Boolean-Cayley-graphs / boolean_cayley_graphs / __pycache__ / boolean_function_general_linear_class.cpython-310.pyc
24916 viewso
I��cj5 � @ s� d Z ddlZddlZddlmZ ddlmZ ddlmZ ddlm Z
ddlmZ ddl
mZ dd lmZ dd
lmZ ddlmZ ddlmZ dZG d
d� dee�ZdS )aC
A boolean function class that represents a General Linear Equivalence Class
============================================================================
The ``boolean_function_general_linear_class`` module defines
the ``BooleanFunctionGeneralLinearClass`` class,
which is a subclass of BooleanFunctionImproved that represents
a general linear equivalence class of boolean functions.
AUTHORS:
- Paul Leopardi (2023-02-05): initial version
EXAMPLES:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import (
....: BooleanFunctionGeneralLinearClass)
sage: bf = BooleanFunctionGeneralLinearClass([0,0,0,1])
sage: type(bf)
<class 'boolean_cayley_graphs.boolean_function_general_linear_class.BooleanFunctionGeneralLinearClass'>
sage: bf.truth_table(format='int')
(0, 0, 0, 1)
� N)�datetime)�BooleanFunction)�Matrix)�FiniteField)�Integer)�ZZ)�stdout)�BooleanFunctionImproved)�SaveablezUTF-8c @ s\ e Zd ZdZedd� �Zedd� �Zedd� �Zdd � Zd
d� Z dd
� Z
dd� Zdd� ZdS )�!BooleanFunctionGeneralLinearClassae
A subclass of BooleanFunctionImproved that represents
a general linear equivalence class of boolean functions.
The class inherits from BooleanFunctionImproved and is initialized in the same way.
The class inherits from Saveable to obtain load_mangled and save_mangled methods.
EXAMPLES:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import (
....: BooleanFunctionGeneralLinearClass)
sage: bf1 = BooleanFunctionGeneralLinearClass([0,1,0,0])
sage: type(bf1)
<class 'boolean_cayley_graphs.boolean_function_general_linear_class.BooleanFunctionGeneralLinearClass'>
sage: bf1.algebraic_normal_form()
x0*x1 + x0
sage: bf1.truth_table()
(False, True, False, False)
TESTS:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import (
....: BooleanFunctionGeneralLinearClass)
sage: bf = BooleanFunctionGeneralLinearClass([0,1,0,0])
sage: print(bf)
Boolean function with 2 variables
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import (
....: BooleanFunctionGeneralLinearClass)
sage: bf = BooleanFunctionGeneralLinearClass([0,1,0,0])
sage: latex(bf)
\text{\texttt{Boolean{ }function{ }with{ }2{ }variables}}
c C � | t �||��S )a
Constructor from the buffer tt_buffer.
The buffer tt_buffer is assumed to be the result of method tt_buffer(),
which returns a result of type buffer representing a truth table in hex.
INPUT:
- ``cls`` -- the class object.
- ``dim`` -- integer: the dimension of the Boolean function.
- ``tt_buffer`` -- buffer: the result of the method tt_buffer()
for the Boolean function.
EXAMPLES:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import (
....: BooleanFunctionGeneralLinearClass)
sage: bf2 = BooleanFunctionGeneralLinearClass([0,1,0,0])
sage: bf2_tt_buffer = bf2.tt_buffer()
sage: bf2_test = BooleanFunctionGeneralLinearClass.from_tt_buffer(2, bf2_tt_buffer)
sage: bf2_test.algebraic_normal_form()
x0*x1 + x0
sage: bf2 == bf2_test
True
sage: bf3 = BooleanFunctionGeneralLinearClass([0,1,0,0]*2)
sage: bf3.nvariables()
3
sage: bf3_tt_buffer = bf3.tt_buffer()
sage: bf3_test = BooleanFunctionGeneralLinearClass.from_tt_buffer(3, bf3_tt_buffer)
sage: bf3 == bf3_test
True
)r �from_tt_buffer)�cls�dim� tt_buffer� r �_/home/user/Boolean-Cayley-graphs/boolean_cayley_graphs/boolean_function_general_linear_class.pyr
` s 'z0BooleanFunctionGeneralLinearClass.from_tt_bufferc C r )a�
Constructor from the dimension dim, and the string tt_hex.
