Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
22144 views
1
\documentclass[pdf,sprung,slideColor,nocolorBG]{beamer}
2
%
3
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
4
\mode<presentation>
5
6
\newenvironment{colortheme}[1]{
7
\def\ProvidesPackageRCS $##1${\relax}
8
\renewcommand{\ProcessOptions}{\relax}
9
\makeatletter
10
\input beamercolortheme#1.sty
11
\makeatother
12
}{}
13
14
\let\Tiny=\tiny
15
\usetheme{Adelaide}
16
\usefonttheme[stillsansseriftext]{serif}
17
\setbeamerfont{structure}{series=\bfseries}
18
\setbeamertemplate{frametitle}[default][center]
19
\usepackage[figurename={}]{caption}
20
\usepackage[latin1]{inputenc}
21
%\usepackage{amsmath} %needed for \begin{align}... \end{align} environment
22
\usepackage{amsfonts}
23
\usepackage{amssymb}
24
\usepackage{amscd}
25
\usepackage[all]{xy}
26
\usepackage{xcolor}
27
\usepackage{enumerate}
28
%
29
\newcommand{\slidecite}[1]{\tiny{(#1)}\normalsize{}}
30
\newcommand{\smallcite}[1]{\small{(#1)}\normalsize{}}
31
32
\newcommand{\mb}[1]{\mathbb{#1}}
33
\newcommand{\mf}[1]{\mathbf{#1}}
34
\newcommand{\Emph}[1]{\emph{\textcolor{blue}{#1}}}
35
36
\newcommand{\abs}[1]{\left| #1 \right|}
37
\newcommand{\norm}[1]{\left\| #1 \right\|}
38
\newcommand{\To}{\rightarrow}
39
40
\newcommand{\Cay}[1]{\operatorname{Cay}\left(#1\right)}
41
\newcommand{\Clique}[1]{\omega\left(#1\right)}
42
\newcommand{\dual}[1]{\widetilde{#1}}
43
\newcommand{\support}[1]{\operatorname{supp}\left(#1\right)}
44
\newcommand{\weight}[1]{\operatorname{wt}\left(#1\right)}
45
\newcommand{\weightclass}[1]{\operatorname{wc}\left(#1\right)}
46
47
\newcommand{\G}{\mb{G}}
48
\newcommand{\R}{\mb{R}}
49
\newcommand{\Z}{\mb{Z}}
50
%\newtheorem{Definition}{Definition}
51
\newtheorem{Question}{Question}
52
\newtheorem{Conjecture}{Conjecture}
53
54
\title{Classifying bent functions by their Cayley graphs, using Sage}
55
\author{Paul Leopardi}
56
57
\date{For ACCMCC 40 Newcastle 2016}
58
59
\institute{Australian Government - Bureau of Meteorology.}
60
\titlegraphic{
61
%\includegraphics[angle=0,width=10mm]{../../common/beamer-anu-colourlogo.png}
62
%\includegraphics[angle=0,width=20mm]{../../common/carma_logo.jpg}
63
}
64
\begin{document}
65
66
\frame{\titlepage}
67
\begin{frame}
68
\frametitle{Acknowledgements}
69
\begin{center}
70
~
71
72
Robert Craigen, David Joyner, Philippe Langevin, William Martin,
73
Padraig {\'O} Cath{\'a}in,
74
Judy-anne Osborn, Dima Pasechnik and William Stein.
75
76
~
77
78
kodlu on MathOverflow.
79
80
~
81
82
Matthew Leingang for Beamer colour themes.
83
84
~
85
86
Australian National University. University of Newcastle, Australia.
87
88
~
89
90
SageMath, Bliss, Nauty.
91
92
~
93
94
Australian Government - Bureau of Meteorology.
95
\end{center}
96
\end{frame}
97
98
\begin{frame}
99
\frametitle{Overview}
100
%\begin{center}
101
\begin{itemize}
102
\item
103
Key concepts.
104
105
~
106
107
\item
108
Equivalence.
109
110
~
111
112
\item
113
Some results.
114
115
~
116
117
\item
118
Observations for small dimensions.
119
120
~
121
122
\item
123
Some questions.
124
125
~
126
127
\item
128
SageMath code.
129
\end{itemize}
130
131
%\end{center}
132
\end{frame}
133
134
\section{Key concepts}
135
\begin{colortheme}{seagull}
136
\begin{frame}
137
\frametitle{The Cayley graph of a binary function}
138
%\begin{center}
139
The \Emph{Cayley graph} $\Cay{f}$ of a binary function
140
141
~
142
143
\begin{align*}
144
%
145
f : \Z_2^n \To \Z_2 \quad \text{where} \quad f(0) = 0
146
%
147
\end{align*}
148
149
~
150
151
is
152
an undirected graph with
153
154
\begin{align*}
155
V(\Cay{f}) &:= \Z_2^n, \quad (x,y) \in E(\Cay{f}) \Leftrightarrow f(x+y) = 1.
156
\end{align*}
157
158
~
159
160
\slidecite{Bernasconi and Codenotti 1999}
161
\end{frame}
162
\begin{frame}
163
\frametitle{Bent functions}
164
165
A binary function $f : \Z_2^{2m} \To \Z_2$ is \Emph{bent} if and only if the function $\dual{f}$, defined by
166
\begin{align*}
167
(-1)^{\dual{f}(x)} &:= 2^{-m} \sum_{y \in \Z_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}
168
\end{align*}
169
is a binary function on $\Z_2^{2m}$.
170
171
~
172
173
The function $\dual{f}$ is also bent and is called the \Emph{dual} of $f$.
174
175
~
176
177
\slidecite{Dillon 1974; Rothaus 1976; Tokareva 2011}
178
\end{frame}
179
180
\begin{frame}
181
\frametitle{Strongly regular graphs}
182
%\begin{center}
183
A simple graph $\Gamma$ of order $v$ is \Emph{strongly regular} with parameters
184
$(v,k,\lambda,\mu)$ if
185
186
~
187
188
\begin{itemize}
189
\item
190
each vertex has degree $k,$
191
192
~
193
\item
194
each adjacent pair of vertices has $\lambda$ common neighbours, and
195
196
~
197
\item
198
each nonadjacent pair of vertices has $\mu$ common neighbours.
