Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
80549 views
1
'use strict';
2
3
4
var utils = require('../utils/common');
5
6
/* Public constants ==========================================================*/
7
/* ===========================================================================*/
8
9
10
//var Z_FILTERED = 1;
11
//var Z_HUFFMAN_ONLY = 2;
12
//var Z_RLE = 3;
13
var Z_FIXED = 4;
14
//var Z_DEFAULT_STRATEGY = 0;
15
16
/* Possible values of the data_type field (though see inflate()) */
17
var Z_BINARY = 0;
18
var Z_TEXT = 1;
19
//var Z_ASCII = 1; // = Z_TEXT
20
var Z_UNKNOWN = 2;
21
22
/*============================================================================*/
23
24
25
function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
26
27
// From zutil.h
28
29
var STORED_BLOCK = 0;
30
var STATIC_TREES = 1;
31
var DYN_TREES = 2;
32
/* The three kinds of block type */
33
34
var MIN_MATCH = 3;
35
var MAX_MATCH = 258;
36
/* The minimum and maximum match lengths */
37
38
// From deflate.h
39
/* ===========================================================================
40
* Internal compression state.
41
*/
42
43
var LENGTH_CODES = 29;
44
/* number of length codes, not counting the special END_BLOCK code */
45
46
var LITERALS = 256;
47
/* number of literal bytes 0..255 */
48
49
var L_CODES = LITERALS + 1 + LENGTH_CODES;
50
/* number of Literal or Length codes, including the END_BLOCK code */
51
52
var D_CODES = 30;
53
/* number of distance codes */
54
55
var BL_CODES = 19;
56
/* number of codes used to transfer the bit lengths */
57
58
var HEAP_SIZE = 2*L_CODES + 1;
59
/* maximum heap size */
60
61
var MAX_BITS = 15;
62
/* All codes must not exceed MAX_BITS bits */
63
64
var Buf_size = 16;
65
/* size of bit buffer in bi_buf */
66
67
68
/* ===========================================================================
69
* Constants
70
*/
71
72
var MAX_BL_BITS = 7;
73
/* Bit length codes must not exceed MAX_BL_BITS bits */
74
75
var END_BLOCK = 256;
76
/* end of block literal code */
77
78
var REP_3_6 = 16;
79
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
80
81
var REPZ_3_10 = 17;
82
/* repeat a zero length 3-10 times (3 bits of repeat count) */
83
84
var REPZ_11_138 = 18;
85
/* repeat a zero length 11-138 times (7 bits of repeat count) */
86
87
var extra_lbits = /* extra bits for each length code */
88
[0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];
89
90
var extra_dbits = /* extra bits for each distance code */
91
[0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];
92
93
var extra_blbits = /* extra bits for each bit length code */
94
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];
95
96
var bl_order =
97
[16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
98
/* The lengths of the bit length codes are sent in order of decreasing
99
* probability, to avoid transmitting the lengths for unused bit length codes.
100
*/
101
102
/* ===========================================================================
103
* Local data. These are initialized only once.
104
*/
105
106
// We pre-fill arrays with 0 to avoid uninitialized gaps
107
108
var DIST_CODE_LEN = 512; /* see definition of array dist_code below */
109
110
// !!!! Use flat array insdead of structure, Freq = i*2, Len = i*2+1
111
var static_ltree = new Array((L_CODES+2) * 2);
112
zero(static_ltree);
113
/* The static literal tree. Since the bit lengths are imposed, there is no
114
* need for the L_CODES extra codes used during heap construction. However
115
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init
116
* below).
117
*/
118
119
var static_dtree = new Array(D_CODES * 2);
120
zero(static_dtree);
121
/* The static distance tree. (Actually a trivial tree since all codes use
122
* 5 bits.)
123
*/
124
125
var _dist_code = new Array(DIST_CODE_LEN);
126
zero(_dist_code);
127
/* Distance codes. The first 256 values correspond to the distances
128
* 3 .. 258, the last 256 values correspond to the top 8 bits of
129
* the 15 bit distances.
130
*/
131
132
var _length_code = new Array(MAX_MATCH-MIN_MATCH+1);
133
zero(_length_code);
134
/* length code for each normalized match length (0 == MIN_MATCH) */
135
136
var base_length = new Array(LENGTH_CODES);
137
zero(base_length);
138
/* First normalized length for each code (0 = MIN_MATCH) */
139
140
var base_dist = new Array(D_CODES);
141
zero(base_dist);
142
/* First normalized distance for each code (0 = distance of 1) */
143
144
145
var StaticTreeDesc = function (static_tree, extra_bits, extra_base, elems, max_length) {
146
147
this.static_tree = static_tree; /* static tree or NULL */
148
this.extra_bits = extra_bits; /* extra bits for each code or NULL */
149
this.extra_base = extra_base; /* base index for extra_bits */
150
this.elems = elems; /* max number of elements in the tree */
151
this.max_length = max_length; /* max bit length for the codes */
152
153
// show if `static_tree` has data or dummy - needed for monomorphic objects
154
this.has_stree = static_tree && static_tree.length;
155
};
156
157
158
var static_l_desc;
159
var static_d_desc;
160
var static_bl_desc;
161
162
163
var TreeDesc = function(dyn_tree, stat_desc) {
164
this.dyn_tree = dyn_tree; /* the dynamic tree */
165
this.max_code = 0; /* largest code with non zero frequency */
166
this.stat_desc = stat_desc; /* the corresponding static tree */
167
};
168
169
170
171
function d_code(dist) {
172
return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
173
}
174
175
176
/* ===========================================================================
177
* Output a short LSB first on the stream.
