\documentclass[pdf,sprung,slideColor,nocolorBG]{beamer}
\mode<presentation>
\newenvironment{colortheme}[1]{
\def\ProvidesPackageRCS $##1${\relax}
\renewcommand{\ProcessOptions}{\relax}
\makeatletter
\input beamercolortheme#1.sty
\makeatother
}{}
\let\Tiny=\tiny
\usetheme{Adelaide}
\usefonttheme[stillsansseriftext]{serif}
\setbeamerfont{structure}{series=\bfseries}
\setbeamertemplate{frametitle}[default][center]
\usepackage[figurename={}]{caption}
\usepackage[latin1]{inputenc}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amscd}
\usepackage[all]{xy}
\usepackage{xcolor}
\usepackage{enumerate}
\newcommand{\slidecite}[1]{\tiny{(#1)}\normalsize{}}
\newcommand{\smallcite}[1]{\small{(#1)}\normalsize{}}
\newcommand{\mb}[1]{\mathbb{#1}}
\newcommand{\mf}[1]{\mathbf{#1}}
\newcommand{\Emph}[1]{\emph{\textcolor{blue}{#1}}}
\newcommand{\abs}[1]{\left| #1 \right|}
\newcommand{\norm}[1]{\left\| #1 \right\|}
\newcommand{\To}{\rightarrow}
\newcommand{\Cay}[1]{\operatorname{Cay}\left(#1\right)}
\newcommand{\Clique}[1]{\omega\left(#1\right)}
\newcommand{\dual}[1]{\widetilde{#1}}
\newcommand{\support}[1]{\operatorname{supp}\left(#1\right)}
\newcommand{\weight}[1]{\operatorname{wt}\left(#1\right)}
\newcommand{\weightclass}[1]{\operatorname{wc}\left(#1\right)}
\newcommand{\G}{\mb{G}}
\newcommand{\R}{\mb{R}}
\newcommand{\Z}{\mb{Z}}
\newtheorem{Question}{Question}
\newtheorem{Conjecture}{Conjecture}
\title{Classifying bent functions by their Cayley graphs, using Sage}
\author{Paul Leopardi}
\date{For ACCMCC 40 Newcastle 2016}
\institute{Australian Government - Bureau of Meteorology.}
\titlegraphic{
}
\begin{document}
\frame{\titlepage}
\begin{frame}
\frametitle{Acknowledgements}
\begin{center}
~
Robert Craigen, David Joyner, Philippe Langevin, William Martin,
Padraig {\'O} Cath{\'a}in,
Judy-anne Osborn, Dima Pasechnik and William Stein.
~
kodlu on MathOverflow.
~
Matthew Leingang for Beamer colour themes.
~
Australian National University. University of Newcastle, Australia.
~
SageMath, Bliss, Nauty.
~
Australian Government - Bureau of Meteorology.
\end{center}
\end{frame}
\begin{frame}
\frametitle{Overview}
\begin{itemize}
\item
Key concepts.
~
\item
Equivalence.
~
\item
Some results.
~
\item
Observations for small dimensions.
~
\item
Some questions.
~
\item
SageMath code.
\end{itemize}
\end{frame}
\section{Key concepts}
\begin{colortheme}{seagull}
\begin{frame}
\frametitle{The Cayley graph of a binary function}
The \Emph{Cayley graph} $\Cay{f}$ of a binary function
~
\begin{align*}
f : \Z_2^n \To \Z_2 \quad \text{where} \quad f(0) = 0
\end{align*}
~
is
an undirected graph with
\begin{align*}
V(\Cay{f}) &:= \Z_2^n, \quad (x,y) \in E(\Cay{f}) \Leftrightarrow f(x+y) = 1.
\end{align*}
~
\slidecite{Bernasconi and Codenotti 1999}
\end{frame}
\begin{frame}
\frametitle{Bent functions}
A binary function $f : \Z_2^{2m} \To \Z_2$ is \Emph{bent} if and only if the function $\dual{f}$, defined by
\begin{align*}
(-1)^{\dual{f}(x)} &:= 2^{-m} \sum_{y \in \Z_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}
\end{align*}
is a binary function on $\Z_2^{2m}$.
