Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
22144 views
1
\documentclass[pdf,sprung,slideColor,nocolorBG]{beamer}
2
%
3
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
4
\mode<presentation>
5
6
\newenvironment{colortheme}[1]{
7
\def\ProvidesPackageRCS $##1${\relax}
8
\renewcommand{\ProcessOptions}{\relax}
9
\makeatletter
10
\input beamercolortheme#1.sty
11
\makeatother
12
}{}
13
14
\let\Tiny=\tiny
15
\usetheme{Adelaide}
16
\usefonttheme[stillsansseriftext]{serif}
17
\setbeamerfont{structure}{series=\bfseries}
18
\setbeamertemplate{frametitle}[default][center]
19
\usepackage[figurename={}]{caption}
20
\usepackage[latin1]{inputenc}
21
%\usepackage{amsmath} %needed for \begin{align}... \end{align} environment
22
\usepackage{amsfonts}
23
\usepackage{amssymb}
24
%\usepackage{amscd}
25
%\usepackage[all]{xy}
26
\usepackage{xcolor}
27
\usepackage{enumerate}
28
%
29
\newcommand{\slidecite}[1]{\tiny{(#1)}\normalsize{}}
30
\newcommand{\smallcite}[1]{\small{(#1)}\normalsize{}}
31
32
\newcommand{\mb}[1]{\mathbb{#1}}
33
\newcommand{\mf}[1]{\mathbf{#1}}
34
\newcommand{\Emph}[1]{\emph{\textcolor{blue}{#1}}}
35
36
\newcommand{\abs}[1]{\left| #1 \right|}
37
\newcommand{\norm}[1]{\left\| #1 \right\|}
38
\newcommand{\To}{\rightarrow}
39
40
\newcommand{\Cay}[1]{\operatorname{Cay}\left(#1\right)}
41
\newcommand{\Clique}[1]{\omega\left(#1\right)}
42
\newcommand{\dual}[1]{\widetilde{#1}}
43
\newcommand{\support}[1]{\operatorname{supp}\left(#1\right)}
44
\newcommand{\weight}[1]{\operatorname{wt}\left(#1\right)}
45
\newcommand{\weightclass}[1]{\operatorname{wc}\left(#1\right)}
46
47
\newcommand{\F}{\mb{F}}
48
\newcommand{\G}{\mb{G}}
49
\newcommand{\R}{\mb{R}}
50
\newcommand{\Z}{\mb{Z}}
51
\newtheorem{Def}{Definition}
52
\newtheorem{Conjecture}{Conjecture}
53
\newtheorem{Question}{Question}
54
\newtheorem{Proposition}{Proposition}
55
56
\title{Classifying bent functions by their Cayley graphs}
57
\author{Paul Leopardi}
58
59
\date{For 2MCGTC
60
\\
61
Malta
62
\\
63
June 2017}
64
65
\institute{University of Melbourne
66
\\
67
Australian Government - Bureau of Meteorology}
68
\titlegraphic{
69
%\includegraphics[angle=0,width=10mm]{../../common/beamer-anu-colourlogo.png}
70
%\includegraphics[angle=0,width=20mm]{../../common/carma_logo.jpg}
71
}
72
\begin{document}
73
74
\frame{\titlepage}
75
\begin{frame}
76
\frametitle{Acknowledgements}
77
\begin{center}
78
Nathan Clisby,
79
Robert Craigen,
80
Joanne Hall,
81
David Joyner, Philippe Langevin, William Martin,
82
Padraig {\'O} Cath{\'a}in,
83
Judy-anne Osborn, Dima Pasechnik and William Stein.
84
85
~
86
87
kodlu on MathOverflow.
88
89
~
90
91
Matthew Leingang for Beamer colour themes.
92
93
~
94
95
Australian National University. University of Newcastle, Australia. University of Melbourne.
96
97
~
98
99
Australian Government - Bureau of Meteorology.
100
101
~
102
103
SageMath, Bliss, Nauty.
104
\end{center}
105
\end{frame}
106
107
\begin{frame}
108
\frametitle{Overview}
109
%\begin{center}
110
\begin{itemize}
111
\item
112
Preliminaries.
113
114
~
115
116
\item
117
Cayley graphs and linear codes.
118
119
~
120
121
\item
122
Equivalence of bent functions.
123
124
~
125
126
\item
127
Block designs.
128
129
~
130
131
\item
132
Computational results for low dimensions.
133
134
~
135
136
\item
137
Questions.
138
139
~
140
141
\item
142
Source code and documentation.
143
\end{itemize}
144
145
%\end{center}
146
\end{frame}
147
148
\section{Preliminaries}
149
150
\begin{colortheme}{seagull}
151
152
\begin{frame}
153
\frametitle{Bent functions}
154
% Bent functions can be defined in a number of equivalent ways.
155
% The definition used here involves the Walsh Hadamard Transform.