178
* IN assertion: there is enough room in pendingBuf.
179
*/
180
function put_short (s, w) {
181
// put_byte(s, (uch)((w) & 0xff));
182
// put_byte(s, (uch)((ush)(w) >> 8));
183
s.pending_buf[s.pending++] = (w) & 0xff;
184
s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
185
}
186
187
188
/* ===========================================================================
189
* Send a value on a given number of bits.
190
* IN assertion: length <= 16 and value fits in length bits.
191
*/
192
function send_bits(s, value, length) {
193
if (s.bi_valid > (Buf_size - length)) {
194
s.bi_buf |= (value << s.bi_valid) & 0xffff;
195
put_short(s, s.bi_buf);
196
s.bi_buf = value >> (Buf_size - s.bi_valid);
197
s.bi_valid += length - Buf_size;
198
} else {
199
s.bi_buf |= (value << s.bi_valid) & 0xffff;
200
s.bi_valid += length;
201
}
202
}
203
204
205
function send_code(s, c, tree) {
206
send_bits(s, tree[c*2]/*.Code*/, tree[c*2 + 1]/*.Len*/);
207
}
208
209
210
/* ===========================================================================
211
* Reverse the first len bits of a code, using straightforward code (a faster
212
* method would use a table)
213
* IN assertion: 1 <= len <= 15
214
*/
215
function bi_reverse(code, len) {
216
var res = 0;
217
do {
218
res |= code & 1;
219
code >>>= 1;
220
res <<= 1;
221
} while (--len > 0);
222
return res >>> 1;
223
}
224
225
226
/* ===========================================================================
227
* Flush the bit buffer, keeping at most 7 bits in it.
228
*/
229
function bi_flush(s) {
230
if (s.bi_valid === 16) {
231
put_short(s, s.bi_buf);
232
s.bi_buf = 0;
233
s.bi_valid = 0;
234
235
} else if (s.bi_valid >= 8) {
236
s.pending_buf[s.pending++] = s.bi_buf & 0xff;
237
s.bi_buf >>= 8;
238
s.bi_valid -= 8;
239
}
240
}
241
242
243
/* ===========================================================================
244
* Compute the optimal bit lengths for a tree and update the total bit length
245
* for the current block.
246
* IN assertion: the fields freq and dad are set, heap[heap_max] and
247
* above are the tree nodes sorted by increasing frequency.
248
* OUT assertions: the field len is set to the optimal bit length, the
249
* array bl_count contains the frequencies for each bit length.
250
* The length opt_len is updated; static_len is also updated if stree is
251
* not null.
252
*/
253
function gen_bitlen(s, desc)
254
// deflate_state *s;
255
// tree_desc *desc; /* the tree descriptor */
256
{
257
var tree = desc.dyn_tree;
258
var max_code = desc.max_code;
259
var stree = desc.stat_desc.static_tree;
260
var has_stree = desc.stat_desc.has_stree;
261
var extra = desc.stat_desc.extra_bits;
262
var base = desc.stat_desc.extra_base;
263
var max_length = desc.stat_desc.max_length;
264
var h; /* heap index */
265
var n, m; /* iterate over the tree elements */
266
var bits; /* bit length */
267
var xbits; /* extra bits */
268
var f; /* frequency */
269
var overflow = 0; /* number of elements with bit length too large */
270
271
for (bits = 0; bits <= MAX_BITS; bits++) {
272
s.bl_count[bits] = 0;
273
}
274
275
/* In a first pass, compute the optimal bit lengths (which may
276
* overflow in the case of the bit length tree).