~
The function $\dual{f}$ is also bent and is called the \Emph{dual} of $f$.
~
\slidecite{Dillon 1974; Rothaus 1976; Tokareva 2011}
\end{frame}
\begin{frame}
\frametitle{Strongly regular graphs}
A simple graph $\Gamma$ of order $v$ is \Emph{strongly regular} with parameters
$(v,k,\lambda,\mu)$ if
~
\begin{itemize}
\item
each vertex has degree $k,$
~
\item
each adjacent pair of vertices has $\lambda$ common neighbours, and
~
\item
each nonadjacent pair of vertices has $\mu$ common neighbours.
\end{itemize}
~
\slidecite{Brouwer, Cohen and Neumaier 1989}
\end{frame}
\begin{frame}
\frametitle{Bent functions and strongly regular graphs}
\begin{Theorem}
\smallcite{Bernasconi and Codenotti 1999}
The Cayley graph $\Cay{f}$ of a bent function $f$ on $\Z_2^{2m}$
with $f(0)=0$ is a strongly regular graph with $\lambda = \mu.$
\end{Theorem}
The parameters of $\Cay{f}$ are
\begin{align*}
(v,k,\lambda) = &(4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})
\\
\text{or} \quad &(4^m, 2^{2 m - 1} + 2^{m-1}, 2^{2 m - 2} + 2^{m-1}).
\end{align*}
~
\slidecite{Menon 1962; Dillon 1974; Bernasconi and Codenotti 1999}
\end{frame}
\end{colortheme}
\begin{colortheme}{jubata}
\begin{frame}
\frametitle{Weights and weight classes}
\begin{Definition}
The \Emph{weight} of a binary function is the cardinality of its \Emph{support}.
For $f$ on $\Z_2^{2m}$
\begin{align*}
\support{f} &:= \{x \in \Z_2^{2m} \mid f(x)=1 \}.
\end{align*}
A bent function $f$ on $\Z_2^{2m}$ has weight
\begin{align*}
\weight{f} &= 2^{2 m - 1} - 2^{m-1} \quad (\text{weight class~} \weightclass{f}=0), \text{~or}
\\
\weight{f} &= 2^{2 m - 1} + 2^{m-1} \quad (\text{weight class~} \weightclass{f}=1).
\end{align*}
If $f(0)=0$ then $\weightclass{\Cay{f}} := \weightclass{f}$.
\end{Definition}
\end{frame}
\end{colortheme}
\begin{colortheme}{seagull}
\begin{frame}
\frametitle{The two block designs of a bent function}
The adjacency matrix of $\Cay{f}$ can also be interpreted as the incidence matrix of a block design.
~
In this case we do not need $f(0)=0$.
~
\begin{Definition}
A second block design described by Dillon and Schatz can be defined by the incidence matrix $D(f)$ where
\begin{align*}
D(f)_{c,x} &:= f(x) + \langle c, x \rangle + \dual{f}(c).
\end{align*}
This is a symmetric block design with the \Emph{symmetric difference property}.
\end{Definition}
~
\slidecite{Dillon and Schatz 1987; Neumann 2006}
\end{frame}
\begin{frame}
\frametitle{Projective two-weight binary codes}
\begin{Definition}
A \Emph{two-weight binary code} with parameters $[n,k,d]$ is a $k$ dimensional subspace of $\Z_2^n$ with
minimum Hamming distance $d$, such that the set of Hamming weights of the non-zero vectors has size 2.
~
``A \Emph{generator matrix} $G$ of a linear code $[n, k]$ code $C$ is any matrix
of rank $k$ (over $\Z_2$) with rows from $C.$''
~
``A linear $[n, k]$ code is called \Emph{projective} if no two columns of a generator matrix
$G$ are linearly dependent, i.e., if the columns of $G$ are pairwise different points in a
projective $(k-1)$-dimensional space.''