199
\end{itemize}
200
201
~
202
203
\slidecite{Brouwer, Cohen and Neumaier 1989}
204
205
%\end{center}
206
\end{frame}
207
208
\begin{frame}
209
\frametitle{Bent functions and strongly regular graphs}
210
211
\begin{Theorem}
212
\smallcite{Bernasconi and Codenotti 1999}
213
214
The Cayley graph $\Cay{f}$ of a bent function $f$ on $\Z_2^{2m}$
215
216
with $f(0)=0$ is a strongly regular graph with $\lambda = \mu.$
217
\end{Theorem}
218
219
The parameters of $\Cay{f}$ are
220
\begin{align*}
221
(v,k,\lambda) = &(4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})
222
\\
223
\text{or} \quad &(4^m, 2^{2 m - 1} + 2^{m-1}, 2^{2 m - 2} + 2^{m-1}).
224
\end{align*}
225
226
~
227
228
\slidecite{Menon 1962; Dillon 1974; Bernasconi and Codenotti 1999}
229
%\end{center}
230
\end{frame}
231
\end{colortheme}
232
\begin{colortheme}{jubata}
233
\begin{frame}
234
\frametitle{Weights and weight classes}
235
\begin{Definition}
236
The \Emph{weight} of a binary function is the cardinality of its \Emph{support}.
237
For $f$ on $\Z_2^{2m}$
238
\begin{align*}
239
\support{f} &:= \{x \in \Z_2^{2m} \mid f(x)=1 \}.
240
\end{align*}
241
242
A bent function $f$ on $\Z_2^{2m}$ has weight
243
\begin{align*}
244
\weight{f} &= 2^{2 m - 1} - 2^{m-1} \quad (\text{weight class~} \weightclass{f}=0), \text{~or}
245
\\
246
\weight{f} &= 2^{2 m - 1} + 2^{m-1} \quad (\text{weight class~} \weightclass{f}=1).
247
\end{align*}
248
If $f(0)=0$ then $\weightclass{\Cay{f}} := \weightclass{f}$.
249
\end{Definition}
250
\end{frame}
251
\end{colortheme}
252
\begin{colortheme}{seagull}
253
\begin{frame}
254
\frametitle{The two block designs of a bent function}
255
256
The adjacency matrix of $\Cay{f}$ can also be interpreted as the incidence matrix of a block design.
257
258
~
259
260
In this case we do not need $f(0)=0$.
261
262
~
263
\begin{Definition}
264
A second block design described by Dillon and Schatz can be defined by the incidence matrix $D(f)$ where
265
\begin{align*}
266
D(f)_{c,x} &:= f(x) + \langle c, x \rangle + \dual{f}(c).
267
\end{align*}
268
This is a symmetric block design with the \Emph{symmetric difference property}.
269
\end{Definition}
270
271
~
272
273
\slidecite{Dillon and Schatz 1987; Neumann 2006}
274
\end{frame}
275
\begin{frame}
276
\frametitle{Projective two-weight binary codes}
277
278
\begin{Definition}
279
A \Emph{two-weight binary code} with parameters $[n,k,d]$ is a $k$ dimensional subspace of $\Z_2^n$ with
280
minimum Hamming distance $d$, such that the set of Hamming weights of the non-zero vectors has size 2.
281
282
~
283
284
``A \Emph{generator matrix} $G$ of a linear code $[n, k]$ code $C$ is any matrix
285
of rank $k$ (over $\Z_2$) with rows from $C.$''
286
287
~
288
289
``A linear $[n, k]$ code is called \Emph{projective} if no two columns of a generator matrix
290
$G$ are linearly dependent, i.e., if the columns of $G$ are pairwise different points in a
291
projective $(k-1)$-dimensional space.''
292
In the case of $\Z_2$, no two columns are equal.
293
294
~
295
296
\slidecite{Bouyukliev, Fack, Willems and Winne 2006}
297
298
\end{Definition}
299
300
\end{frame}
301
\end{colortheme}
302
\section{Equivalence}
303
304
\begin{colortheme}{jubata}
305
\begin{frame}
306
\frametitle{Extended translation equivalence}
307
308
\begin{Definition}
309
For bent functions $f,g : \Z_2^{2m} \To \Z_2$,
310
311
$f$ is \Emph{extended translation equivalent} to $g$ if and only if
312
\begin{align*}
313
g(x) &= f(x + b) + \langle c, x \rangle + \delta
314
\end{align*}
315
for $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$.
316
\end{Definition}
317
\end{frame}
318
\end{colortheme}
319
320
\begin{colortheme}{seagull}
321
\begin{frame}
322
\frametitle{Extended affine equivalence}
323
324
\begin{Definition}
325
For bent functions $f,g : \Z_2^{2m} \To \Z_2$,
326
327
$f$ is \Emph{extended affine equivalent} to $g$ if and only if
328
\begin{align*}
329
g(x) &= f(A x + b) + \langle c, x \rangle + \delta
330
\end{align*}
331
for some $A \in GL(2m,2)$, $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$.
332
\end{Definition}
333
~
334
335
\slidecite{Tokareva 2014}
336
\end{frame}
337
\end{colortheme}
338
339
\begin{colortheme}{jubata}
340
\begin{frame}
341
\frametitle{Cayley equivalence}
342
\begin{Definition}
343
%
344
For $f, g : \Z_2^{2m} \To \Z_2$, with both $f$ and $g$ bent,
345
346
we call $f$ and $g$ \Emph{Cayley equivalent},
347
and write $f \equiv g$,
348
349
if and only if $f(0)=g(0)=0$ and $\Cay{f} \equiv \Cay{g}$ as graphs.
350
351
~
352
353
Equivalently, $f \equiv g$ if and only if $f(0)=g(0)=0$ and
354
355
there exists a bijection $\pi : \Z_2^{2m} \To \Z_2^{2m}$ such that
356
\begin{align*}
357
g(x+y) &= f \big(\pi(x)+\pi(y)\big) \quad \text{for all~} x,y \in \Z_2^{2m}.