277
*/
278
tree[s.heap[s.heap_max]*2 + 1]/*.Len*/ = 0; /* root of the heap */
279
280
for (h = s.heap_max+1; h < HEAP_SIZE; h++) {
281
n = s.heap[h];
282
bits = tree[tree[n*2 +1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
283
if (bits > max_length) {
284
bits = max_length;
285
overflow++;
286
}
287
tree[n*2 + 1]/*.Len*/ = bits;
288
/* We overwrite tree[n].Dad which is no longer needed */
289
290
if (n > max_code) { continue; } /* not a leaf node */
291
292
s.bl_count[bits]++;
293
xbits = 0;
294
if (n >= base) {
295
xbits = extra[n-base];
296
}
297
f = tree[n * 2]/*.Freq*/;
298
s.opt_len += f * (bits + xbits);
299
if (has_stree) {
300
s.static_len += f * (stree[n*2 + 1]/*.Len*/ + xbits);
301
}
302
}
303
if (overflow === 0) { return; }
304
305
// Trace((stderr,"\nbit length overflow\n"));
306
/* This happens for example on obj2 and pic of the Calgary corpus */
307
308
/* Find the first bit length which could increase: */
309
do {
310
bits = max_length-1;
311
while (s.bl_count[bits] === 0) { bits--; }
312
s.bl_count[bits]--; /* move one leaf down the tree */
313
s.bl_count[bits+1] += 2; /* move one overflow item as its brother */
314
s.bl_count[max_length]--;
315
/* The brother of the overflow item also moves one step up,
316
* but this does not affect bl_count[max_length]
317
*/
318
overflow -= 2;
319
} while (overflow > 0);
320
321
/* Now recompute all bit lengths, scanning in increasing frequency.
322
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
323
* lengths instead of fixing only the wrong ones. This idea is taken
324
* from 'ar' written by Haruhiko Okumura.)
325
*/
326
for (bits = max_length; bits !== 0; bits--) {
327
n = s.bl_count[bits];
328
while (n !== 0) {
329
m = s.heap[--h];
330
if (m > max_code) { continue; }
331
if (tree[m*2 + 1]/*.Len*/ !== bits) {
332
// Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
333
s.opt_len += (bits - tree[m*2 + 1]/*.Len*/)*tree[m*2]/*.Freq*/;
334
tree[m*2 + 1]/*.Len*/ = bits;
335
}
336
n--;
337
}
338
}
339
}
340
341
342
/* ===========================================================================
343
* Generate the codes for a given tree and bit counts (which need not be
344
* optimal).
345
* IN assertion: the array bl_count contains the bit length statistics for
346
* the given tree and the field len is set for all tree elements.
347
* OUT assertion: the field code is set for all tree elements of non
348
* zero code length.
349
*/
350
function gen_codes(tree, max_code, bl_count)
351
// ct_data *tree; /* the tree to decorate */
352
// int max_code; /* largest code with non zero frequency */
353
// ushf *bl_count; /* number of codes at each bit length */
354
{
355
var next_code = new Array(MAX_BITS+1); /* next code value for each bit length */
356
var code = 0; /* running code value */
357
var bits; /* bit index */
358
var n; /* code index */
359
360
/* The distribution counts are first used to generate the code values
361
* without bit reversal.
362
*/
363
for (bits = 1; bits <= MAX_BITS; bits++) {
364
next_code[bits] = code = (code + bl_count[bits-1]) << 1;
365
}
366
/* Check that the bit counts in bl_count are consistent. The last code
367
* must be all ones.
368
*/
369
//Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
370
// "inconsistent bit counts");
371
//Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
372
373
for (n = 0; n <= max_code; n++) {
374
var len = tree[n*2 + 1]/*.Len*/;
375
if (len === 0) { continue; }
376
/* Now reverse the bits */
377
tree[n*2]/*.Code*/ = bi_reverse(next_code[len]++, len);
378
379
//Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
380
// n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
381
}
382
}
383
384
385
/* ===========================================================================
386
* Initialize the various 'constant' tables.
387
*/
388
function tr_static_init() {
389
var n; /* iterates over tree elements */
390
var bits; /* bit counter */
391
var length; /* length value */
392
var code; /* code value */
393
var dist; /* distance index */
394
var bl_count = new Array(MAX_BITS+1);
395
/* number of codes at each bit length for an optimal tree */
396
397
// do check in _tr_init()
398
//if (static_init_done) return;
399
400
/* For some embedded targets, global variables are not initialized: */
401
/*#ifdef NO_INIT_GLOBAL_POINTERS
402
static_l_desc.static_tree = static_ltree;
403
static_l_desc.extra_bits = extra_lbits;
404
static_d_desc.static_tree = static_dtree;
405
static_d_desc.extra_bits = extra_dbits;
406
static_bl_desc.extra_bits = extra_blbits;
407
#endif*/
408
409
/* Initialize the mapping length (0..255) -> length code (0..28) */
410
length = 0;
411
for (code = 0; code < LENGTH_CODES-1; code++) {
412