In the case of $\Z_2$, no two columns are equal.
~
\slidecite{Bouyukliev, Fack, Willems and Winne 2006}
\end{Definition}
\end{frame}
\end{colortheme}
\section{Equivalence}
\begin{colortheme}{jubata}
\begin{frame}
\frametitle{Extended translation equivalence}
\begin{Definition}
For bent functions $f,g : \Z_2^{2m} \To \Z_2$,
$f$ is \Emph{extended translation equivalent} to $g$ if and only if
\begin{align*}
g(x) &= f(x + b) + \langle c, x \rangle + \delta
\end{align*}
for $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$.
\end{Definition}
\end{frame}
\end{colortheme}
\begin{colortheme}{seagull}
\begin{frame}
\frametitle{Extended affine equivalence}
\begin{Definition}
For bent functions $f,g : \Z_2^{2m} \To \Z_2$,
$f$ is \Emph{extended affine equivalent} to $g$ if and only if
\begin{align*}
g(x) &= f(A x + b) + \langle c, x \rangle + \delta
\end{align*}
for some $A \in GL(2m,2)$, $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$.
\end{Definition}
~
\slidecite{Tokareva 2014}
\end{frame}
\end{colortheme}
\begin{colortheme}{jubata}
\begin{frame}
\frametitle{Cayley equivalence}
\begin{Definition}
For $f, g : \Z_2^{2m} \To \Z_2$, with both $f$ and $g$ bent,
we call $f$ and $g$ \Emph{Cayley equivalent},
and write $f \equiv g$,
if and only if $f(0)=g(0)=0$ and $\Cay{f} \equiv \Cay{g}$ as graphs.
~
Equivalently, $f \equiv g$ if and only if $f(0)=g(0)=0$ and
there exists a bijection $\pi : \Z_2^{2m} \To \Z_2^{2m}$ such that
\begin{align*}
g(x+y) &= f \big(\pi(x)+\pi(y)\big) \quad \text{for all~} x,y \in \Z_2^{2m}.
\end{align*}
\end{Definition}
\end{frame}
\begin{frame}
\frametitle{Extended Cayley equivalence}
\begin{Definition}
For $f, g : \Z_2^{2m} \To \Z_2$, with both $f$ and $g$ bent,
if there exist $\delta, \epsilon \in \{0,1\}$ such that $f + \delta \equiv g + \epsilon$,
we call $f$ and $g$ \Emph{extended Cayley (EC) equivalent} and write $f \cong g$.
\end{Definition}
Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\Z_2^{2m}$.
\end{frame}
\section{Some results}
\begin{frame}
\frametitle{Linear equivalence implies Cayley equivalence}
\begin{Theorem}
If $f$ is bent with $f(0)=0$ and $g(x) := f(A x)$ where $A \in GL(2m,2)$,
then $g$ is bent with $g(0)=0$ and $f \equiv g$.
\end{Theorem}
\begin{proof}
\begin{align*}
g(x+y) &= f\big(A(x+y)\big) = f(A x + A y)\quad \text{for all~} x,y \in \Z_2^{2m}.
\end{align*}
\end{proof}
\end{frame}
\begin{frame}
\frametitle{Extended affine, extended translation and extended Cayley equivalence (1)}
\begin{Theorem}
For $A \in GL(2m,2)$, $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$,
$f : \Z_2^{2m} \To \Z_2$,
the function
\begin{align*}
h(x) &:= f(A x + b) + \langle c, x \rangle + \delta
\intertext{can be expressed as $h(x) = g(A x)$ where}
g(x) &:= f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,
\end{align*}
and therefore if $f$ is bent and $h(0)=0$ then $h \equiv g$.