358
\end{align*}
359
\end{Definition}
360
\end{frame}
361
\begin{frame}
362
\frametitle{Extended Cayley equivalence}
363
\begin{Definition}
364
For $f, g : \Z_2^{2m} \To \Z_2$, with both $f$ and $g$ bent,
365
366
if there exist $\delta, \epsilon \in \{0,1\}$ such that $f + \delta \equiv g + \epsilon$,
367
368
we call $f$ and $g$ \Emph{extended Cayley (EC) equivalent} and write $f \cong g$.
369
\end{Definition}
370
Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\Z_2^{2m}$.
371
\end{frame}
372
\section{Some results}
373
374
\begin{frame}
375
\frametitle{Linear equivalence implies Cayley equivalence}
376
377
\begin{Theorem}
378
If $f$ is bent with $f(0)=0$ and $g(x) := f(A x)$ where $A \in GL(2m,2)$,
379
then $g$ is bent with $g(0)=0$ and $f \equiv g$.
380
\end{Theorem}
381
\begin{proof}
382
\begin{align*}
383
g(x+y) &= f\big(A(x+y)\big) = f(A x + A y)\quad \text{for all~} x,y \in \Z_2^{2m}.
384
\end{align*}
385
\end{proof}
386
387
\end{frame}
388
389
\begin{frame}
390
\frametitle{Extended affine, extended translation and extended Cayley equivalence (1)}
391
392
\begin{Theorem}
393
For $A \in GL(2m,2)$, $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$,
394
$f : \Z_2^{2m} \To \Z_2$,
395
396
the function
397
\begin{align*}
398
h(x) &:= f(A x + b) + \langle c, x \rangle + \delta
399
\intertext{can be expressed as $h(x) = g(A x)$ where}
400
g(x) &:= f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,
401
\end{align*}
402
and therefore if $f$ is bent and $h(0)=0$ then $h \equiv g$.
403
\end{Theorem}
404
\end{frame}
405
406
\begin{frame}
407
\frametitle{Extended affine, extended translation and extended Cayley equivalence (2)}
408
409
Therefore, to determine the extended Cayley equivalence classes within the extended affine equivalence class of
410
a bent function $f : \Z_2^{2m} \To \Z_2$, for which $f(0)=0$, we need only examine
411
the extended translation equivalent functions of the form
412
\begin{align*}
413
f(x+b) + \langle c, x \rangle + f(b),
414
\end{align*}
415
for each $b, c \in \Z_2^{2m}$.
416
\end{frame}
417
\begin{frame}
418
\frametitle{Quadratic bent functions have 2 EC classes}
419
\begin{Theorem}
420
For each $m>0$, the extended affine equivalence class of quadratic bent functions
421
$q : \Z_2^{2m} \To \Z_2$ contains exactly two extended Cayley equivalence classes,
422
corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.
423
\end{Theorem}
424
425
\end{frame}
426
\begin{frame}
427
\frametitle{The Dillon-Schatz design matrix}
428
\begin{Theorem}
429
For every bent function $f$, the \Emph{weight class matrix} of $f$
430
equals the incidence matrix of the Dillon-Schatz design of $f$.
431
432
~
433
434
Specifically,
435
\begin{align*}
436
\weightclass{\Cay{x \mapsto f(x+b) + \langle c, x \rangle + f(b)}}
437
&=
438
f(b) + \langle c, b \rangle + \dual{f}(c)
439
\\
440
&=
441
D(f)_{c,b}.
442
\end{align*}
443
444
\end{Theorem}
445
446
\end{frame}
447
\end{colortheme}
448
449
\begin{colortheme}{seagull}
450
\begin{frame}
451
\frametitle{From bent function to linear code (1)}
452
\begin{Definition}
453
454
\smallcite{Carlet 2007; Ding 2015, Corollary 10}
455
456
For a bent function $f : \Z_2^{2m} \To \Z_2$,
457
define the linear code $C(f)$ by the generator matrix
458
\begin{align*}
459
M C(f)_{x,y} &\in \Z_2^{4^m \times \weight{f}},
460
\\
461
M C(f)_{x,y} &:= \langle x, \support{f}(y) \rangle,
462
\end{align*}
463
with $x$ in lexicographic order of $\Z_2^{2m}$
464
and $\support{f}(y)$ in lexicographic order of $\support{f}$.
465
466
The $4^m$ words of the code $C(f)$ are the rows of the generator matrix $M C(f)$.
467
\end{Definition}
468
469
\slidecite{Carlet 2007; Ding 2015, Corollary 10}
470
471
\end{frame}
472
\begin{frame}
473
\frametitle{From bent function to linear code (2)}
474
\begin{Theorem}
475
\smallcite{Carlet 2007, Prop. 20; Ding 2015, Corollary 10}
476
477
For a bent function $f : \Z_2^{2m} \To \Z_2$, the linear code $C(f)$
478
is a two-weight projective binary code.
479
480
~
481
482
The possible weights of non-zero code words are:
483
\begin{align*}
484
\begin{cases}
485
2^{2m-2}, 2^{2m-2} - 2^{m-1} & \text{if~} \weightclass{f}=0.
486
\\
487
2^{2m-2}, 2^{2m-2} + 2^{m-1} & \text{if~} \weightclass{f}=1.
488
\end{cases}
489
\end{align*}
490
491
\end{Theorem}
492
493
\slidecite{Carlet 2007, Prop. 20; Ding 2015, Corollary 10}
494
495
\end{frame}
496
\begin{frame}
497
\frametitle{From linear code to strongly regular graph}
498
\begin{Definition}
499
500
Given $f : \Z_2^{2m} \To \Z_2$, form the linear code $C(f)$.
501
502
The graph $R(f)$ is defined as:
503
504
Vertices of $R(f)$ are code words of $C(f)$.
505
506
For $v,w \in C(f)$, edge $(u,v) \in R(f)$ if and only if
507
\begin{align*}
508
\begin{cases}
509
\weight{u+v} = 2^{2m-2} - 2^{m-1} & (\weightclass{f}=0).
510
\\
511
\weight{u+v} = 2^{2m-2} + 2^{m-1} & (\weightclass{f}=1).