base_length[code] = length;
413
for (n = 0; n < (1<<extra_lbits[code]); n++) {
414
_length_code[length++] = code;
415
}
416
}
417
//Assert (length == 256, "tr_static_init: length != 256");
418
/* Note that the length 255 (match length 258) can be represented
419
* in two different ways: code 284 + 5 bits or code 285, so we
420
* overwrite length_code[255] to use the best encoding:
421
*/
422
_length_code[length-1] = code;
423
424
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
425
dist = 0;
426
for (code = 0 ; code < 16; code++) {
427
base_dist[code] = dist;
428
for (n = 0; n < (1<<extra_dbits[code]); n++) {
429
_dist_code[dist++] = code;
430
}
431
}
432
//Assert (dist == 256, "tr_static_init: dist != 256");
433
dist >>= 7; /* from now on, all distances are divided by 128 */
434
for ( ; code < D_CODES; code++) {
435
base_dist[code] = dist << 7;
436
for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
437
_dist_code[256 + dist++] = code;
438
}
439
}
440
//Assert (dist == 256, "tr_static_init: 256+dist != 512");
441
442
/* Construct the codes of the static literal tree */
443
for (bits = 0; bits <= MAX_BITS; bits++) {
444
bl_count[bits] = 0;
445
}
446
447
n = 0;
448
while (n <= 143) {
449
static_ltree[n*2 + 1]/*.Len*/ = 8;
450
n++;
451
bl_count[8]++;
452
}
453
while (n <= 255) {
454
static_ltree[n*2 + 1]/*.Len*/ = 9;
455
n++;
456
bl_count[9]++;
457
}
458
while (n <= 279) {
459
static_ltree[n*2 + 1]/*.Len*/ = 7;
460
n++;
461
bl_count[7]++;
462
}
463
while (n <= 287) {
464
static_ltree[n*2 + 1]/*.Len*/ = 8;
465
n++;
466
bl_count[8]++;
467
}
468
/* Codes 286 and 287 do not exist, but we must include them in the
469
* tree construction to get a canonical Huffman tree (longest code
470
* all ones)
471
*/
472
gen_codes(static_ltree, L_CODES+1, bl_count);
473
474
/* The static distance tree is trivial: */
475
for (n = 0; n < D_CODES; n++) {
476
static_dtree[n*2 + 1]/*.Len*/ = 5;
477
static_dtree[n*2]/*.Code*/ = bi_reverse(n, 5);
478
}
479
480
// Now data ready and we can init static trees
481
static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS);
482
static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS);
483
static_bl_desc =new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS);
484
485
//static_init_done = true;
486
}
487
488
489
/* ===========================================================================
490
* Initialize a new block.
491
*/
492
function init_block(s) {
493
var n; /* iterates over tree elements */
494
495
/* Initialize the trees. */
496
for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n*2]/*.Freq*/ = 0; }
497
for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n*2]/*.Freq*/ = 0; }
498
for (n = 0; n < BL_CODES; n++) { s.bl_tree[n*2]/*.Freq*/ = 0; }
499
500
s.dyn_ltree[END_BLOCK*2]/*.Freq*/ = 1;
501
s.opt_len = s.static_len = 0;
502
s.last_lit = s.matches = 0;
503
}
504
505
506
/* ===========================================================================
507
* Flush the bit buffer and align the output on a byte boundary
508
*/
509
function bi_windup(s)
510
{
511
if (s.bi_valid > 8) {
512
put_short(s, s.bi_buf);
513
} else if (s.bi_valid > 0) {
514
//put_byte(s, (Byte)s->bi_buf);
515
s.pending_buf[s.pending++] = s.bi_buf;
516
}
517
s.bi_buf = 0;
518
s.bi_valid = 0;
519
}
520
521
/* ===========================================================================
522
* Copy a stored block, storing first the length and its
523
* one's complement if requested.
524
*/
525
function copy_block(s, buf, len, header)
526
//DeflateState *s;
527
//charf *buf; /* the input data */
528
//unsigned len; /* its length */
529
//int header; /* true if block header must be written */
530
{
531
bi_windup(s); /* align on byte boundary */
532
533
if (header) {
534
put_short(s, len);
535
put_short(s, ~len);
536
}
537
// while (len--) {
538
// put_byte(s, *buf++);
539
// }
540
utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
541
s.pending += len;
542
}
543
544
/* ===========================================================================
545
* Compares to subtrees, using the tree depth as tie breaker when
546
* the subtrees have equal frequency. This minimizes the worst case length.
547
*/
548
function smaller(tree, n, m, depth) {
549
var _n2 = n*2;
550
var _m2 = m*2;
551
return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
552
(tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
553
}
554
555
/* ===========================================================================
556
* Restore the heap property by moving down the tree starting at node k,
557
* exchanging a node with the smallest of its two sons if necessary, stopping
558
* when the heap property is re-established (each father smaller than its
559
* two sons).