\end{Theorem}
\end{frame}
\begin{frame}
\frametitle{Extended affine, extended translation and extended Cayley equivalence (2)}
Therefore, to determine the extended Cayley equivalence classes within the extended affine equivalence class of
a bent function $f : \Z_2^{2m} \To \Z_2$, for which $f(0)=0$, we need only examine
the extended translation equivalent functions of the form
\begin{align*}
f(x+b) + \langle c, x \rangle + f(b),
\end{align*}
for each $b, c \in \Z_2^{2m}$.
\end{frame}
\begin{frame}
\frametitle{Quadratic bent functions have 2 EC classes}
\begin{Theorem}
For each $m>0$, the extended affine equivalence class of quadratic bent functions
$q : \Z_2^{2m} \To \Z_2$ contains exactly two extended Cayley equivalence classes,
corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.
\end{Theorem}
\end{frame}
\begin{frame}
\frametitle{The Dillon-Schatz design matrix}
\begin{Theorem}
For every bent function $f$, the \Emph{weight class matrix} of $f$
equals the incidence matrix of the Dillon-Schatz design of $f$.
~
Specifically,
\begin{align*}
\weightclass{\Cay{x \mapsto f(x+b) + \langle c, x \rangle + f(b)}}
&=
f(b) + \langle c, b \rangle + \dual{f}(c)
\\
&=
D(f)_{c,b}.
\end{align*}
\end{Theorem}
\end{frame}
\end{colortheme}
\begin{colortheme}{seagull}
\begin{frame}
\frametitle{From bent function to linear code (1)}
\begin{Definition}
\smallcite{Carlet 2007; Ding 2015, Corollary 10}
For a bent function $f : \Z_2^{2m} \To \Z_2$,
define the linear code $C(f)$ by the generator matrix
\begin{align*}
M C(f)_{x,y} &\in \Z_2^{4^m \times \weight{f}},
\\
M C(f)_{x,y} &:= \langle x, \support{f}(y) \rangle,
\end{align*}
with $x$ in lexicographic order of $\Z_2^{2m}$
and $\support{f}(y)$ in lexicographic order of $\support{f}$.
The $4^m$ words of the code $C(f)$ are the rows of the generator matrix $M C(f)$.
\end{Definition}
\slidecite{Carlet 2007; Ding 2015, Corollary 10}
\end{frame}
\begin{frame}
\frametitle{From bent function to linear code (2)}
\begin{Theorem}
\smallcite{Carlet 2007, Prop. 20; Ding 2015, Corollary 10}
For a bent function $f : \Z_2^{2m} \To \Z_2$, the linear code $C(f)$
is a two-weight projective binary code.
~
The possible weights of non-zero code words are:
\begin{align*}
\begin{cases}
2^{2m-2}, 2^{2m-2} - 2^{m-1} & \text{if~} \weightclass{f}=0.
\\
2^{2m-2}, 2^{2m-2} + 2^{m-1} & \text{if~} \weightclass{f}=1.
\end{cases}
\end{align*}
\end{Theorem}
\slidecite{Carlet 2007, Prop. 20; Ding 2015, Corollary 10}
\end{frame}
\begin{frame}
\frametitle{From linear code to strongly regular graph}
\begin{Definition}
Given $f : \Z_2^{2m} \To \Z_2$, form the linear code $C(f)$.
The graph $R(f)$ is defined as:
Vertices of $R(f)$ are code words of $C(f)$.
For $v,w \in C(f)$, edge $(u,v) \in R(f)$ if and only if
\begin{align*}
\begin{cases}
\weight{u+v} = 2^{2m-2} - 2^{m-1} & (\weightclass{f}=0).
\\
\weight{u+v} = 2^{2m-2} + 2^{m-1} & (\weightclass{f}=1).
\end{cases}
\end{align*}
\end{Definition}
Since $C(f)$ is a two-weight binary projective code,
$R(f)$ is a strongly regular graph.
\slidecite{Delsarte 1972, Theorem 2}
\end{frame}
\end{colortheme}
\begin{colortheme}{jubata}
\begin{frame}
\frametitle{The graph $R(f)$ is the Cayley graph of the dual}
\begin{Theorem}
For $f : \Z_2^{2m} \To \Z_2$, with $f(0)=0$,
\begin{align*}
R(f) \equiv
\begin{cases}
\Cay{\dual{f}} & \text{if~} \weightclass{f}=0,
\\
\Cay{\dual{f}+1} & \text{if~} \weightclass{f}=1.
\end{cases}
\end{align*}
\end{Theorem}
\end{frame}
\end{colortheme}
\section{Observations}
\begin{colortheme}{jubata}
\begin{frame}
\frametitle{For $m=1$}
One extended affine class, containing the extended translation class $[f_{2,1}]$,
where $f_{2,1}(x) := x_0 x_1$ is self dual.
~
Two extended Cayley classes:
\begin{align*}
\begin{array}{|cccl|}
\hline
\text{Class} &
\text{Parameters} &
\text{2-rank} &
\text{Clique polynomial}
\\
\hline
1 &
(4, 1, 0, 0) & 4 &
2t^{2} + 4t + 1
\\
2 &
K_4 & 4 &
t^{4} + 4t^{3} + 6t^{2} + 4t + 1
\\
\hline
\end{array}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{2,1}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re2_1_weight_class_matrix.png}
\captionof{figure}{$[f_{2,1}]$: weight classes}
\label{fig:c2_1_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re2_1_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{2,1}]$: extended Cayley classes}
\label{fig:c2_1_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{For $m=2$: classes}
One extended affine class, containing the extended translation class $[f_{4,1}]$, where
$f_{4,1}(x) := x_0 x_1 + x_2 x_3$ is self dual.
~
Two extended Cayley classes:
\begin{align*}
\begin{array}{|cccl|}
\hline
\text{Class} &
\text{Parameters} &
\text{2-rank} &
\text{Clique polynomial}
\\
\hline
1 &
(16, 6, 2, 2) &
6 &
8t^{4} + 32t^{3} + 48t^{2} + 16t + 1
\\
2 &
(16, 10, 6, 6) &
6 &
\begin{array}{l}
16t^{5} + 120t^{4} + 160t^{3} +
\\
80t^{2} + 16t + 1
\end{array}
\\
\hline
\end{array}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{4,1}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re4_1_weight_class_matrix.png}
\captionof{figure}{$[f_{4,1}]$: weight classes}
\label{fig:c4_1_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re4_1_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{4,1}]$: extended Cayley classes}
\label{fig:c4_1_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{For $m=3$: extended translation classes}
Four extended affine classes, containing the following extended translation classes:
\begin{align*}
\def\arraystretch{1.2}
\begin{array}{|cl|}
\hline
\text{Class} &
\text{Representative}
\\
\hline
\,[f_{6,1}] & f_{6,1} :=
\begin{array}{l}
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5}
\end{array}
\\
\,[f_{6,2}] & f_{6,2} :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}
\end{array}
\\
\,[f_{6,3}] & f_{6,3} :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5}
\\
+\, x_{2} x_{4} + x_{3} x_{4}
\end{array}
\\
\,[f_{6,4}] & f_{6,4} :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
\\
+\, x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}
\end{array}
\\
\hline
\end{array}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{6,1}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_1_weight_class_matrix.png}
\captionof{figure}{$[f_{6,1}]$: weight classes}
\label{fig:6_1_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_1_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}
\label{fig:6_1_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{6,2}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_2_weight_class_matrix.png}
\captionof{figure}{$[f_{6,2}]$: weight classes}
\label{fig:6_2_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_2_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{6,2}]$: 3 extended Cayley classes}
\label{fig:6_2_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{6,3}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_3_weight_class_matrix.png}
\captionof{figure}{$[f_{6,3}]$: weight classes}
\label{fig:6_3_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_3_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{6,3}]$: 4 extended Cayley classes}
\label{fig:6_3_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{6,4}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_4_weight_class_matrix.png}
\captionof{figure}{$[f_{6,4}]$: weight classes}
\label{fig:6_4_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_4_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{6,4}]$: 3 extended Cayley classes}
\label{fig:6_4_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{For $m=4$: extended translation classes}
Up to degree 3:
Ten extended affine classes,
containing the following extended translation classes:
\tiny{}
\begin{align*}
\def\arraystretch{1.2}
\begin{array}{|cl|}
\hline
\text{Class} &
\text{Representative}
\\
\hline
\,[f_{ 8 , 1 }] & f_{ 8 , 1 } :=
\begin{array}{l}
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5} + x_{6} x_{7}
\end{array}
\\
\,[f_{ 8 , 2 }] & f_{ 8 , 2 } :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5} + x_{6} x_{7}
\end{array}
