Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
22144 views
1
\documentclass[pdf,sprung,slideColor,nocolorBG]{beamer}
2
%
3
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
4
\mode<presentation>
5
6
\let\Tiny=\tiny
7
\usetheme{Adelaide}
8
\usefonttheme[stillsansseriftext]{serif}
9
\setbeamerfont{structure}{series=\bfseries}
10
\setbeamertemplate{frametitle}[default][center]
11
\usepackage[latin1]{inputenc}
12
\usepackage{amsmath} %needed for \begin{align}... \end{align} environment
13
\usepackage{amsfonts}
14
\usepackage{amssymb}
15
\usepackage{amscd}
16
\usepackage[all]{xy}
17
\usepackage{xcolor}
18
\usepackage{enumerate}
19
%
20
\newcommand{\slidecite}[1]{\tiny{(#1)}\normalsize{}}
21
\newcommand{\smallcite}[1]{\small{(#1)}\normalsize{}}
22
23
\newcommand{\mb}[1]{\mathbb{#1}}
24
\newcommand{\mf}[1]{\mathbf{#1}}
25
\newcommand{\Emph}[1]{\emph{\textcolor{blue}{#1}}}
26
27
\newcommand{\abs}[1]{\left| #1 \right|}
28
\newcommand{\norm}[1]{\left\| #1 \right\|}
29
\newcommand{\To}{\rightarrow}
30
31
\newcommand{\E}{\mf{\operatorname{e}}}
32
33
\newcommand{\Cay}[1]{\operatorname{Cay}\left(#1\right)}
34
\newcommand{\Clique}[1]{\omega\left(#1\right)}
35
\newcommand{\dual}[1]{\widetilde{#1}}
36
37
\newcommand{\G}{\mb{G}}
38
\newcommand{\R}{\mb{R}}
39
\newcommand{\Z}{\mb{Z}}
40
%\newtheorem{Definition}{Definition}
41
\newtheorem{Question}{Question}
42
\newtheorem{Conjecture}{Conjecture}
43
44
\title{Classifying bent functions by their Cayley graphs}
45
\author{Paul Leopardi}
46
47
\date{Revised 8 December 2015}
48
49
\institute{School of Mathematical and Physical Sciences, University of Newcastle.}
50
\titlegraphic{
51
%\includegraphics[angle=0,width=10mm]{../../common/beamer-anu-colourlogo.png}
52
\includegraphics[angle=0,width=20mm]{../../common/carma_logo.jpg}
53
}
54
\begin{document}
55
56
\frame{\titlepage}
57
\begin{frame}
58
\frametitle{Acknowledgements}
59
\begin{center}
60
~
61
62
Robert Craigen, William Martin,
63
Padraig {\'O} Cath{\'a}in and
64
65
Judy-anne Osborn.
66
67
~
68
69
Australian National University.
70
71
~
72
73
SageMathCloud.
74
75
~
76
77
Australian Bureau of Meteorology.
78
79
~
80
81
The Russell family.
82
\end{center}
83
\end{frame}
84
85
\begin{frame}
86
\frametitle{Overview}
87
%\begin{center}
88
\begin{itemize}
89
\item
90
Key concepts.
91
92
~
93
94
\item
95
Equivalence.
96
97
~
98
99
\item
100
Some results.
101
102
~
103
104
\item
105
Observations for small dimensions.
106
107
~
108
109
\item
110
Some questions.
111
112
~
113
114
\item
115
SageMathCloud worksheet.
116
\end{itemize}
117
118
%\end{center}
119
\end{frame}
120
121
\section{Key concepts}
122
123
\begin{frame}
124
\frametitle{The Cayley graph of a binary function}
125
%\begin{center}
126
The \Emph{Cayley graph} $\Cay{f}$ of a binary function
127
128
~
129
130
\begin{align*}
131
%
132
f : \Z_2^n \To \Z_2 \quad \text{where} \quad f(0) = 0
133
%
134
\end{align*}
135
136
~
137
138
is
139
an undirected graph with
140
141
\begin{align*}
142
V(\Cay{f}) &:= \Z_2^n, \quad (x,y) \in E(\Cay{f}) \Leftrightarrow f(x+y) = 1.