560
*/
561
function pqdownheap(s, tree, k)
562
// deflate_state *s;
563
// ct_data *tree; /* the tree to restore */
564
// int k; /* node to move down */
565
{
566
var v = s.heap[k];
567
var j = k << 1; /* left son of k */
568
while (j <= s.heap_len) {
569
/* Set j to the smallest of the two sons: */
570
if (j < s.heap_len &&
571
smaller(tree, s.heap[j+1], s.heap[j], s.depth)) {
572
j++;
573
}
574
/* Exit if v is smaller than both sons */
575
if (smaller(tree, v, s.heap[j], s.depth)) { break; }
576
577
/* Exchange v with the smallest son */
578
s.heap[k] = s.heap[j];
579
k = j;
580
581
/* And continue down the tree, setting j to the left son of k */
582
j <<= 1;
583
}
584
s.heap[k] = v;
585
}
586
587
588
// inlined manually
589
// var SMALLEST = 1;
590
591
/* ===========================================================================
592
* Send the block data compressed using the given Huffman trees
593
*/
594
function compress_block(s, ltree, dtree)
595
// deflate_state *s;
596
// const ct_data *ltree; /* literal tree */
597
// const ct_data *dtree; /* distance tree */
598
{
599
var dist; /* distance of matched string */
600
var lc; /* match length or unmatched char (if dist == 0) */
601
var lx = 0; /* running index in l_buf */
602
var code; /* the code to send */
603
var extra; /* number of extra bits to send */
604
605
if (s.last_lit !== 0) {
606
do {
607
dist = (s.pending_buf[s.d_buf + lx*2] << 8) | (s.pending_buf[s.d_buf + lx*2 + 1]);
608
lc = s.pending_buf[s.l_buf + lx];
609
lx++;
610
611
if (dist === 0) {
612
send_code(s, lc, ltree); /* send a literal byte */
613
//Tracecv(isgraph(lc), (stderr," '%c' ", lc));
614
} else {
615
/* Here, lc is the match length - MIN_MATCH */
616
code = _length_code[lc];
617
send_code(s, code+LITERALS+1, ltree); /* send the length code */
618
extra = extra_lbits[code];
619
if (extra !== 0) {
620
lc -= base_length[code];
621
send_bits(s, lc, extra); /* send the extra length bits */
622
}
623
dist--; /* dist is now the match distance - 1 */
624
code = d_code(dist);
625
//Assert (code < D_CODES, "bad d_code");
626
627
send_code(s, code, dtree); /* send the distance code */
628
extra = extra_dbits[code];
629
if (extra !== 0) {
630
dist -= base_dist[code];
631
send_bits(s, dist, extra); /* send the extra distance bits */
632
}
633
} /* literal or match pair ? */
634
635
/* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
636
//Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
637
// "pendingBuf overflow");
638
639
} while (lx < s.last_lit);
640
}
641
642
send_code(s, END_BLOCK, ltree);
643
}
644
645
646
/* ===========================================================================
647
* Construct one Huffman tree and assigns the code bit strings and lengths.
648
* Update the total bit length for the current block.
649
* IN assertion: the field freq is set for all tree elements.
650
* OUT assertions: the fields len and code are set to the optimal bit length
651
* and corresponding code. The length opt_len is updated; static_len is
652
* also updated if stree is not null. The field max_code is set.
653
*/
654
function build_tree(s, desc)
655
// deflate_state *s;
656
// tree_desc *desc; /* the tree descriptor */
657
{
658
var tree = desc.dyn_tree;
659
var stree = desc.stat_desc.static_tree;
660
var has_stree = desc.stat_desc.has_stree;
661
var elems = desc.stat_desc.elems;
662
var n, m; /* iterate over heap elements */
663
var max_code = -1; /* largest code with non zero frequency */
664
var node; /* new node being created */
665
666
/* Construct the initial heap, with least frequent element in
667
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
668
* heap[0] is not used.
669
*/
670
s.heap_len = 0;
671
s.heap_max = HEAP_SIZE;
672
673
for (n = 0; n < elems; n++) {
674
if (tree[n * 2]/*.Freq*/ !== 0) {
675
s.heap[++s.heap_len] = max_code = n;
676
s.depth[n] = 0;
677
678
} else {
679
tree[n*2 + 1]/*.Len*/ = 0;
680
}
681
}
682
683
/* The pkzip format requires that at least one distance code exists,
684
* and that at least one bit should be sent even if there is only one
685
* possible code. So to avoid special checks later on we force at least
686
* two codes of non zero frequency.
687
*/
688
while (s.heap_len < 2) {
689
node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
690
tree[node * 2]/*.Freq*/ = 1;
691
s.depth[node] = 0;
692
s.opt_len--;
693
694
if (has_stree) {
695
s.static_len -= stree[node*2 + 1]/*.Len*/;
696
}
697
/* node is 0 or 1 so it does not have extra bits */
698
}
699
desc.max_code = max_code;
700
701
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
702
* establish sub-heaps of increasing lengths:
703
*/
704
for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
705
706
/* Construct the Huffman tree by repeatedly combining the least two
707
* frequent nodes.
708
*/
709
node = elems; /* next internal node of the tree */
710
do {
711
//pqremove(s, tree, n); /* n = node of least frequency */
712
/*** pqremove ***/
713
n = s.heap[1/*SMALLEST*/];
714
s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
715
pqdownheap(s, tree, 1/*SMALLEST*/);
716
/***/
717
718
m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
719
720
s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
721
s.heap[--s.heap_max] = m;
722
723
/* Create a new node father of n and m */
724
tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
725
s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
726
tree[n*2 + 1]/*.Dad*/ = tree[m*2 + 1]/*.Dad*/ = node;
727
728
/* and insert the new node in the heap */
729
s.heap[1/*SMALLEST*/] = node++;
730
pqdownheap(s, tree, 1/*SMALLEST*/);
731
732
} while (s.heap_len >= 2);
733
734
s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
735
736
/* At this point, the fields freq and dad are set. We can now
737
* generate the bit lengths.
