ring:[4,0,0,"-"],laurent_series_ring_element:[3,0,0,"-"],power_series_ring_element:[6,0,0,"-"]},"sage.rings.power_series_ring.PowerSeriesRing_over_field":{fraction_field:[2,1,1,""]},"sage.rings.power_series_poly.PowerSeries_poly":{degree:[1,1,1,""],pade:[1,1,1,""],reverse:[1,1,1,""],truncate:[1,1,1,""],reversion:[1,1,1,""],integral:[1,1,1,""],truncate_powerseries:[1,1,1,""],list:[1,1,1,""],dict:[1,1,1,""],polynomial:[1,1,1,""],valuation:[1,1,1,""]},"sage.rings.multi_power_series_ring_element.MPowerSeries":{degree:[7,1,1,""],square_root:[7,1,1,""],is_nilpotent:[7,1,1,""],variables:[7,1,1,""],laurent_series:[7,1,1,""],integral:[7,1,1,""],prec:[7,1,1,""],polynomial:[7,1,1,""],log:[7,1,1,""],add_bigoh:[7,1,1,""],valuation_zero_part:[7,1,1,""],sqrt:[7,1,1,""],dict:[7,1,1,""],coefficients:[7,1,1,""],derivative:[7,1,1,""],is_unit:[7,1,1,""],quo_rem:[7,1,1,""],exponents:[7,1,1,""],is_square:[7,1,1,""],truncate:[7,1,1,""],O:[7,1,1,""],padded_list:[7,1,1,""],V:[7,1,1,""],variable:[7,1,1,""],ogf:[7,1,1,""],valuation:[7,1,1,""],constant_coefficient:[7,1,1,""],shift:[7,1,1,""],list:[7,1,1,""],solve_linear_de:[7,1,1,""],exp:[7,1,1,""],monomials:[7,1,1,""],egf:[7,1,1,""],trailing_monomial:[7,1,1,""]},"sage.rings.multi_power_series_ring_element":{MPowerSeries:[7,2,1,""],MO:[7,2,1,""],is_MPowerSeries:[7,3,1,""]},"sage.rings.laurent_series_ring.LaurentSeriesRing_generic":{default_prec:[5,1,1,""],residue_field:[5,1,1,""],uniformizer:[5,1,1,""],is_exact:[5,1,1,""],set_default_prec:[5,1,1,""],is_dense:[5,1,1,""],characteristic:[5,1,1,""],polynomial_ring:[5,1,1,""],laurent_polynomial_ring:[5,1,1,""],gen:[5,1,1,""],Element:[5,4,1,""],change_ring:[5,1,1,""],power_series_ring:[5,1,1,""],ngens:[5,1,1,""],base_extend:[5,1,1,""],is_sparse:[5,1,1,""],is_field:[5,1,1,""]},"sage.rings.power_series_ring_element.PowerSeries":{square_root:[6,1,1,""],base_ring:[6,1,1,""],is_square:[6,1,1,""],sqrt:[6,1,1,""],polynomial:[6,1,1,""],egf_to_ogf:[6,1,1,""],common_prec:[6,1,1,""],log:[6,1,1,""],add_bigoh:[6,1,1,""],is_dense:[6,1,1,""],valuation_zero_part:[6,1,1,""],prec:[6,1,1,""],is_gen:[6,1,1,""],change_ring:[6,1,1,""],coefficients:[6,1,1,""],derivative:[6,1,1,""],is_unit:[6,1,1,""],exponents:[6,1,1,""],laurent_series:[6,1,1,""],precision_relative:[6,1,1,""],degree:[6,1,1,""],ogf_to_egf:[6,1,1,""],padded_list:[6,1,1,""],inverse:[6,1,1,""],O:[6,1,1,""],V:[6,1,1,""],variable:[6,1,1,""],precision_absolute:[6,1,1,""],ogf:[6,1,1,""],valuation:[6,1,1,""],is_sparse:[6,1,1,""],is_monomial:[6,1,1,""],shift:[6,1,1,""],list:[6,1,1,""],base_extend:[6,1,1,""],solve_linear_de:[6,1,1,""],exp:[6,1,1,""],truncate:[6,1,1,""],egf:[6,1,1,""]},"sage.rings.multi_power_series_ring":{unpickle_multi_power_series_ring_v0:[4,3,1,""],is_MPowerSeriesRing:[4,3,1,""],MPowerSeriesRing_generic:[4,2,1,""]},"sage.rings.laurent_series_ring":{LaurentSeriesRing_field:[5,2,1,""],LaurentSeriesRing_domain:[5,2,1,""],LaurentSeriesRing:[5,3,1,""],LaurentSeriesRing_generic:[5,2,1,""],is_LaurentSeriesRing:[5,3,1,""]},"sage.rings.power_series_ring_element":{make_powerseries_poly_v0:[6,3,1,""],is_PowerSeries:[6,3,1,""],make_element_from_parent_v0:[6,3,1,""],PowerSeries:[6,2,1,""]},"sage.rings.laurent_series_ring_element.LaurentSeries":{integral:[3,1,1,""],residue:[3,1,1,""],inverse:[3,1,1,""],truncate:[3,1,1,""],add_bigoh:[3,1,1,""],valuation_zero_part:[3,1,1,""],prec:[3,1,1,""],change_ring:[3,1,1,""],is_zero:[3,1,1,""],derivative:[3,1,1,""],is_unit:[3,1,1,""],exponents:[3,1,1,""],precision_relative:[3,1,1,""],degree:[3,1,1,""],truncate_neg:[3,1,1,""],common_prec:[3,1,1,""],truncate_laurentseries:[3,1,1,""],variable:[3,1,1,""],precision_absolute:[3,1,1,""],valuation:[3,1,1,""],coefficients:[3,1,1,""],is_monomial:[3,1,1,""],shift:[3,1,1,""],list:[3,1,1,""],power_series:[3,1,1,""],laurent_polynomial:[3,1,1,""]},"sage.rings.multi_power_series_ring.MPowerSeriesRing_generic":{remove_var:[4,1,1,""],laurent_series_ring:[4,1,1,""],prec_ideal:[4,1,1,""],is_dense:[4,1,1,""],characteristic:[4,1,1,""],is_integral_domain:[4,1,1,""],O:[4,1,1,""],Element:[4,4,1,""],is_noetherian:[4,1,1,""],change_ring:[4,1,1,""],construction:[4,1,1,""],ngens:[4,1,1,""],bigoh:[4,1,1,""],term_order:[4,1,1,""],gen:[4,1,1,""],is_sparse:[4,1,1,""]},"sage.rings.power_series_ring":{PowerSeriesRing_generic:[2,2,1,""],PowerSeriesRing:[2,3,1,""],PowerSeriesRing_domain:[2,2,1,""],PowerSeriesRing_over_field:[2,2,1,""],unpickle_power_series_ring_v0:[2,3,1,""],is_PowerSeriesRing:[2,3,1,""]},"sage.rings.laurent_series_ring_element":{LaurentSeries:[3,2,1,""],is_LaurentSeries:[3,3,1,""],make_element_from_parent:[3,3,1,""]},"sage.rings.power_series_poly":{PowerSeries_poly:[1,2,1,""],make_powerseries_poly_v0:[1,3,1,""]},"sage.rings.power_series_ring.PowerSeriesRing_generic":{laurent_series_ring:[2,1,1,""],uniformizer:[2,1,1,""],is_exact:[2,1,1,""],is_dense:[2,1,1,""],residue_field:[2,1,1,""],is_finite:[2,1,1,""],variable_names_recursive:[2,1,1,""],ngens:[2,1,1,""],gen:[2,1,1,""],change_var:[2,1,1,""],change_ring:[2,1,1,""],construction:[2,1,1,""],is_field:[2,1,1,""],characteristic:[2,1,1,""],random_element:[2,1,1,""],Element:[2,4,1,""],base_extend:[2,1,1,""],is_sparse:[2,1,1,""]}},titleterms:{laurent:[3,5],power:[0,1,2,4,6,7],indic:0,tabl:0,ring:[0,4,5,2],todo:7,method:1,multivari:[4,7],seri:[0,1,2,3,4,5,6,7]}})
2