512
\end{cases}
513
\end{align*}
514
515
\end{Definition}
516
Since $C(f)$ is a two-weight binary projective code,
517
$R(f)$ is a strongly regular graph.
518
519
\slidecite{Delsarte 1972, Theorem 2}
520
\end{frame}
521
\end{colortheme}
522
523
\begin{colortheme}{jubata}
524
\begin{frame}
525
\frametitle{The graph $R(f)$ is the Cayley graph of the dual}
526
527
\begin{Theorem}
528
For $f : \Z_2^{2m} \To \Z_2$, with $f(0)=0$,
529
\begin{align*}
530
R(f) \equiv
531
\begin{cases}
532
\Cay{\dual{f}} & \text{if~} \weightclass{f}=0,
533
\\
534
\Cay{\dual{f}+1} & \text{if~} \weightclass{f}=1.
535
\end{cases}
536
\end{align*}
537
538
\end{Theorem}
539
\end{frame}
540
\end{colortheme}
541
\section{Observations}
542
\begin{colortheme}{jubata}
543
\begin{frame}
544
\frametitle{For $m=1$}
545
546
One extended affine class, containing the extended translation class $[f_{2,1}]$,
547
where $f_{2,1}(x) := x_0 x_1$ is self dual.
548
549
~
550
551
Two extended Cayley classes:
552
\begin{align*}
553
\begin{array}{|cccl|}
554
\hline
555
\text{Class} &
556
\text{Parameters} &
557
\text{2-rank} &
558
\text{Clique polynomial}
559
\\
560
\hline
561
1 &
562
(4, 1, 0, 0) & 4 &
563
2t^{2} + 4t + 1
564
\\
565
2 &
566
K_4 & 4 &
567
t^{4} + 4t^{3} + 6t^{2} + 4t + 1
568
\\
569
\hline
570
\end{array}
571
\end{align*}
572
573
\end{frame}
574
\begin{frame}
575
\frametitle{For ET class $[f_{2,1}]$: matrices}
576
\begin{figure}
577
\centering
578
\begin{minipage}{.48\textwidth}
579
\centering
580
\includegraphics[width=.9\linewidth]{../matrix_plot/re2_1_weight_class_matrix.png}
581
\captionof{figure}{$[f_{2,1}]$: weight classes}
582
\label{fig:c2_1_weight_class_matrix}
583
\end{minipage}%
584
\begin{minipage}{.48\textwidth}
585
\centering
586
\includegraphics[width=.9\linewidth]{../matrix_plot/re2_1_bent_cayley_graph_index_matrix.png}
587
\captionof{figure}{$[f_{2,1}]$: extended Cayley classes}
588
\label{fig:c2_1_bent_cayley_graph_index_matrix}
589
\end{minipage}
590
\end{figure}
591
\end{frame}
592
\begin{frame}
593
\frametitle{For $m=2$: classes}
594
595
One extended affine class, containing the extended translation class $[f_{4,1}]$, where
596
$f_{4,1}(x) := x_0 x_1 + x_2 x_3$ is self dual.
597
598
~
599
600
Two extended Cayley classes:
601
\begin{align*}
602
\begin{array}{|cccl|}
603
\hline
604
\text{Class} &
605
\text{Parameters} &
606
\text{2-rank} &
607
\text{Clique polynomial}
608
\\
609
\hline
610
1 &
611
(16, 6, 2, 2) &
612
6 &
613
8t^{4} + 32t^{3} + 48t^{2} + 16t + 1
614
\\
615
2 &
616
(16, 10, 6, 6) &
617
6 &
618
\begin{array}{l}
619
16t^{5} + 120t^{4} + 160t^{3} +
620
\\
621
80t^{2} + 16t + 1
622
\end{array}
623
\\
624
\hline
625
\end{array}
626
\end{align*}
627
\end{frame}
628
\begin{frame}
629
\frametitle{For ET class $[f_{4,1}]$: matrices}
630
\begin{figure}
631
\centering
632
\begin{minipage}{.48\textwidth}
633
\centering
634
\includegraphics[width=.9\linewidth]{../matrix_plot/re4_1_weight_class_matrix.png}
635
\captionof{figure}{$[f_{4,1}]$: weight classes}
636
\label{fig:c4_1_weight_class_matrix}
637
\end{minipage}%
638
\begin{minipage}{.48\textwidth}
639
\centering
640
\includegraphics[width=.9\linewidth]{../matrix_plot/re4_1_bent_cayley_graph_index_matrix.png}
641
\captionof{figure}{$[f_{4,1}]$: extended Cayley classes}
642
\label{fig:c4_1_bent_cayley_graph_index_matrix}
643
\end{minipage}
644
\end{figure}
645
\end{frame}
646
\begin{frame}
647
\frametitle{For $m=3$: extended translation classes}
648
649
Four extended affine classes, containing the following extended translation classes:
650
651
\begin{align*}
652
\def\arraystretch{1.2}
653
\begin{array}{|cl|}
654
\hline
655
\text{Class} &
656
\text{Representative}
657
\\
658
\hline
659
\,[f_{6,1}] & f_{6,1} :=
660
\begin{array}{l}
661
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5}
662
\end{array}
663
\\
664
\,[f_{6,2}] & f_{6,2} :=
665
\begin{array}{l}
666
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}
667
\end{array}
668
\\
669
\,[f_{6,3}] & f_{6,3} :=
670
\begin{array}{l}
671
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5}
672
\\
673
+\, x_{2} x_{4} + x_{3} x_{4}
674
\end{array}
675
\\
676
\,[f_{6,4}] & f_{6,4} :=
677
\begin{array}{l}
678
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
679
\\
680
+\, x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}
681
\end{array}
682
\\
683
\hline
684
\end{array}
685
\end{align*}
686
\end{frame}
687
% \begin{frame}
688
% \frametitle{For ET class $[f_{6,1}]$: classes}
689
%
690
% Bent function
691
% $f_{6,1}(x) = x_0 x_1 + x_2 x_3 + x_4 x_5$ is self dual.