The string tt_hex is assumed to be the result of method tt_hex(), which returns
a string representing a truth table in hex.
INPUT:
- ``cls`` -- the class object.
- ``dim`` -- integer: the dimension of the Boolean function.
- ``tt_hex`` -- string: the result of the method tt_hex() for the Boolean function.
EXAMPLES:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import (
....: BooleanFunctionGeneralLinearClass)
sage: bf2 = BooleanFunctionGeneralLinearClass([0,1,0,0])
sage: bf2_tt_hex = bf2.tt_hex()
sage: bf2_test = BooleanFunctionGeneralLinearClass.from_tt_hex(2, bf2_tt_hex)
sage: bf2_test.algebraic_normal_form()
x0*x1 + x0
sage: bf2 == bf2_test
True
TESTS:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import (
....: BooleanFunctionGeneralLinearClass)
sage: bf1 = BooleanFunctionGeneralLinearClass([0,1])
sage: bf1_tt_hex = bf1.tt_hex()
sage: bf1_test = BooleanFunctionGeneralLinearClass.from_tt_hex(1, bf1_tt_hex)
sage: bf1_test.algebraic_normal_form()
x
sage: bf1 == bf1_test
True
sage: bf3 = BooleanFunctionGeneralLinearClass([0,1,0,0]*2)
sage: bf3.nvariables()
3
sage: bf3_tt_hex = bf3.tt_hex()
sage: bf3_test = BooleanFunctionGeneralLinearClass.from_tt_hex(3, bf3_tt_hex)
sage: bf3 == bf3_test
True
)r �from_tt_hex)r r �tt_hexr r r r � s 4z-BooleanFunctionGeneralLinearClass.from_tt_hexc C s | t �|��S )a�
Constructor from a csv file.
The csv file is assumed to be produced by the method save_as_csv().
INPUT:
- ``cls`` -- the class object.
- ``csv_file_name`` -- string: the name of the csv file to read from.
EXAMPLES:
::
sage: import csv
sage: import os
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import (
....: BooleanFunctionGeneralLinearClass)
sage: bf2 = BooleanFunctionGeneralLinearClass([1,0,1,1])
sage: bf2_csv_name = tmp_filename(ext='.csv')
sage: bf2.save_as_csv(bf2_csv_name)
sage: bf2_test = BooleanFunctionGeneralLinearClass.from_csv(bf2_csv_name)
sage: bf2 == bf2_test
True
sage: os.remove(bf2_csv_name)
sage: bf3 = BooleanFunctionGeneralLinearClass([0,1,0,0]*2)
sage: bf3_csv_name = tmp_filename(ext='.csv')
sage: bf3.save_as_csv(bf3_csv_name)
sage: bf3_test = BooleanFunctionGeneralLinearClass.from_csv(bf3_csv_name)
sage: bf3 == bf3_test
True
)r �from_csv)r �
csv_file_namer r r r � s $z*BooleanFunctionGeneralLinearClass.from_csvc C s
| � |�S )a�
Test for equality between extended translation equivalence classes.
WARNING:
This test is for mathematical equivalence rather than strict equality.
INPUT:
- ``other`` - BooleanFunctionExtendedTranslateClassification: another equivalence class.
OUTPUT:
A Boolean value indicating whether ``self`` is equivalent to ``other``.
EXAMPLES:
::
sage: from boolean_cayley_graphs.boolean_function_improved import BooleanFunctionImproved
sage: from boolean_cayley_graphs.boolean_function_extended_translate_classification import (
....: BooleanFunctionExtendedTranslateClassification as BooleanFunctionETC)
sage: R2.<x0,x1> = BooleanPolynomialRing(2)
sage: p = x0*x1
sage: f1 =BooleanFunctionImproved(p)
sage: c1 = BooleanFunctionETC.from_function(f1)
sage: f2 =BooleanFunctionImproved([0,0,0,1])
sage: c2 = BooleanFunctionETC.from_function(f2)
sage: print(c2.algebraic_normal_form)
x0*x1
sage: print(c1 == c2)
True
)�is_linear_equivalent)�self�otherr r r �__eq__� s
"z(BooleanFunctionGeneralLinearClass.__eq__c C s t | �}t| �| �S )a�
Return the complement Boolean function of `self`.