143
\end{align*}
144
145
~
146
147
\slidecite{Bernasconi and Codenotti 1999}
148
\end{frame}
149
\begin{frame}
150
\frametitle{Bent functions}
151
152
A binary function $f : \Z_2^{2m} \To \Z_2$ is \Emph{bent} if and only if the function $\dual{f}$, defined by
153
\begin{align*}
154
(-1)^{\dual{f}(x)} &:= 2^{-m} \sum_{y \in \Z_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}
155
\end{align*}
156
is a binary function on $\Z_2^{2m}$.
157
158
~
159
160
The function $\dual{f}$ is also bent and is called the \Emph{dual} of $f$.
161
162
~
163
164
\slidecite{Dillon 1974; Rothaus 1976; Tokareva 2011}
165
\end{frame}
166
167
\begin{frame}
168
\frametitle{Strongly regular graphs}
169
%\begin{center}
170
A simple graph $\Gamma$ of order $v$ is \Emph{strongly regular} with parameters
171
$(v,k,\lambda,\mu)$ if
172
173
~
174
175
\begin{itemize}
176
\item
177
each vertex has degree $k,$
178
179
~
180
\item
181
each adjacent pair of vertices has $\lambda$ common neighbours, and
182
183
~
184
\item
185
each nonadjacent pair of vertices has $\mu$ common neighbours.
186
\end{itemize}
187
188
~
189
190
\slidecite{Brouwer, Cohen and Neumaier 1989}
191
192
%\end{center}
193
\end{frame}
194
195
\begin{frame}
196
\frametitle{Bent functions and strongly regular graphs}
197
198
\begin{Theorem}
199
\smallcite{Bernasconi and Codenotti 1999}
200
201
The Cayley graph $\Cay{f}$ of a bent function $f$ on $\Z_2^{2m}$
202
203
(with $f(0)=0$) is a strongly regular graph with $\lambda = \mu.$
204
\end{Theorem}
205
206
The parameters of $\Cay{f}$ are
207
\begin{align*}
208
(v,k,\lambda) = &(4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})
209
\\
210
\text{or} \quad &(4^m, 2^{2 m - 1} + 2^{m-1}, 2^{2 m - 2} + 2^{m-1}).
211
\end{align*}
212
213
~
214
215
\slidecite{Menon 1962; Dillon 1974; Bernasconi and Codenotti 1999}
216
%\end{center}
217
\end{frame}
218
\begin{frame}
219
\frametitle{Projective two-weight binary codes}
220
221
\begin{Definition}
222
A \Emph{two-weight binary code} with parameters $[n,k,d]$ is a $k$ dimensional subspace of $\mathbb{F}_2^n$ with
223
minimum Hamming distance $d$, such that the set of Hamming weights of the non-zero vectors has size 2.
224
225
~
226
227
``A \Emph{generator matrix} $G$ of a linear code $[n, k]$ code $C$ is any matrix
228
of rank $k$ (over $\mathbb{F}_2$) with rows from $C.$''
229
230
~
231
232
``A linear $[n, k]$ code is called \Emph{projective} if no two columns of a generator matrix
233
$G$ are linearly dependent, i.e., if the columns of $G$ are pairwise different points in a
234
projective $(k-1)$-dimensional space.''
235
In the case of $\mathbb{F}_2$, no two columns are equal.
236
237
~
238
239
\slidecite{Bouyukliev, Fack, Willems and Winne 2006}
240
241
\end{Definition}
242
243
\end{frame}
244
245
\begin{frame}
246
\frametitle{The two block designs of a bent function}
247
248
The adjacency matrix of $\Cay{f}$ can also be interpreted as the incidence matrix of a block design.
249
250
~
251
252
In this case we do not need $f(0)=0$.