692
%
693
% ~
694
%
695
% Two extended Cayley classes:
696
% \small{}
697
% \begin{align*}
698
% \def\arraystretch{1.2}
699
% \begin{array}{|cccl|}
700
% \hline
701
% \text{Class} &
702
% \text{Parameters} &
703
% \text{2-rank} &
704
% \text{Clique polynomial}
705
% \\
706
% \hline
707
% 1 &
708
% (64, 28, 12, 12) & 8 &
709
% \begin{array}{l}
710
% 64t^{8} + 512t^{7} + 1792t^{6} + 3584t^{5} +
711
% \\
712
% 5376t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
713
% \end{array}
714
% \\
715
% 2 &
716
% (64, 36, 20, 20) & 8 &
717
% \begin{array}{l}
718
% 2304t^{6} + 13824t^{5} + 19200t^{4} +
719
% \\
720
% 7680t^{3} + 1152t^{2} + 64t + 1
721
% \end{array}
722
% \\
723
% \hline
724
% \end{array}
725
% \end{align*}
726
% \end{frame}
727
\begin{frame}
728
\frametitle{For ET class $[f_{6,1}]$: matrices}
729
\begin{figure}
730
\centering
731
\begin{minipage}{.48\textwidth}
732
\centering
733
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_1_weight_class_matrix.png}
734
\captionof{figure}{$[f_{6,1}]$: weight classes}
735
\label{fig:6_1_weight_class_matrix}
736
\end{minipage}%
737
\begin{minipage}{.48\textwidth}
738
\centering
739
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_1_bent_cayley_graph_index_matrix.png}
740
\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}
741
\label{fig:6_1_bent_cayley_graph_index_matrix}
742
\end{minipage}
743
\end{figure}
744
\end{frame}
745
% \begin{frame}
746
% \frametitle{For ET class $[f_{6,2}]$: classes}
747
%
748
% Bent function
749
% $f_{6,2}(x) = x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}$.
750
%
751
% ~
752
%
753
% Three extended Cayley classes:
754
% \small{}
755
% \begin{align*}
756
% \def\arraystretch{1.2}
757
% \begin{array}{|cccl|}
758
% \hline
759
% \text{Class} &
760
% \text{Parameters} &
761
% \text{2-rank} &
762
% \text{Clique polynomial}
763
% \\
764
% \hline
765
% 1 &
766
% (64, 28, 12, 12) & 8 &
767
% \begin{array}{l}
768
% 64t^{8} + 512t^{7} + 1792t^{6} + 3584t^{5} +
769
% \\
770
% 5376t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
771
% \end{array}
772
% \\
773
% 2 &
774
% (64, 28, 12, 12) & 8 &
775
% \begin{array}{l}
776
% 256t^{6} + 1536t^{5} + 4352t^{4} +
777
% \\
778
% 3584t^{3} + 896t^{2} + 64t + 1
779
% \end{array}
780
% \\
781
% 3 &
782
% (64, 36, 20, 20) & 8 &
783
% \begin{array}{l}
784
% 192t^{8} + 1536t^{7} + 8960t^{6} + 19968t^{5} +
785
% \\
786
% 20224t^{4} + 7680t^{3} + 1152t^{2} + 64t + 1
787
% \end{array}
788
% \\
789
% \hline
790
% \end{array}
791
% \end{align*}
792
% Graph 1 is isomorphic to graph 1 of EA class $[f_{6,1}]$.
793
%
794
% \end{frame}
795
\begin{frame}
796
\frametitle{For ET class $[f_{6,2}]$: matrices}
797
\begin{figure}
798
\centering
799
\begin{minipage}{.48\textwidth}
800
\centering
801
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_2_weight_class_matrix.png}
802
\captionof{figure}{$[f_{6,2}]$: weight classes}
803
\label{fig:6_2_weight_class_matrix}
804
\end{minipage}%
805
\begin{minipage}{.48\textwidth}
806
\centering
807
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_2_bent_cayley_graph_index_matrix.png}
808
\captionof{figure}{$[f_{6,2}]$: 3 extended Cayley classes}
809
\label{fig:6_2_bent_cayley_graph_index_matrix}
810
\end{minipage}
811
\end{figure}
812
\end{frame}
813
% \begin{frame}
814
% \frametitle{For ET class $[f_{6,3}]$: classes}
815
%
816
% Bent function
817
% \begin{align*}
818
% f_{6,3}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4}
819
% \\
820
% &+ x_{1} x_{5} + x_{2} x_{4} + x_{3} x_{4}.
821
% \end{align*}
822
%
823
% Four extended Cayley classes:
824
% \small{}
825
% \begin{align*}
826
% \def\arraystretch{1.2}
827
% \begin{array}{|cccl|}
828
% \hline
829
% \text{Class} &
830
% \text{Parameters} &
831
% \text{2-rank} &
832
% \text{Clique polynomial}
833
% \\
834
% \hline
835
% 1 &
836
% (64, 28, 12, 12) & 12 &
837
% \begin{array}{l}
838
% 32t^{8} + 256t^{7} + 896t^{6} + 2048t^{5} +
839
% \\
840
% 4608t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
841
% \end{array}
842
% \\
843
% 2 &
844
% (64, 28, 12, 12) & 12 &
845
% \begin{array}{l}
846
% 64t^{6} + 1024t^{5} + 4096t^{4} +
847
% \\
848
% 3584t^{3} + 896t^{2} + 64t + 1
849
% \end{array}
850
% \\
851
% 3 &
852
% (64, 36, 20, 20) & 12 &
853
% \begin{array}{l}
854
% 160t^{8} + 1280t^{7} + 9344t^{6} + 21504t^{5} +
855
% \\
856
% 20480t^{4} + 7680t^{3} + 1152t^{2} + 64t + 1
857
% \end{array}
858
% \\
859
% 4 &
860
% (64, 36, 20, 20) & 12 &
861
% \begin{array}{l}
862
% 160t^{8} + 1664t^{7} + 9792t^{6} + 21504t^{5} +
863
% \\
864
% 20480t^{4} + 7680t^{3} + 1152t^{2} + 64t + 1
865
% \end{array}
866
% \\
867
% \hline
868
% \end{array}
869
% \end{align*}
870
% \end{frame}
871
\begin{frame}
872
\frametitle{For ET class $[f_{6,3}]$: matrices}
873
\begin{figure}
874
\centering
875
\begin{minipage}{.48\textwidth}
876
\centering
877
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_3_weight_class_matrix.png}
878
\captionof{figure}{$[f_{6,3}]$: weight classes}
879
\label{fig:6_3_weight_class_matrix}
880
\end{minipage}%
881
\begin{minipage}{.48\textwidth}
882
\centering
883
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_3_bent_cayley_graph_index_matrix.png}
884
\captionof{figure}{$[f_{6,3}]$: 4 extended Cayley classes}
885
\label{fig:6_3_bent_cayley_graph_index_matrix}
886
\end{minipage}
887
\end{figure}
888
\end{frame}
889
% \begin{frame}
890
% \frametitle{For ET class $[f_{6,4}]$: classes}
891
%
892
% Bent function
893
% \begin{align*}
894
% f_{6,4}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
895
% \\
896
% &+ x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}.