\\
\,[f_{ 8 , 3 }] & f_{ 8 , 3 } :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{4} x_{7}
\end{array}
\\
\,[f_{ 8 , 4 }] & f_{ 8 , 4 } :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{4} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{6} x_{7}
\end{array}
\\
\,[f_{ 8 , 5 }] & f_{ 8 , 5 } :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
\end{array}
\\
\,[f_{ 8 , 6 }] & f_{ 8 , 6 } :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{5} x_{7}
\end{array}
\\
\,[f_{ 8 , 7 }] & f_{ 8 , 7 } :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
\\
+\, x_{2} x_{4} + x_{6} x_{7}
\end{array}
\\
\,[f_{ 8 , 8 }] & f_{ 8 , 8 } :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
\end{array}
\\
\,[f_{ 8 , 9 }] & f_{ 8 , 9 } :=
\begin{array}{l}
x_{0} x_{1} x_{6} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{3} x_{6} + x_{2} x_{5} + x_{3} x_{4} + x_{4} x_{5} x_{6} + x_{6} x_{7}
\end{array}
\\
\,[f_{ 8 , 10 }] & f_{ 8 , 10 } :=
\begin{array}{l}
x_{0} x_{1} x_{2} + x_{0} x_{3} x_{6} + x_{0} x_{4} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4}
\\
+\, x_{3} x_{7}
\end{array}
\\
\hline
\end{array}
\end{align*}
\normalsize{}
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,1}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_1_weight_class_matrix.png}
\captionof{figure}{$[f_{8,1}]$: weight classes}
\label{fig:8_1_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_1_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}
\label{fig:8_1_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
~
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,2}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_2_weight_class_matrix.png}
\captionof{figure}{$[f_{8,2}]$: weight classes}
\label{fig:8_2_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_2_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,2}]$: 4 extended Cayley classes}
\label{fig:8_2_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
~
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,3}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_3_weight_class_matrix.png}
\captionof{figure}{$[f_{8,3}]$: weight classes}
\label{fig:8_3_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_3_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,3}]$: 6 extended Cayley classes}
\label{fig:8_3_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
~
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,4}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_4_weight_class_matrix.png}
\captionof{figure}{$[f_{8,4}]$: weight classes}
\label{fig:8_4_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_4_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,4}]$: 5 extended Cayley classes}
\label{fig:8_4_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
~
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,5}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_5_weight_class_matrix.png}
\captionof{figure}{$[f_{8,5}]$: weight classes}
\label{fig:8_5_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_5_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,5}]$: 9 extended Cayley classes}
\label{fig:8_5_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
~
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,6}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_6_weight_class_matrix.png}
\captionof{figure}{$[f_{8,6}]$: weight classes}
\label{fig:8_6_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_6_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,6}]$: 9 extended Cayley classes}
\label{fig:8_6_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
The same 9 classes as $[f_{8,5}]$, with the same frequencies!
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,7}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_7_weight_class_matrix.png}
\captionof{figure}{$[f_{8,7}]$: weight classes}
\label{fig:8_7_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_7_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,7}]$: 5 extended Cayley classes}
\label{fig:8_7_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
~
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,8}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_8_weight_class_matrix.png}
\captionof{figure}{$[f_{8,8}]$: weight classes}
\label{fig:8_8_weight_class_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_8_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,8}]$: 6 extended Cayley classes}
\label{fig:8_8_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
~
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,9}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_9_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
\label{fig:c8_9_bent_cayley_graph_index_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_9_dual_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes of dual bent functions}
\label{fig:c8_9_dual_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
4 of the 8 classes form 2 dual pairs of classes.
