Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
22144 views
1
%This is an Abstract template for the 39ACCMCC.
2
\documentclass[12pt]{article}
3
\pagestyle{empty}
4
\usepackage{amsmath, amssymb}
5
% BEGIN EXTRA PACKAGES (if needed, one per line)
6
7
% END EXTRA PACKAGES
8
9
% any definitions needed, put them here
10
% \newcommand{\iso}{\cong}
11
12
% Abstract environment, for automagic parsing.
13
\newenvironment{TalkAbstract}{\noindent\ignorespaces}{}
14
15
% Please fill in your identification details and title in the lines below. If you have co-authors, uncomment and fill in after \TalkJoint.
16
\newcommand{\FirstName}{Paul}
17
\newcommand{\LastName}{Leopardi}
18
\newcommand{\Uni}{University of Newcastle} % e.g. The University of Melbourne
19
\newcommand{\email}{paul.leopardi@gmail.com}
20
\newcommand{\TalkTitle}{Classifying bent functions by their Cayley graphs}
21
%\newcommand{\TalkJoint}{insert your co-authors, if any}
22
\newcommand{\mb}[1]{\mathbb{#1}}
23
\newcommand{\mf}[1]{\mathbf{#1}}
24
\newcommand{\Cay}{\operatorname{Cay}}
25
\newcommand{\oE}{\mf{\operatorname{E}}}
26
\newcommand{\G}{\mb{G}}
27
\newcommand{\R}{\mb{R}}
28
\newcommand{\Z}{\mb{Z}}
29
\newcommand{\Rep}{P}
30
\newcommand{\V}[1]{\underline{#1}}
31
\newcommand{\abs}[1]{\left| #1 \right|}
32
\newcommand{\isomorphic}{\simeq}
33
\newcommand{\To}{\rightarrow}
34
35
\begin{document}
36
\begin{center}
37
% DO NOT EDIT ANY OF THE NEXT 12 LINES.
38
% YOUR TITLE, NAME, EMAIL ADDRESS, AND INSTITUTION
39
% SHOULD ALL BE ENTERED ABOVE.
40
{\Large \scshape \TalkTitle} \\[3mm]
41
\textbf{\FirstName~\LastName} \\
42
\texttt{\email} \\[3mm]
43
\Uni \\[3mm]
44
\ifx\TalkJoint\emtpy
45
\relax
46
\else
47
(Joint work with \TalkJoint)\\[3mm]
48
\fi
49
\end{center}
50
51
\begin{TalkAbstract}
52
It is well known~\cite{BerC99} that if a bent function $f: \Z_2^{2m} \To \Z_2$ has $f(0)=0$, then it has a strongly regular Cayley graph whose parameters $(v_m,k_m,\lambda_m,\lambda_m)$ depend only on $m$:
53
\begin{align*}
54
(v_m,k_m,\lambda_m) &= (4^m, 2^{2 m - 1} \pm 2^{m-1}, 2^{2 m - 2} \pm 2^{m-1}).
55
\end{align*}
56
It is perhaps less well known that even if two such Cayley graphs have the same strongly regular graph parameters, they are not necessarily isomorphic.
57
This talk examines the concepts of \emph{Cayley equivalence} and \emph{extended Cayley equivalence} of bent functions, and compares these equivalence relations to the
58
better known concepts of affine equivalence and extended affine equivalence.
59
The relationship between two-weight codes, bent functions and strongly regular graphs is also touched on.
60
\end{TalkAbstract}
61
62
\begin{thebibliography}{1}
63
\bibitem{BerC99}
64
A.~Bernasconi and B.~Codenotti.
65
\newblock Spectral analysis of {Boolean} functions as a graph eigenvalue
66
problem.
67
\newblock {\em IEEE Transactions on Computers}, 48(3):345--351, (1999).
68
\end{thebibliography}
69
\end{document}
70
71