897
% \end{align*}
898
%
899
% Three extended Cayley classes:
900
% \small{}
901
% \begin{align*}
902
% \def\arraystretch{1.2}
903
% \begin{array}{|cccl|}
904
% \hline
905
% \text{Class} &
906
% \text{Parameters} &
907
% \text{2-rank} &
908
% \text{Clique polynomial}
909
% \\
910
% \hline
911
% 1 &
912
% (64, 28, 12, 12) & 14 &
913
% \begin{array}{l}
914
% 32t^{8} + 256t^{7} + 896t^{6} + 1792t^{5} +
915
% \\
916
% 4480t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
917
% \end{array}
918
% \\
919
% 2 &
920
% (64, 28, 12, 12) & 14 &
921
% \begin{array}{l}
922
% 16t^{8} + 128t^{7} + 448t^{6} + 1280t^{5} +
923
% \\
924
% 4224t^{4} + 3584t^{3} + 896t^{2} + 64t + 1
925
% \end{array}
926
% \\
927
% 3 &
928
% (64, 36, 20, 20) & 14 &
929
% \begin{array}{l}
930
% 176t^{8} + 1408t^{7} + 9664t^{6} + 22272t^{5} +
931
% \\
932
% 20608t^{4} + 7680t^{3} + 1152t^{2} + 64t + 1
933
% \end{array}
934
% \\
935
% \hline
936
% \end{array}
937
% \end{align*}
938
% \end{frame}
939
\begin{frame}
940
\frametitle{For ET class $[f_{6,4}]$: matrices}
941
\begin{figure}
942
\centering
943
\begin{minipage}{.48\textwidth}
944
\centering
945
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_4_weight_class_matrix.png}
946
\captionof{figure}{$[f_{6,4}]$: weight classes}
947
\label{fig:6_4_weight_class_matrix}
948
\end{minipage}%
949
\begin{minipage}{.48\textwidth}
950
\centering
951
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_4_bent_cayley_graph_index_matrix.png}
952
\captionof{figure}{$[f_{6,4}]$: 3 extended Cayley classes}
953
\label{fig:6_4_bent_cayley_graph_index_matrix}
954
\end{minipage}
955
\end{figure}
956
\end{frame}
957
\begin{frame}
958
\frametitle{For $m=4$: extended translation classes}
959
960
Up to degree 3:
961
Ten extended affine classes,
962
963
containing the following extended translation classes:
964
965
\tiny{}
966
\begin{align*}
967
\def\arraystretch{1.2}
968
\begin{array}{|cl|}
969
\hline
970
\text{Class} &
971
\text{Representative}
972
\\
973
\hline
974
\,[f_{ 8 , 1 }] & f_{ 8 , 1 } :=
975
\begin{array}{l}
976
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5} + x_{6} x_{7}
977
\end{array}
978
\\
979
\,[f_{ 8 , 2 }] & f_{ 8 , 2 } :=
980
\begin{array}{l}
981
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5} + x_{6} x_{7}
982
\end{array}
983
\\
984
\,[f_{ 8 , 3 }] & f_{ 8 , 3 } :=
985
\begin{array}{l}
986
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{4} x_{7}
987
\end{array}
988
\\
989
\,[f_{ 8 , 4 }] & f_{ 8 , 4 } :=
990
\begin{array}{l}
991
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{4} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{6} x_{7}
992
\end{array}
993
\\
994
\,[f_{ 8 , 5 }] & f_{ 8 , 5 } :=
995
\begin{array}{l}
996
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
997
\end{array}
998
\\
999
\,[f_{ 8 , 6 }] & f_{ 8 , 6 } :=
1000
\begin{array}{l}
1001
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{5} x_{7}
1002
\end{array}
1003
\\
1004
\,[f_{ 8 , 7 }] & f_{ 8 , 7 } :=
1005
\begin{array}{l}
1006
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
1007
\\
1008
+\, x_{2} x_{4} + x_{6} x_{7}
1009
\end{array}
1010
\\
1011
\,[f_{ 8 , 8 }] & f_{ 8 , 8 } :=
1012
\begin{array}{l}
1013
x_{0} x_{1} x_{2} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
1014
\end{array}
1015
\\
1016
\,[f_{ 8 , 9 }] & f_{ 8 , 9 } :=
1017
\begin{array}{l}
1018
x_{0} x_{1} x_{6} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{3} x_{6} + x_{2} x_{5} + x_{3} x_{4} + x_{4} x_{5} x_{6} + x_{6} x_{7}
1019
\end{array}
1020
\\
1021
\,[f_{ 8 , 10 }] & f_{ 8 , 10 } :=
1022
\begin{array}{l}
1023
x_{0} x_{1} x_{2} + x_{0} x_{3} x_{6} + x_{0} x_{4} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4}
1024
\\
1025
+\, x_{3} x_{7}
1026
\end{array}
1027
\\
1028
\hline
1029
\end{array}
1030
\end{align*}
1031
\normalsize{}
1032
\end{frame}
1033
\begin{frame}
1034
\frametitle{For ET class $[f_{8,1}]$: matrices}
1035
\begin{figure}
1036
\centering
1037
\begin{minipage}{.48\textwidth}
1038
\centering
1039
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_1_weight_class_matrix.png}
1040
\captionof{figure}{$[f_{8,1}]$: weight classes}
1041
\label{fig:8_1_weight_class_matrix}
1042
\end{minipage}%
1043
\begin{minipage}{.48\textwidth}
1044
\centering
1045
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_1_bent_cayley_graph_index_matrix.png}
1046
\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}
1047
\label{fig:8_1_bent_cayley_graph_index_matrix}
1048
\end{minipage}
1049
\end{figure}
1050
~
1051
\end{frame}
1052
\begin{frame}
1053
\frametitle{For ET class $[f_{8,2}]$: matrices}
1054
\begin{figure}
1055
\centering
1056
\begin{minipage}{.48\textwidth}
1057
\centering
1058
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_2_weight_class_matrix.png}
1059
\captionof{figure}{$[f_{8,2}]$: weight classes}
1060
\label{fig:8_2_weight_class_matrix}
1061
\end{minipage}%
1062
\begin{minipage}{.48\textwidth}
1063
\centering
1064
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_2_bent_cayley_graph_index_matrix.png}
1065
\captionof{figure}{$[f_{8,2}]$: 4 extended Cayley classes}