156
\begin{Def}
157
\label{def-Walsh-Hadamard-transform}
158
The Walsh Hadamard transform of
159
a Boolean function $f : \F_2^{2m} \To \F_2$ is
160
\begin{align*}
161
W_f(x)
162
&:=
163
\sum_{y \in \F_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}
164
\end{align*}
165
\end{Def}
166
167
\begin{Def}
168
\label{def-Bent-function}
169
A Boolean function $f : \F_2^{2m} \To \F_2$ is \Emph{bent}
170
if and only if its Walsh Hada\-mard transform has constant absolute value $2^{m}$.
171
% \cite[p. 74]{Dil74}
172
% \cite[p. 300]{Rot76}.
173
\end{Def}
174
\slidecite{Dillon 1974; Rothaus 1976}
175
\end{frame}
176
\begin{frame}
177
\frametitle{Dual bent functions}
178
179
\begin{Def}
180
\label{def-dual-Bent-function}
181
For a bent function $f : \F_2^{2m} \To \F_2$, the function $\dual{f}$, defined by
182
\begin{align*}
183
(-1)^{\dual{f}(x)} &:= 2^{-m} W_f(x)
184
\end{align*}
185
is called the \Emph{dual} of $f$.
186
\end{Def}
187
188
~
189
190
The function $\dual{f}$ is also a bent function on $\F_2^{2m}$.
191
192
~
193
194
\slidecite{Dillon 1974; Rothaus 1976; Tokareva 2011}
195
\end{frame}
196
197
\end{colortheme}
198
199
\begin{colortheme}{jubata}
200
201
\begin{frame}
202
\frametitle{Weights and weight classes}
203
\begin{Def}
204
The \Emph{weight} of a binary function is the cardinality of its \Emph{support}.
205
For $f$ on $\F_2^{2m}$
206
\begin{align*}
207
\support{f} &:= \{x \in \F_2^{2m} \mid f(x)=1 \}.
208
\end{align*}
209
210
A bent function $f$ on $\F_2^{2m}$ has weight
211
\begin{align*}
212
\weight{f} &= 2^{2 m - 1} - 2^{m-1} \quad (\text{weight class~} \weightclass{f}=0), \text{~or}
213
\\
214
\weight{f} &= 2^{2 m - 1} + 2^{m-1} \quad (\text{weight class~} \weightclass{f}=1).
215
\end{align*}
216
% If $f(0)=0$ then $\weightclass{\Cay{f}} := \weightclass{f}$.
217
\end{Def}
218
\end{frame}
219
220
\end{colortheme}
221
222
\section{Cayley graphs and linear codes}
223
224
\begin{colortheme}{seagull}
225
226
\begin{frame}
227
\frametitle{The Cayley graph of a Boolean function}
228
%\begin{center}
229
The \Emph{Cayley graph} $\Cay{f}$ of a Boolean function
230
231
~
232
233
\begin{align*}
234
%
235
f : \F_2^n \To \F_2 \quad \text{where} \quad f(0) = 0
236
%
237
\end{align*}
238
239
~
240
241
is
242
an undirected graph with
243
244
\begin{align*}
245
V(\Cay{f}) &:= \F_2^n, \quad (x,y) \in E(\Cay{f}) \Leftrightarrow f(x+y) = 1.
246
\end{align*}
247
248
~
249
250
\slidecite{Bernasconi and Codenotti 1999}
251
\end{frame}
252
253
\begin{frame}
254
\frametitle{Strongly regular graphs}
255
%\begin{center}
256
A simple graph $\Gamma$ of order $v$ is \Emph{strongly regular} with parameters
257
$(v,k,\lambda,\mu)$ if
258
259
~
260
261
\begin{itemize}
262
\item
263
each vertex has degree $k,$
264
265
~
266
\item
267
each adjacent pair of vertices has $\lambda$ common neighbours, and
268
269
~
270
\item
271
each nonadjacent pair of vertices has $\mu$ common neighbours.
272
\end{itemize}
273
274
~
275
276
\slidecite{Brouwer, Cohen and Neumaier 1989}
277
278
%\end{center}
279
\end{frame}
280
281
\begin{frame}
282
\frametitle{Bent functions and strongly regular graphs}
283
284
\begin{Proposition}
285
\smallcite{Bernasconi and Codenotti 1999}
286
287
The Cayley graph $\Cay{f}$ of a bent function $f$ on $\F_2^{2m}$
288
289
with $f(0)=0$ is a strongly regular graph with $\lambda = \mu.$
290
\end{Proposition}
291
292
The parameters of $\Cay{f}$ are
293
\begin{align*}
294
(v,k,\lambda) = &(4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})
295
\\
296
\text{or} \quad &(4^m, 2^{2 m - 1} + 2^{m-1}, 2^{2 m - 2} + 2^{m-1}).
297
\end{align*}
298
299
~
300
301
\slidecite{Menon 1962; Dillon 1974; Bernasconi and Codenotti 1999}
302
%\end{center}
303
\end{frame}
304
305
\begin{frame}
306
\frametitle{Projective two-weight binary codes}
307
308
\begin{Def}
309
A \Emph{two-weight binary code} with parameters $[n,k,d]$ is a $k$ dimensional subspace of $\F_2^n$
310
with
311
minimum Hamming distance $d$, such that the set of Hamming weights of the non-zero vectors has size
312
2.