INPUT:
- ``self`` -- the current object.
EXAMPLES:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import BooleanFunctionGeneralLinearClass
sage: bf0 = BooleanFunctionGeneralLinearClass([1,0,1,1])
sage: bf1 = ~bf0
sage: type(bf1)
<class 'boolean_cayley_graphs.boolean_function_general_linear_class.BooleanFunctionGeneralLinearClass'>
sage: bf1.algebraic_normal_form()
x0*x1 + x0
sage: bf1.truth_table()
(False, True, False, False)
�r �type)r �bf_selfr r r �
__invert__
s z,BooleanFunctionGeneralLinearClass.__invert__c C s t | �}t| �|| �S )a!
Return the elementwise sum of `self`and `other` which must have the same number of variables.
INPUT:
- ``self`` -- the current object.
- ``other`` -- another Boolean function.
OUTPUT:
The elementwise sum of `self`and `other`
EXAMPLES:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import BooleanFunctionGeneralLinearClass
sage: bf0 = BooleanFunctionGeneralLinearClass([1,0,1,0])
sage: bf1 = BooleanFunctionGeneralLinearClass([1,1,0,0])
sage: (bf0+bf1).truth_table(format='int')
(0, 1, 1, 0)
sage: S = bf0.algebraic_normal_form() + bf1.algebraic_normal_form()
sage: (bf0+bf1).algebraic_normal_form() == S
True
TESTS:
::
sage: bf0+BooleanFunctionGeneralLinearClass([0,1])
Traceback (most recent call last):
...
ValueError: the two Boolean functions must have the same number of variables
r �r r r r r r �__add__' � #z)BooleanFunctionGeneralLinearClass.__add__c C s t | �}t| �|| �S )a)
Return the elementwise product of `self`and `other` which must have the same number of variables.
INPUT:
- ``self`` -- the current object.
- ``other`` -- another Boolean function.
OUTPUT:
The elementwise product of `self`and `other`
EXAMPLES:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import BooleanFunctionGeneralLinearClass
sage: bf0 = BooleanFunctionGeneralLinearClass([1,0,1,0])
sage: bf1 = BooleanFunctionGeneralLinearClass([1,1,0,0])
sage: (bf0*bf1).truth_table(format='int')
(1, 0, 0, 0)
sage: P = bf0.algebraic_normal_form() * bf1.algebraic_normal_form()
sage: (bf0*bf1).algebraic_normal_form() == P
True
TESTS:
::
sage: bf0*BooleanFunctionGeneralLinearClass([0,1])
Traceback (most recent call last):
...
ValueError: the two Boolean functions must have the same number of variables
r r r r r �__mul__N r! z)BooleanFunctionGeneralLinearClass.__mul__c C s t | �}t| �||B �S )a
Return the concatenation of `self` and `other` which must have the same number of variables.
INPUT:
- ``self`` -- the current object.
- ``other`` -- another Boolean function.
OUTPUT:
The concatenation of `self`and `other`
EXAMPLES:
::
sage: from boolean_cayley_graphs.boolean_function_general_linear_class import BooleanFunctionGeneralLinearClass
sage: bf0 = BooleanFunctionGeneralLinearClass([1,0,1,0])
sage: bf1 = BooleanFunctionGeneralLinearClass([1,1,0,0])
sage: (bf0|bf1).truth_table(format='int')
(1, 0, 1, 0, 1, 1, 0, 0)
sage: C = bf0.truth_table() + bf1.truth_table()
sage: (bf0|bf1).truth_table(format='int') == C
True
TESTS:
::
sage: bf0|BooleanFunctionGeneralLinearClass([0,1])
Traceback (most recent call last):
...
ValueError: the two Boolean functions must have the same number of variables
r r r r r �__or__u r! z(BooleanFunctionGeneralLinearClass.__or__N)
�__name__�
__module__�__qualname__�__doc__�classmethodr
r r r r r r"