253
254
~
255
256
A second block design described by Dillon and Schatz can be defined by the incidence matrix $D(f)$ where
257
\begin{align*}
258
D(f)_{c,x} &:= f(x) + \langle c, x \rangle + \dual{f}(c).
259
\end{align*}
260
This is a symmetric block design with the \Emph{symmetric difference property}.
261
262
~
263
264
\slidecite{Dillon and Schatz 1987; Neumann 2006}
265
\end{frame}
266
\section{Equivalence}
267
\begin{frame}
268
\frametitle{Cayley equivalence}
269
\begin{Definition}
270
%
271
For $f, g : \Z_2^{2m} \To \Z_2$, with both $f$ and $g$ bent,
272
273
we call $f$ and $g$ \Emph{Cayley equivalent},
274
and write $f \equiv g$,
275
276
if and only if $f(0)=g(0)=0$ and $\Cay{f} \equiv \Cay{g}$ as graphs.
277
278
~
279
280
Equivalently, $f \equiv g$ if and only if $f(0)=g(0)=0$ and
281
282
there exists a bijection $\pi : \Z_2^{2m} \To \Z_2^{2m}$ such that
283
\begin{align*}
284
g(x+y) &= f \big(\pi(x)+\pi(y)\big) \quad \text{for all~} x,y \in \Z_2^{2m}.
285
\end{align*}
286
\end{Definition}
287
\end{frame}
288
\begin{frame}
289
\frametitle{Extended Cayley equivalence}
290
\begin{Definition}
291
For $f, g : \Z_2^{2m} \To \Z_2$, with both $f$ and $g$ bent,
292
293
if there exist $\delta, \epsilon \in \{0,1\}$ such that $f + \delta \equiv g + \epsilon$,
294
295
we call $f$ and $g$ \Emph{extended Cayley (EC) equivalent} and write $f \cong g$.
296
\end{Definition}
297
Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\Z_2^{2m}$.
298
\end{frame}
299
\section{Some results}
300
\begin{frame}
301
\frametitle{Two infinite sequences: definitions}
302
303
For $m>0$, the functions $\sigma_m, \tau_m : \Z_2^{2m} \To \Z_2$ are defined by mapping $\Z_2^{2m}$ to $\Z_{2^m}$ in lex order,
304
expanding in base 4, and counting the digits 0, 1, 2, 3 in the expansion.
305
306
For $d \in \{0,1,2,3\}, x \in \Z_2^{2m}$, call this count $\sharp(d,x)$
307
308
~
309
310
$\sigma_m(x) = 1$ if and only $\sharp(1,x)$ is odd.
311
312
$\tau_m(x) = 1$ if and only if $\sharp(1,x) + \sharp(2,x) > 0$ and $\sharp(1,x)$ is even.
313
314
~
315
316
Both $\sigma_m$ and $\tau_m$ are bent functions, with $\sigma_m(0)=\tau_m(0)=0.$
317
318
~
319
320
Both $\Cay{\sigma_m}$ and $\Cay{\tau_m}$ have parameters
321
$(v,k,\lambda) = (4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})$.
322
323
~
324
325
\slidecite{L 2014, 2015}
326
\end{frame}
327
\begin{frame}
328
\frametitle{Two infinite sequences: clique numbers}
329
330
\begin{theorem}
331
$\sigma_m \equiv \tau_m$ for $m=1,2,3$, but $\sigma_m \ncong \tau_m$ for $m > 3$:
332
333
~
334
335
If $\Clique{f}$ is the \Emph{clique number} of $\Cay{f}$, then
336
\begin{align*}
337
\Clique{\sigma_m} &= \rho(2^m) \text{~and~}
338
\Clique{\tau_m} = 2^m,
339
\end{align*}
340
where $\rho$ is the \Emph{Hurwitz-Radon function}, defined by
341
\begin{align*}
342
\rho(2^{4 d + c}) &:= 2^c + 8 d, \quad \text{for~} 0 \leqslant c < 4.