738
*/
739
gen_bitlen(s, desc);
740
741
/* The field len is now set, we can generate the bit codes */
742
gen_codes(tree, max_code, s.bl_count);
743
}
744
745
746
/* ===========================================================================
747
* Scan a literal or distance tree to determine the frequencies of the codes
748
* in the bit length tree.
749
*/
750
function scan_tree(s, tree, max_code)
751
// deflate_state *s;
752
// ct_data *tree; /* the tree to be scanned */
753
// int max_code; /* and its largest code of non zero frequency */
754
{
755
var n; /* iterates over all tree elements */
756
var prevlen = -1; /* last emitted length */
757
var curlen; /* length of current code */
758
759
var nextlen = tree[0*2 + 1]/*.Len*/; /* length of next code */
760
761
var count = 0; /* repeat count of the current code */
762
var max_count = 7; /* max repeat count */
763
var min_count = 4; /* min repeat count */
764
765
if (nextlen === 0) {
766
max_count = 138;
767
min_count = 3;
768
}
769
tree[(max_code+1)*2 + 1]/*.Len*/ = 0xffff; /* guard */
770
771
for (n = 0; n <= max_code; n++) {
772
curlen = nextlen;
773
nextlen = tree[(n+1)*2 + 1]/*.Len*/;
774
775
if (++count < max_count && curlen === nextlen) {
776
continue;
777
778
} else if (count < min_count) {
779
s.bl_tree[curlen * 2]/*.Freq*/ += count;
780
781
} else if (curlen !== 0) {
782
783
if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
784
s.bl_tree[REP_3_6*2]/*.Freq*/++;
785
786
} else if (count <= 10) {
787
s.bl_tree[REPZ_3_10*2]/*.Freq*/++;
788
789
} else {
790
s.bl_tree[REPZ_11_138*2]/*.Freq*/++;
791
}
792
793
count = 0;
794
prevlen = curlen;
795
796
if (nextlen === 0) {
797
max_count = 138;
798
min_count = 3;
799
800
} else if (curlen === nextlen) {
801
max_count = 6;
802
min_count = 3;
803
804
} else {
805
max_count = 7;
806
min_count = 4;
807
}
808
}
809
}
810
811
812
/* ===========================================================================
813
* Send a literal or distance tree in compressed form, using the codes in
814
* bl_tree.
815
*/
816
function send_tree(s, tree, max_code)
817
// deflate_state *s;
818
// ct_data *tree; /* the tree to be scanned */
819
// int max_code; /* and its largest code of non zero frequency */
820
{
821
var n; /* iterates over all tree elements */
822
var prevlen = -1; /* last emitted length */
823
var curlen; /* length of current code */
824
825
var nextlen = tree[0*2 + 1]/*.Len*/; /* length of next code */
826
827
var count = 0; /* repeat count of the current code */
828
var max_count = 7; /* max repeat count */
829
var min_count = 4; /* min repeat count */
830
831
/* tree[max_code+1].Len = -1; */ /* guard already set */
832
if (nextlen === 0) {
833
max_count = 138;
834
min_count = 3;
835
}
836
837
for (n = 0; n <= max_code; n++) {
838
curlen = nextlen;
839
nextlen = tree[(n+1)*2 + 1]/*.Len*/;
840
841
if (++count < max_count && curlen === nextlen) {
842
continue;
843
844
} else if (count < min_count) {
845
do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
846
847
} else if (curlen !== 0) {
848
if (curlen !== prevlen) {
849
send_code(s, curlen, s.bl_tree);
850
count--;
851
}
852
//Assert(count >= 3 && count <= 6, " 3_6?");
853
send_code(s, REP_3_6, s.bl_tree);
854
send_bits(s, count-3, 2);
855
856
} else if (count <= 10) {
857
send_code(s, REPZ_3_10, s.bl_tree);
858
send_bits(s, count-3, 3);
859
860
} else {
861
send_code(s, REPZ_11_138, s.bl_tree);
862
send_bits(s, count-11, 7);
863
}
864
865
count = 0;
866
prevlen = curlen;
867
if (nextlen === 0) {
868
max_count = 138;
869
min_count = 3;
870
871
} else if (curlen === nextlen) {
872
max_count = 6;
873
min_count = 3;
874
875
} else {
876
max_count = 7;
877
min_count = 4;
878
}
879
}
880
}
881
882
883
/* ===========================================================================
884
* Construct the Huffman tree for the bit lengths and return the index in
885
* bl_order of the last bit length code to send.
886
*/
887
function build_bl_tree(s) {
888
var max_blindex; /* index of last bit length code of non zero freq */
889
890
/* Determine the bit length frequencies for literal and distance trees */
891
scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
892
scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
893
894
/* Build the bit length tree: */
895
build_tree(s, s.bl_desc);
896
/* opt_len now includes the length of the tree representations, except
897
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
898
*/
899
900
/* Determine the number of bit length codes to send. The pkzip format
901
* requires that at least 4 bit length codes be sent. (appnote.txt says
902
* 3 but the actual value used is 4.)