\end{frame}
\begin{frame}
\frametitle{For ET class $[f_{8,10}]$: matrices}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_10_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
\label{fig:c8_10_bent_cayley_graph_index_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_10_dual_cayley_graph_index_matrix.png}
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes of dual bent functions}
\label{fig:c8_10_dual_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
6 of the 10 classes form 3 dual pairs of classes.
\end{frame}
\end{colortheme}
\begin{colortheme}{seagull}
\begin{frame}
\frametitle{For $m=4$: number of bent functions and EA classes}
According to Langevin and Leander (2011)
there are $99270589265934370305785861242880 \approx 2^{106}$ bent functions in dimension 8.
~
The number of EA classes has not yet been published, let alone a list of representatives.
\slidecite{Langevin and Leander 2011}
\end{frame}
\begin{frame}[fragile]
\frametitle{For $m=4$: number of partial spread bent functions and EA classes}
According to Langevin and Hou (2011)
there are $70576747237594114392064 \approx 2^{75.9}$ \Emph{partial spread} bent functions in dimension 8,
contained in $14758$ EA classes, of which $14756$ have degree 4.
~
The EA class representatives are listed at Langevin's web site
\begin{verbatim}
http://langevin.univ-tln.fr/project/spread/psp.html
\end{verbatim}
\slidecite{Langevin and Hou 2011}
\end{frame}
\end{colortheme}
\begin{colortheme}{jubata}
\begin{frame}
\frametitle{Example partial spread ET class $[psf_{9,5438}]$}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5438_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[psf_{9,5438}]$: 16 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
\label{fig:psf_9_5438_bent_cayley_graph_index_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5438_dual_cayley_graph_index_matrix.png}
\captionof{figure}{$[psf_{9,5438}]$: 16 extended Cayley classes of dual bent functions}
\label{fig:psf_9_5438_dual_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
6 of the 16 classes form 3 dual pairs of classes.
\end{frame}
\section{Questions}
\begin{frame}
\frametitle{Open problems}
Settled only for $m \leqslant 3$:
\begin{enumerate}
\item
How many EC classes are there for each $m$?
Are there ``Exponential numbers'' of classes?
\item
Are there any ET classes that contain the maximum number, $16^m$, different EC classes?
\item
Which EC classes overlap more than one ET class?
\item
Which bent functions are Cayley equivalent to their dual?
\end{enumerate}
~
Also, what are the remaining EA and EC classes for $m=4$,
i.e. the EA and EC classes of binary bent functions of dimension 8 and degree 4?
~
\slidecite{Kantor 1983; Jungnickel and Tonchev 1991; Langevin and Leander 2008, 2011}
\end{frame}
\end{colortheme}
\section{Source code}
\begin{colortheme}{jubata}
\begin{frame}[fragile]
\frametitle{Source code on GitHub and SageMathCloud}
~
GitHub: Sage and Python source code
\begin{verbatim}
https://github.com/penguian/Boolean-Cayley-graphs
\end{verbatim}
~
SageMathCloud: Public worksheet
\begin{verbatim}
http://tinyurl.com/ho7tl4y
\end{verbatim}
\end{frame}
\end{colortheme}
\section{Last}
\begin{colortheme}{jubata}
\begin{frame}
\frametitle{Thank you.}
\begin{figure}
\centering
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}
\label{fig:tau_3_bent_cayley_graph_index_matrix}
\end{minipage}
\begin{minipage}{.48\textwidth}
\centering
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}
\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}
\label{fig:tau_4_bent_cayley_graph_index_matrix}
\end{minipage}
\end{figure}
\end{frame}
\end{colortheme}
\end{document}