343
\end{align*}
344
345
\end{theorem}
346
347
~
348
349
\slidecite{L 2015}
350
\end{frame}
351
352
\begin{frame}
353
\frametitle{Linear equivalence implies Cayley equivalence}
354
355
\begin{Theorem}
356
If $f$ is bent with $f(0)=0$ and $g(x) := f(A x)$ where $A \in GL(2m,2)$,
357
then $g$ is bent with $g(0)=0$ and $f \equiv g$.
358
\end{Theorem}
359
\begin{proof}
360
\begin{align*}
361
g(x+y) &= f\big(A(x+y)\big) = f(A x + A y)\quad \text{for all~} x,y \in \Z_2^{2m}.
362
\end{align*}
363
\end{proof}
364
365
\end{frame}
366
367
\begin{frame}
368
\frametitle{Extended affine equivalence (1)}
369
370
\begin{Definition}
371
For bent functions $f,g : \Z_2^{2m} \To \Z_2$,
372
373
$f$ is \Emph{extended affine equivalent} to $g$ if and only if
374
\begin{align*}
375
g(x) &= f(A x + b) + \langle c, x \rangle + \delta
376
\end{align*}
377
for some $A \in GL(2m,2)$, $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$.
378
\end{Definition}
379
~
380
381
\slidecite{Tokareva 2014}
382
\end{frame}
383
384
\begin{frame}
385
\frametitle{Extended affine equivalence (2)}
386
387
\begin{Theorem}
388
For $A \in GL(2m,2)$, $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$,
389
$f : \Z_2^{2m} \To \Z_2$,
390
391
the function
392
\begin{align*}
393
h(x) &:= f(A x + b) + \langle c, x \rangle + \delta
394
\intertext{can be expressed as $h(x) = g(A x)$ where}
395
g(x) &:= f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,
396
\end{align*}
397
and therefore if $f$ is bent and $h(0)=0$ then $h \equiv g$.
398
\end{Theorem}
399
\end{frame}
400
401
\begin{frame}
402
\frametitle{Extended affine equivalence (3)}
403
404
Therefore, to determine the extended Cayley equivalence classes within the extended affine equivalence class of
405
a bent function $f : \Z_2^{2m} \To \Z_2$, we need only examine functions of the form
406
\begin{align*}
407
f(x+b) + \langle c, x \rangle + f(b),
408
\end{align*}
409
for each $b, c \in \Z_2^{2m}$.
410
\end{frame}
411
\begin{frame}
412
\frametitle{Dual functions (1)}
413
\begin{Theorem}
414
\smallcite{Carlet 2007, Proposition 4}
415
416
~
417
418
For a bent function $f : \Z_2^{2m} \To \Z_2$, and $b,c \in \Z_2^{2m}$,
419
if
420
\begin{align*}
421
g(x) &:= f(x+b) + \langle c, x \rangle
422
\intertext{then}
423
\dual{g}(x) &= \dual{f}(x+c) + \langle b, x \rangle + \langle b, c \rangle.
424
\end{align*}
425
\end{Theorem}
426
427
\end{frame}
428
\begin{frame}
429
\frametitle{Dual functions (2)}
430
\begin{Theorem}
431
For a bent function $f : \Z_2^{2m} \To \Z_2$, and $A \in GL(2 m, 2)$,
432
if
433
\begin{align*}
434
g(x) &:= f(A x)
435
\intertext{then}
436
\dual{g}(x) &= \dual{f}\big((A^T)^{-1} x \big),
437
\end{align*}
438
\end{Theorem}
439
and therefore $\dual{g} \equiv \dual{f}$.
440
If, in addition, $f=\dual{f}$ then $\dual{g} \equiv g$.
441
442
\end{frame}
443
\begin{frame}
444
\frametitle{Dual functions (3)}
445
446
Functions of the form
447
\begin{align*}
448
f(x) := \sum_{k=0}^{m-1} x_{2k} x_{2k+1}
449
\end{align*}
450
are self dual bent functions, $f=\dual{f}$.
451
452
~
453
454
There are many other self dual bent functions.