903
*/
904
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
905
if (s.bl_tree[bl_order[max_blindex]*2 + 1]/*.Len*/ !== 0) {
906
break;
907
}
908
}
909
/* Update opt_len to include the bit length tree and counts */
910
s.opt_len += 3*(max_blindex+1) + 5+5+4;
911
//Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
912
// s->opt_len, s->static_len));
913
914
return max_blindex;
915
}
916
917
918
/* ===========================================================================
919
* Send the header for a block using dynamic Huffman trees: the counts, the
920
* lengths of the bit length codes, the literal tree and the distance tree.
921
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
922
*/
923
function send_all_trees(s, lcodes, dcodes, blcodes)
924
// deflate_state *s;
925
// int lcodes, dcodes, blcodes; /* number of codes for each tree */
926
{
927
var rank; /* index in bl_order */
928
929
//Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
930
//Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
931
// "too many codes");
932
//Tracev((stderr, "\nbl counts: "));
933
send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
934
send_bits(s, dcodes-1, 5);
935
send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
936
for (rank = 0; rank < blcodes; rank++) {
937
//Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
938
send_bits(s, s.bl_tree[bl_order[rank]*2 + 1]/*.Len*/, 3);
939
}
940
//Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
941
942
send_tree(s, s.dyn_ltree, lcodes-1); /* literal tree */
943
//Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
944
945
send_tree(s, s.dyn_dtree, dcodes-1); /* distance tree */
946
//Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
947
}
948
949
950
/* ===========================================================================
951
* Check if the data type is TEXT or BINARY, using the following algorithm:
952
* - TEXT if the two conditions below are satisfied:
953
* a) There are no non-portable control characters belonging to the
954
* "black list" (0..6, 14..25, 28..31).
955
* b) There is at least one printable character belonging to the
956
* "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
957
* - BINARY otherwise.
958
* - The following partially-portable control characters form a
959
* "gray list" that is ignored in this detection algorithm:
960
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
961
* IN assertion: the fields Freq of dyn_ltree are set.
962
*/
963
function detect_data_type(s) {
964
/* black_mask is the bit mask of black-listed bytes
965
* set bits 0..6, 14..25, and 28..31
966
* 0xf3ffc07f = binary 11110011111111111100000001111111
967
*/
968
var black_mask = 0xf3ffc07f;
969
var n;
970
971
/* Check for non-textual ("black-listed") bytes. */
972
for (n = 0; n <= 31; n++, black_mask >>>= 1) {
973
if ((black_mask & 1) && (s.dyn_ltree[n*2]/*.Freq*/ !== 0)) {
974
return Z_BINARY;
975
}
976
}
977
978
/* Check for textual ("white-listed") bytes. */
979
if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
980
s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
981
return Z_TEXT;
982
}
983
for (n = 32; n < LITERALS; n++) {
984
if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
985
return Z_TEXT;
986
}
987
}
988
989
/* There are no "black-listed" or "white-listed" bytes:
990
* this stream either is empty or has tolerated ("gray-listed") bytes only.
991
*/
992
return Z_BINARY;
993
}
994
995
996
var static_init_done = false;
997
998
/* ===========================================================================
999
* Initialize the tree data structures for a new zlib stream.
1000
*/
1001
function _tr_init(s)
1002
{
1003
1004
if (!static_init_done) {
1005
tr_static_init();
1006
static_init_done = true;
1007
}
1008
1009
s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc);
1010
s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc);
1011
s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
1012
1013
s.bi_buf = 0;
1014
s.bi_valid = 0;
1015
1016
/* Initialize the first block of the first file: */
1017
init_block(s);
1018
}
1019
1020
1021
/* ===========================================================================
1022
* Send a stored block
1023
*/
1024
function _tr_stored_block(s, buf, stored_len, last)
1025
//DeflateState *s;
1026
//charf *buf; /* input block */
1027
//ulg stored_len; /* length of input block */
1028
//int last; /* one if this is the last block for a file */
1029
{
1030
send_bits(s, (STORED_BLOCK<<1)+(last ? 1 : 0), 3); /* send block type */
1031
copy_block(s, buf, stored_len, true); /* with header */
1032
}
1033
1034
1035
/* ===========================================================================
1036
* Send one empty static block to give enough lookahead for inflate.
1037
* This takes 10 bits, of which 7 may remain in the bit buffer.
1038
*/
1039
function _tr_align(s) {
1040
send_bits(s, STATIC_TREES<<1, 3);
1041
send_code(s, END_BLOCK, static_ltree);
1042
bi_flush(s);
1043
}
1044
1045
1046
/* ===========================================================================
1047
* Determine the best encoding for the current block: dynamic trees, static
1048
* trees or store, and output the encoded block to the zip file.