1066
\label{fig:8_2_bent_cayley_graph_index_matrix}
1067
\end{minipage}
1068
\end{figure}
1069
~
1070
\end{frame}
1071
\begin{frame}
1072
\frametitle{For ET class $[f_{8,3}]$: matrices}
1073
\begin{figure}
1074
\centering
1075
\begin{minipage}{.48\textwidth}
1076
\centering
1077
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_3_weight_class_matrix.png}
1078
\captionof{figure}{$[f_{8,3}]$: weight classes}
1079
\label{fig:8_3_weight_class_matrix}
1080
\end{minipage}%
1081
\begin{minipage}{.48\textwidth}
1082
\centering
1083
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_3_bent_cayley_graph_index_matrix.png}
1084
\captionof{figure}{$[f_{8,3}]$: 6 extended Cayley classes}
1085
\label{fig:8_3_bent_cayley_graph_index_matrix}
1086
\end{minipage}
1087
\end{figure}
1088
~
1089
\end{frame}
1090
\begin{frame}
1091
\frametitle{For ET class $[f_{8,4}]$: matrices}
1092
\begin{figure}
1093
\centering
1094
\begin{minipage}{.48\textwidth}
1095
\centering
1096
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_4_weight_class_matrix.png}
1097
\captionof{figure}{$[f_{8,4}]$: weight classes}
1098
\label{fig:8_4_weight_class_matrix}
1099
\end{minipage}%
1100
\begin{minipage}{.48\textwidth}
1101
\centering
1102
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_4_bent_cayley_graph_index_matrix.png}
1103
\captionof{figure}{$[f_{8,4}]$: 5 extended Cayley classes}
1104
\label{fig:8_4_bent_cayley_graph_index_matrix}
1105
\end{minipage}
1106
\end{figure}
1107
~
1108
\end{frame}
1109
\begin{frame}
1110
\frametitle{For ET class $[f_{8,5}]$: matrices}
1111
\begin{figure}
1112
\centering
1113
\begin{minipage}{.48\textwidth}
1114
\centering
1115
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_5_weight_class_matrix.png}
1116
\captionof{figure}{$[f_{8,5}]$: weight classes}
1117
\label{fig:8_5_weight_class_matrix}
1118
\end{minipage}%
1119
\begin{minipage}{.48\textwidth}
1120
\centering
1121
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_5_bent_cayley_graph_index_matrix.png}
1122
\captionof{figure}{$[f_{8,5}]$: 9 extended Cayley classes}
1123
\label{fig:8_5_bent_cayley_graph_index_matrix}
1124
\end{minipage}
1125
\end{figure}
1126
~
1127
\end{frame}
1128
\begin{frame}
1129
\frametitle{For ET class $[f_{8,6}]$: matrices}
1130
\begin{figure}
1131
\centering
1132
\begin{minipage}{.48\textwidth}
1133
\centering
1134
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_6_weight_class_matrix.png}
1135
\captionof{figure}{$[f_{8,6}]$: weight classes}
1136
\label{fig:8_6_weight_class_matrix}
1137
\end{minipage}%
1138
\begin{minipage}{.48\textwidth}
1139
\centering
1140
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_6_bent_cayley_graph_index_matrix.png}
1141
\captionof{figure}{$[f_{8,6}]$: 9 extended Cayley classes}
1142
\label{fig:8_6_bent_cayley_graph_index_matrix}
1143
\end{minipage}
1144
\end{figure}
1145
The same 9 classes as $[f_{8,5}]$, with the same frequencies!
1146
\end{frame}
1147
\begin{frame}
1148
\frametitle{For ET class $[f_{8,7}]$: matrices}
1149
\begin{figure}
1150
\centering
1151
\begin{minipage}{.48\textwidth}
1152
\centering
1153
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_7_weight_class_matrix.png}
1154
\captionof{figure}{$[f_{8,7}]$: weight classes}
1155
\label{fig:8_7_weight_class_matrix}
1156
\end{minipage}%
1157
\begin{minipage}{.48\textwidth}
1158
\centering
1159
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_7_bent_cayley_graph_index_matrix.png}
1160
\captionof{figure}{$[f_{8,7}]$: 5 extended Cayley classes}
1161
\label{fig:8_7_bent_cayley_graph_index_matrix}
1162
\end{minipage}
1163
\end{figure}
1164
~
1165
\end{frame}
1166
\begin{frame}
1167
\frametitle{For ET class $[f_{8,8}]$: matrices}
1168
\begin{figure}
1169
\centering
1170
\begin{minipage}{.48\textwidth}
1171
\centering
1172
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_8_weight_class_matrix.png}
1173
\captionof{figure}{$[f_{8,8}]$: weight classes}
1174
\label{fig:8_8_weight_class_matrix}
1175
\end{minipage}%
1176
\begin{minipage}{.48\textwidth}
1177
\centering
1178
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_8_bent_cayley_graph_index_matrix.png}
1179
\captionof{figure}{$[f_{8,8}]$: 6 extended Cayley classes}
1180
\label{fig:8_8_bent_cayley_graph_index_matrix}
1181
\end{minipage}
1182
\end{figure}
1183
~
1184
\end{frame}
1185
\begin{frame}
1186
\frametitle{For ET class $[f_{8,9}]$: matrices}
1187
\begin{figure}
1188
\centering
1189
\begin{minipage}{.48\textwidth}
1190
\centering
1191
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_9_bent_cayley_graph_index_matrix.png}
1192
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1193
\label{fig:c8_9_bent_cayley_graph_index_matrix}
1194
\end{minipage}
1195
\begin{minipage}{.48\textwidth}
1196
\centering
1197
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_9_dual_cayley_graph_index_matrix.png}
1198
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes of dual bent functions}
1199
\label{fig:c8_9_dual_cayley_graph_index_matrix}
1200
\end{minipage}%
1201
\end{figure}
1202
4 of the 8 classes form 2 dual pairs of classes.