455
456
~
457
458
\slidecite{Carlet, Danielson, Parker and Sol\'e 2008; Feulner, Sok, Sol\'e and Wassermann 2011}
459
\end{frame}
460
\section{Observations}
461
\begin{frame}
462
\frametitle{For $m=1$}
463
464
One extended affine class: $[f_{2,1}]$
465
466
where $f_{2,1}(x) := x_0 x_1$ is self dual.
467
468
~
469
470
Two extended Cayley classes:
471
\begin{align*}
472
\begin{array}{|cccl|}
473
\hline
474
\text{Class} &
475
\text{Parameters} &
476
\text{2-rank} &
477
\text{Clique polynomial}
478
\\
479
\hline
480
1 &
481
(4, 1, 0, 0) & 4 &
482
2t^{2} + 4t + 1
483
\\
484
2 &
485
K_4 & 4 &
486
t^{4} + 4t^{3} + 6t^{2} + 4t + 1
487
\\
488
\hline
489
\end{array}
490
\end{align*}
491
492
\end{frame}
493
\begin{frame}
494
\frametitle{For $m=2$: classes}
495
496
One extended affine class: $[f_{4,1}]$ where
497
498
$f_{4,1}(x) := x_0 x_1 + x_2 x_3$ is self dual.
499
500
~
501
502
Two extended Cayley classes:
503
\begin{align*}
504
\begin{array}{|cccl|}
505
\hline
506
\text{Class} &
507
\text{Parameters} &
508
\text{2-rank} &
509
\text{Clique polynomial}
510
\\
511
\hline
512
1 &
513
(16, 6, 2, 2) &
514
6 &
515
8t^{4} + 32t^{3} + 48t^{2} + 16t + 1
516
\\
517
2 &
518
(16, 10, 6, 6) &
519
6 &
520
\begin{array}{l}
521
16t^{5} + 120t^{4} + 160t^{3} +
522
\\
523
80t^{2} + 16t + 1
524
\end{array}
525
\\
526
\hline
527
\end{array}
528
\end{align*}
529
\end{frame}
530
\begin{frame}
531
\frametitle{For $m=2$: two-weight codes}
532
533
The Cayley graphs for classes 1 and 2 are isomorphic to those those obtained from the following two-weight projective
534
codes:
535
536
\begin{align*}
537
\begin{array}{|ccc|}
538
\hline
539
\text{Class} &
540
\text{Parameters} & \text{Generator matrix}
541
\\
542
\hline
543
1 &
544
[6, 4, 2] &
545
\left[
546
\begin{array}{cccccc}
547
0 & 0 & 1 & 1 & 1 & 1
548
\\
549
1 & 0 & 0 & 1 & 1 & 1
550
\\
551
1 & 1 & 1 & 1 & 0 & 0
552
\\
553
0 & 1 & 1 & 1 & 1 & 0
554
\end{array}
555
\right]
556
\\
557
2 &
558
[5, 4, 2] &
559
\left[
560
\begin{array}{ccccc}
561
1 & 1 & 0 & 0 & 0
562
\\
563
0 & 1 & 1 & 0 & 0
564
\\
565
0 & 0 & 0 & 1 & 1
566
\\
567
1 & 0 & 0 & 0 & 1
568
\end{array}
569
\right]
570
\\
571
\hline
572
\end{array}
573
\end{align*}
574
575
\end{frame}
576
\begin{frame}
577
\frametitle{For $m=3$: extended affine classes}
578
579
Four extended affine classes:
580
581
\begin{align*}
582
\def\arraystretch{1.2}
583
\begin{array}{|cl|}
584
\hline
585
\text{Class} &
586
\text{Representative}
587
\\
588
\hline
589
\,[f_{6,1}] & f_{6,1} :=
590
\begin{array}{l}
591
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5}
592
\end{array}
593
\\
594
\,[f_{6,2}] & f_{6,2} :=
595
\begin{array}{l}
596
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}
597
\end{array}
598
\\
599
\,[f_{6,3}] & f_{6,3} :=
600
\begin{array}{l}
601
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} +
602
\\
603
x_{2} x_{4} + x_{3} x_{4}
604
\end{array}
605
\\
606
\,[f_{6,4}] & f_{6,4} :=
607
\begin{array}{l}
608
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} +
609
\\
610
x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}
611
\end{array}
612
\\
613
\hline
614
\end{array}
615
\end{align*}
616
\end{frame}
617
\begin{frame}
618
\frametitle{For EA class $[f_{6,1}]$: classes}
619
620
The function
621
$f_{6,1}(x) = x_0 x_1 + x_2 x_3 + x_4 x_5$ is self dual.