1049
*/
1050
function _tr_flush_block(s, buf, stored_len, last)
1051
//DeflateState *s;
1052
//charf *buf; /* input block, or NULL if too old */
1053
//ulg stored_len; /* length of input block */
1054
//int last; /* one if this is the last block for a file */
1055
{
1056
var opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1057
var max_blindex = 0; /* index of last bit length code of non zero freq */
1058
1059
/* Build the Huffman trees unless a stored block is forced */
1060
if (s.level > 0) {
1061
1062
/* Check if the file is binary or text */
1063
if (s.strm.data_type === Z_UNKNOWN) {
1064
s.strm.data_type = detect_data_type(s);
1065
}
1066
1067
/* Construct the literal and distance trees */
1068
build_tree(s, s.l_desc);
1069
// Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1070
// s->static_len));
1071
1072
build_tree(s, s.d_desc);
1073
// Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1074
// s->static_len));
1075
/* At this point, opt_len and static_len are the total bit lengths of
1076
* the compressed block data, excluding the tree representations.
1077
*/
1078
1079
/* Build the bit length tree for the above two trees, and get the index
1080
* in bl_order of the last bit length code to send.
1081
*/
1082
max_blindex = build_bl_tree(s);
1083
1084
/* Determine the best encoding. Compute the block lengths in bytes. */
1085
opt_lenb = (s.opt_len+3+7) >>> 3;
1086
static_lenb = (s.static_len+3+7) >>> 3;
1087
1088
// Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1089
// opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1090
// s->last_lit));
1091
1092
if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
1093
1094
} else {
1095
// Assert(buf != (char*)0, "lost buf");
1096
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1097
}
1098
1099
if ((stored_len+4 <= opt_lenb) && (buf !== -1)) {
1100
/* 4: two words for the lengths */
1101
1102
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1103
* Otherwise we can't have processed more than WSIZE input bytes since
1104
* the last block flush, because compression would have been
1105
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1106
* transform a block into a stored block.
1107
*/
1108
_tr_stored_block(s, buf, stored_len, last);
1109
1110
} else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
1111
1112
send_bits(s, (STATIC_TREES<<1) + (last ? 1 : 0), 3);
1113
compress_block(s, static_ltree, static_dtree);
1114
1115
} else {
1116
send_bits(s, (DYN_TREES<<1) + (last ? 1 : 0), 3);
1117
send_all_trees(s, s.l_desc.max_code+1, s.d_desc.max_code+1, max_blindex+1);
1118
compress_block(s, s.dyn_ltree, s.dyn_dtree);
1119
}
1120
// Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1121
/* The above check is made mod 2^32, for files larger than 512 MB
1122
* and uLong implemented on 32 bits.
1123
*/
1124
init_block(s);
1125
1126
if (last) {
1127
bi_windup(s);
1128
}
1129
// Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1130
// s->compressed_len-7*last));
1131
}
1132
1133
/* ===========================================================================
1134
* Save the match info and tally the frequency counts. Return true if
1135
* the current block must be flushed.
1136
*/
1137
function _tr_tally(s, dist, lc)
1138
// deflate_state *s;
1139
// unsigned dist; /* distance of matched string */
1140
// unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1141
{
1142
//var out_length, in_length, dcode;
1143
1144
s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff;
1145
s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
1146
1147
s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
1148
s.last_lit++;
1149
1150
if (dist === 0) {
1151
/* lc is the unmatched char */
1152
s.dyn_ltree[lc*2]/*.Freq*/++;
1153
} else {
1154
s.matches++;
1155
/* Here, lc is the match length - MIN_MATCH */
1156
dist--; /* dist = match distance - 1 */
1157
//Assert((ush)dist < (ush)MAX_DIST(s) &&
1158
// (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1159
// (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1160
1161
s.dyn_ltree[(_length_code[lc]+LITERALS+1) * 2]/*.Freq*/++;
1162
s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
1163
}
1164
1165
// (!) This block is disabled in zlib defailts,
1166
// don't enable it for binary compatibility
1167
1168
//#ifdef TRUNCATE_BLOCK
1169
// /* Try to guess if it is profitable to stop the current block here */
1170
// if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
1171
// /* Compute an upper bound for the compressed length */
1172
// out_length = s.last_lit*8;
1173
// in_length = s.strstart - s.block_start;
1174
//
1175
// for (dcode = 0; dcode < D_CODES; dcode++) {
1176
// out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
1177
// }
1178
// out_length >>>= 3;
1179
// //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1180
// // s->last_lit, in_length, out_length,
1181
// // 100L - out_length*100L/in_length));
1182
// if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
1183
// return true;
1184
// }
1185
// }
1186
//#endif
1187
1188
return (s.last_lit === s.lit_bufsize-1);
1189
/* We avoid equality with lit_bufsize because of wraparound at 64K
1190
* on 16 bit machines and because stored blocks are restricted to
1191
* 64K-1 bytes.
1192
*/
1193
}
1194
1195
exports._tr_init = _tr_init;
1196
exports._tr_stored_block = _tr_stored_block;
1197
exports._tr_flush_block = _tr_flush_block;
1198
exports._tr_tally = _tr_tally;
1199
exports._tr_align = _tr_align;
1200