1203
\end{frame}
1204
\begin{frame}
1205
\frametitle{For ET class $[f_{8,10}]$: matrices}
1206
\begin{figure}
1207
\centering
1208
\begin{minipage}{.48\textwidth}
1209
\centering
1210
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_10_bent_cayley_graph_index_matrix.png}
1211
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1212
\label{fig:c8_10_bent_cayley_graph_index_matrix}
1213
\end{minipage}
1214
\begin{minipage}{.48\textwidth}
1215
\centering
1216
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_10_dual_cayley_graph_index_matrix.png}
1217
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes of dual bent functions}
1218
\label{fig:c8_10_dual_cayley_graph_index_matrix}
1219
\end{minipage}%
1220
\end{figure}
1221
6 of the 10 classes form 3 dual pairs of classes.
1222
\end{frame}
1223
\end{colortheme}
1224
\begin{colortheme}{seagull}
1225
\begin{frame}
1226
\frametitle{For $m=4$: number of bent functions and EA classes}
1227
1228
According to Langevin and Leander (2011)
1229
there are $99270589265934370305785861242880 \approx 2^{106}$ bent functions in dimension 8.
1230
1231
~
1232
1233
The number of EA classes has not yet been published, let alone a list of representatives.
1234
1235
\slidecite{Langevin and Leander 2011}
1236
\end{frame}
1237
\begin{frame}[fragile]
1238
\frametitle{For $m=4$: number of partial spread bent functions and EA classes}
1239
1240
According to Langevin and Hou (2011)
1241
there are $70576747237594114392064 \approx 2^{75.9}$ \Emph{partial spread} bent functions in dimension 8,
1242
contained in $14758$ EA classes, of which $14756$ have degree 4.
1243
1244
~
1245
1246
The EA class representatives are listed at Langevin's web site
1247
1248
\begin{verbatim}
1249
http://langevin.univ-tln.fr/project/spread/psp.html
1250
\end{verbatim}
1251
1252
\slidecite{Langevin and Hou 2011}
1253
\end{frame}
1254
\end{colortheme}
1255
\begin{colortheme}{jubata}
1256
\begin{frame}
1257
\frametitle{Example partial spread ET class $[psf_{9,5438}]$}
1258
\begin{figure}
1259
\centering
1260
\begin{minipage}{.48\textwidth}
1261
\centering
1262
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5438_bent_cayley_graph_index_matrix.png}
1263
\captionof{figure}{$[psf_{9,5438}]$: 16 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1264
\label{fig:psf_9_5438_bent_cayley_graph_index_matrix}
1265
\end{minipage}
1266
\begin{minipage}{.48\textwidth}
1267
\centering
1268
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5438_dual_cayley_graph_index_matrix.png}
1269
\captionof{figure}{$[psf_{9,5438}]$: 16 extended Cayley classes of dual bent functions}
1270
\label{fig:psf_9_5438_dual_cayley_graph_index_matrix}
1271
\end{minipage}%
1272
\end{figure}
1273
6 of the 16 classes form 3 dual pairs of classes.
1274
\end{frame}
1275
\section{Questions}
1276
\begin{frame}
1277
\frametitle{Open problems}
1278
Settled only for $m \leqslant 3$:
1279
\begin{enumerate}
1280
\item
1281
How many EC classes are there for each $m$?
1282
Are there ``Exponential numbers'' of classes?
1283
\item
1284
Are there any ET classes that contain the maximum number, $16^m$, different EC classes?
1285
\item
1286
Which EC classes overlap more than one ET class?
1287
\item
1288
Which bent functions are Cayley equivalent to their dual?
1289
\end{enumerate}
1290
~
1291
1292
Also, what are the remaining EA and EC classes for $m=4$,
1293
i.e. the EA and EC classes of binary bent functions of dimension 8 and degree 4?
1294
1295
~
1296
1297
\slidecite{Kantor 1983; Jungnickel and Tonchev 1991; Langevin and Leander 2008, 2011}
1298
\end{frame}
1299
\end{colortheme}
1300
\section{Source code}
1301
\begin{colortheme}{jubata}
1302
\begin{frame}[fragile]
1303
\frametitle{Source code on GitHub and SageMathCloud}
1304
~
1305
1306
GitHub: Sage and Python source code
1307
1308
\begin{verbatim}
1309
https://github.com/penguian/Boolean-Cayley-graphs
1310
\end{verbatim}
1311
1312
~
1313
1314
SageMathCloud: Public worksheet
1315
1316
\begin{verbatim}
1317
http://tinyurl.com/ho7tl4y
1318
\end{verbatim}
1319
1320
\end{frame}
1321
\end{colortheme}
1322
\section{Last}
1323
\begin{colortheme}{jubata}
1324
\begin{frame}
1325
\frametitle{Thank you.}
1326
1327
\begin{figure}
1328
\centering
1329
\begin{minipage}{.48\textwidth}
1330
\centering
1331
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}
1332
\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}
1333
\label{fig:tau_3_bent_cayley_graph_index_matrix}
1334
\end{minipage}
1335
\begin{minipage}{.48\textwidth}
1336
\centering
1337
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}
1338
\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}
1339
\label{fig:tau_4_bent_cayley_graph_index_matrix}
1340
\end{minipage}%
1341
\end{figure}
1342
\end{frame}
1343
1344
\end{colortheme}
1345
\end{document}
1346
1347