622
623
~
624
625
Two extended Cayley classes:
626
\small{}
627
\begin{align*}
628
\def\arraystretch{1.2}
629
\begin{array}{|cccl|}
630
\hline
631
\text{Class} &
632
\text{Parameters} &
633
\text{2-rank} &
634
\text{Clique polynomial}
635
\\
636
\hline
637
1 &
638
(64, 28, 12, 12) & 8 &
639
\begin{array}{l}
640
64t^{8} + 512t^{7} + 1792t^{6} + 3584t^{5} +
641
\\
642
5376t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
643
\end{array}
644
\\
645
2 &
646
(64, 36, 20, 20) & 8 &
647
\begin{array}{l}
648
2304t^{6} + 13824t^{5} + 19200t^{4} +
649
\\
650
7680t^{3} + 1152t^{2} + 64t + 1
651
\end{array}
652
\\
653
\hline
654
\end{array}
655
\end{align*}
656
\end{frame}
657
\begin{frame}
658
\frametitle{For EA class $[f_{6,1}]$: two-weight codes}
659
660
The Cayley graphs for classes 1 and 2 are isomorphic to those those obtained from the following two-weight projective
661
codes as listed by Tonchev (2006):
662
663
\begin{align*}
664
\begin{array}{|ccl|}
665
\hline
666
\text{Class} &
667
\text{Parameters} & \text{Reference}
668
\\
669
\hline
670
1 & [35,6,16] & \text{Tonchev Table 1.56 1, 2 }
671
\\
672
2 & [27,6,12] & \text{Tonchev Table 1.55 1 }
673
\\
674
\hline
675
\end{array}
676
\end{align*}
677
678
\slidecite{Tonchev 1996, 2006}
679
\end{frame}
680
\begin{frame}
681
\frametitle{For EA class $[f_{6,2}]$: classes}
682
683
The function
684
$f_{6,2}(x) = x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}$.
685
686
~
687
688
Three extended Cayley classes:
689
\small{}
690
\begin{align*}
691
\def\arraystretch{1.2}
692
\begin{array}{|cccl|}
693
\hline
694
\text{Class} &
695
\text{Parameters} &
696
\text{2-rank} &
697
\text{Clique polynomial}
698
\\
699
\hline
700
1 &
701
(64, 28, 12, 12) & 8 &
702
\begin{array}{l}
703
64t^{8} + 512t^{7} + 1792t^{6} + 3584t^{5} +
704
\\
705
5376t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
706
\end{array}
707
\\
708
2 &
709
(64, 28, 12, 12) & 8 &
710
\begin{array}{l}
711
256t^{6} + 1536t^{5} + 4352t^{4} +
712
\\
713
3584t^{3} + 896t^{2} + 64t + 1
714
\end{array}
715
\\
716
3 &
717
(64, 36, 20, 20) & 8 &
718
\begin{array}{l}
719
192t^{8} + 1536t^{7} + 8960t^{6} + 19968t^{5} +
720
\\
721
20224t^{4} + 7680t^{3} + 1152t^{2} + 64t + 1
722
\end{array}
723
\\
724
\hline
725
\end{array}
726
\end{align*}
727
Graph 1 is isomorphic to graph 1 of EA class $[f_{6,1}]$, and is also isomorphic to the complement of Royle's $(64,35,18,20)$ SRG $X$.
728
729
~
730
731
\slidecite{Royle 2008}
732
\end{frame}
733
\begin{frame}
734
\frametitle{For EA class $[f_{6,2}]$: two-weight codes}
735
736
The Cayley graphs for classes 1 to 3 are isomorphic to those those obtained from the following two-weight projective
737
codes as listed by Tonchev (2006):
738
739
\begin{align*}
740
\begin{array}{|ccl|}
741
\hline
742
\text{Class} &
743
\text{Parameters} & \text{Reference}
744
\\
745
\hline
746
1 & [35,6,16] & \text{Tonchev Table 1.56 1, 2 }
747
\\
748
2 & [35,6,16] & \text{Tonchev Table 1.56 3 }
749
\\
750
3 & [27,6,12] & \text{Tonchev Table 1.55 2 }
751
\\
752
\hline
753
\end{array}
754
\end{align*}
755
756
\slidecite{Tonchev 1996, 2006}
757
\end{frame}
758
\begin{frame}
759
\frametitle{For EA class $[f_{6,3}]$: classes}
760
761
The function
762
\begin{align*}
763
f_{6,3}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4}
764
\\
765
&+ x_{1} x_{5} + x_{2} x_{4} + x_{3} x_{4}.
766
\end{align*}
767
768
Four extended Cayley classes:
769
\small{}
770
\begin{align*}
771
\def\arraystretch{1.2}
772
\begin{array}{|cccl|}
773
\hline
774
\text{Class} &
775
\text{Parameters} &
776
\text{2-rank} &
777
\text{Clique polynomial}
778
\\
779
\hline
780
1 &
781
(64, 28, 12, 12) & 12 &
782
\begin{array}{l}
783
32t^{8} + 256t^{7} + 896t^{6} + 2048t^{5} +
784
\\
785
4608t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
786
\end{array}
787
\\
788
2 &
789
(64, 28, 12, 12) & 12 &
790
\begin{array}{l}
791
64t^{6} + 1024t^{5} + 4096t^{4} +
792
\\
793
3584t^{3} + 896t^{2} + 64t + 1
794
\end{array}
795
\\
796
3 &
797
(64, 36, 20, 20) & 12 &
798
\begin{array}{l}
799
160t^{8} + 1280t^{7} + 9344t^{6} + 21504t^{5} +
800
\\
801
20480t^{4} + 7680t^{3} + 1152t^{2} + 64t + 1
802
\end{array}
803
\\
804
4 &
805
(64, 36, 20, 20) & 12 &
806
\begin{array}{l}
807
160t^{8} + 1664t^{7} + 9792t^{6} + 21504t^{5} +
808
\\
809
20480t^{4} + 7680t^{3} + 1152t^{2} + 64t + 1
810
\end{array}
811
\\
812
\hline
813
\end{array}
814
\end{align*}
815
\end{frame}
816
\begin{frame}
817
\frametitle{For EA class $[f_{6,3}]$: two-weight codes}
818
819
The Cayley graphs for classes 1 to 4 are isomorphic to those those obtained from the following two-weight projective
820
codes as listed by Tonchev (2006):
821
822
\begin{align*}
823
\begin{array}{|ccl|}
824
\hline
825
\text{Class} &
826
\text{Parameters} & \text{Reference}
827
\\
828
\hline
829
1 & [35,6,16] & \text{Tonchev Table 1.56 4 }
830
\\
831
2 & [35,6,16] & \text{Tonchev Table 1.56 5 }
832
\\
833
3 & [27,6,12] & \text{Tonchev Table 1.55 3 }
834
\\
835
4 & [27,6,12] & \text{Tonchev Table 1.55 4 }
836
\\
837
\hline
838
\end{array}
839
\end{align*}
840
841
\slidecite{Tonchev 1996, 2006}
842
\end{frame}
843
\begin{frame}
844
\frametitle{For EA class $[f_{6,4}]$: classes}
845
846
The function
847
\begin{align*}
848
f_{6,4}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
849
\\
850
&+ x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}.
851
\end{align*}
852
853
Three extended Cayley classes:
854
\small{}
855
\begin{align*}
856
\def\arraystretch{1.2}
857
\begin{array}{|cccl|}
858
\hline
859
\text{Class} &
860
\text{Parameters} &
861
\text{2-rank} &
862
\text{Clique polynomial}
863
\\
864
\hline
865
1 &
866
(64, 28, 12, 12) & 14 &
867
\begin{array}{l}
868
32t^{8} + 256t^{7} + 896t^{6} + 1792t^{5} +
869
\\
870
4480t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
871
\end{array}
872
\\
873
2 &
874
(64, 28, 12, 12) & 14 &
875
\begin{array}{l}
876
16t^{8} + 128t^{7} + 448t^{6} + 1280t^{5} +
877
\\
878
4224t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
879
\end{array}
880
\\
881
3 &
882
(64, 36, 20, 20) & 14 &
883
\begin{array}{l}
884
176t^{8} + 1408t^{7} + 9664t^{6} + 22272t^{5} +
885
\\
886
20608t^{4} + 7680t^{3} + 1152t^{2} + 64t + 1
887
\end{array}
888
\\
889
\hline
890
\end{array}
891
\end{align*}
892
\end{frame}
893
\begin{frame}
894
\frametitle{For EA class $[f_{6,4}]$: two-weight codes}
895
896
The Cayley graphs for classes 1 to 3 are isomorphic to those those obtained from the following two-weight projective
897
codes as listed by Tonchev (2006):
898
899
\begin{align*}
900
\begin{array}{|ccl|}
901
\hline
902
\text{Class} &
903
\text{Parameters} & \text{Reference}
904
\\
905
\hline
906
1 & [35,6,16] & \text{Tonchev Table 1.56 7 }
907
\\
908
2 & [35,6,16] & \text{Tonchev Table 1.56 6 }
909
\\
910
3 & [27,6,12] & \text{Tonchev Table 1.55 5 }
911
\\
912
\hline
913
\end{array}
914
\end{align*}
915
916
\slidecite{Tonchev 1996, 2006}
917
\end{frame}
918
\section{Questions}
919
\begin{frame}
920
\frametitle{Questions (1)}
921
(Preceded by the values of $m$ for which the question is settled.)
922
923
\begin{description}
924
\item[1-3]
925
How many EC classes are there for each $m$? ``Exponential numbers'' of classes?
926
\item[1-3]
927
Is the number of EC classes within an EA class bounded? What is the bound?
928
\item[1-4]
929
Is the number of EC classes within the quadratic EA class always 2?
930
\item[1-3]
931
Which EC classes overlap more than one EA class?
932
\end{description}
933
934
\slidecite{Kantor 1983; Jungnickel and Tonchev 1991}
935
\end{frame}
936
\begin{frame}
937
\frametitle{Questions (2)}
938
939
\begin{description}
940
\item[1-3]
941
Which bent functions are Cayley equivalent to their dual?
942
\item[1-3]
943
Which EC classes contain a self-dual bent function?
944
\item[2-3]
945
Which EC classes correspond to projective two-weight codes?
946
\item[1-3]
947
For each EA representative $f$, what is the relationship between the Dillon-Schatz SDP incidence matrix
948
\begin{align*}
949
D(f)_{c,x} &= f(x) + \langle c, x \rangle + \dual{f}(c)
950
\intertext{and the matrix of EC classes}
951
M_{c,b} &= \big[\Cay{x \mapsto f(x+b) + \langle c, x \rangle + f(b)}\big] ?
952
\end{align*}
953
\end{description}
954
\end{frame}
955
\section{SageMathCloud}
956
\begin{frame}[fragile]
957
\frametitle{Public worksheet on SageMathCloud}
958
~
959
960
See
961
\begin{verbatim}
962
http://tinyurl.com/jnchhev
963
\end{verbatim}
964
965
\end{frame}
966
967
\end{document}
968
969