313
314
~
315
316
``A \Emph{generator matrix} $G$ of a linear code $[n, k]$ code $C$ is any matrix
317
of rank $k$ (over $\F_2$) with rows from $C.$''
318
319
~
320
321
``A linear $[n, k]$ code is called \Emph{projective} if no two columns of a generator matrix
322
$G$ are linearly dependent, i.e., if the columns of $G$ are pairwise different points in a
323
projective $(k-1)$-dimensional space.''
324
In the case of $\F_2$, no two columns are equal.
325
326
~
327
328
\end{Def}
329
330
\slidecite{Tonchev 1996; Bouyukliev, Fack, Willems and Winne 2006}
331
332
\end{frame}
333
334
\begin{frame}
335
\frametitle{From bent function to linear code (1)}
336
\begin{Def}
337
338
\smallcite{Carlet 2007; Ding and Ding 2015, Corollary 10}
339
340
For a bent function $f : \F_2^{2m} \To \F_2$,
341
define the linear code $C(f)$ by the generator matrix
342
\begin{align*}
343
M C(f) &\in \F_2^{4^m \times \weight{f}},
344
\\
345
M C(f)_{x,y} &:= \langle x, \support{f}(y) \rangle,
346
\end{align*}
347
with $x$ in lexicographic order of $\F_2^{2m}$
348
and $\support{f}(y)$ in lexicographic order of $\support{f}$.
349
350
The $4^m$ words of the code $C(f)$ are the rows of the generator matrix $M C(f)$.
351
\end{Def}
352
353
\slidecite{Carlet 2007; Ding and Ding 2015, Corollary 10}
354
355
\end{frame}
356
\begin{frame}
357
\frametitle{From bent function to linear code (2)}
358
\begin{Proposition}
359
\smallcite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}
360
361
For a bent function $f : \F_2^{2m} \To \F_2$, the linear code $C(f)$
362
is a projective two-weight code.
363
364
~
365
366
The possible weights of non-zero code words are:
367
\begin{align*}
368
\begin{cases}
369
2^{2m-2}, 2^{2m-2} - 2^{m-1} & \text{if~} \weightclass{f}=0.
370
\\
371
2^{2m-2}, 2^{2m-2} + 2^{m-1} & \text{if~} \weightclass{f}=1.
372
\end{cases}
373
\end{align*}
374
375
\end{Proposition}
376
377
\slidecite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}
378
379
\end{frame}
380
381
\begin{frame}
382
\frametitle{From linear code to strongly regular graph}
383
\begin{Def}
384
\label{R-f-def}
385
Given $f : \F_2^{2m} \To \F_2$, form the linear code $C(f)$.
386
387
The graph $R(f)$ is defined as:
388
389
Vertices of $R(f)$ are code words of $C(f)$.
390
391
For $v,w \in C(f)$, edge $(u,v) \in R(f)$ if and only if
392
\begin{align*}
393
\begin{cases}
394
\weight{u+v} = 2^{2m-2} - 2^{m-1} & (\text{if~}\weightclass{f}=0).
395
\\
396
\weight{u+v} = 2^{2m-2} + 2^{m-1} & (\text{if~}\weightclass{f}=1).
397
\end{cases}
398
\end{align*}
399
400
\end{Def}
401
Since $C(f)$ is a projective two-weight code,
402
$R(f)$ is a strongly regular graph.
403
404
\slidecite{Delsarte 1972, Theorem 2}
405
\end{frame}
406
407
\end{colortheme}
408
409
\begin{colortheme}{jubata}
410
411
\begin{frame}
412
\frametitle{The strongly regular graph $R(f)$ is \\ the Cayley graph of the dual}
413
414
\begin{Theorem}
415
For $f : \F_2^{2m} \To \F_2$, with $f(0)=0$,
416
\begin{align*}
417
R(f) &\equiv \Cay{\dual{f} + \weightclass{f}}.
418
\end{align*}
419
\end{Theorem}
420
421
\end{frame}
422
423
\end{colortheme}
424
425
\section{Equivalence of bent functions}
426
427
\begin{colortheme}{seagull}
428
429
\begin{frame}
430
\frametitle{Extended affine equivalence}
431
432
\begin{Def}
433
For bent functions $f,g : \F_2^{2m} \To \F_2$,
434
435
$f$ is \Emph{extended affine equivalent} to $g$ if and only if
436
\begin{align*}
437
g(x) &= f(A x + b) + \langle c, x \rangle + \delta
438
\end{align*}
439
for some $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$.
440
\end{Def}
441
~
442
443
\slidecite{Tokareva 2015}
444
\end{frame}
445
446
\end{colortheme}
447
448
\begin{colortheme}{jubata}
449
450
\begin{frame}
451
\frametitle{General linear equivalence}
452
453
\begin{Def}
454
For bent functions $f,g : \F_2^{2m} \To \F_2$,
455
$f$ is \Emph{general linear equivalent} to $g$ if and only if
456
\begin{align*}
457
g(x) &= f(A x)
458
\end{align*}
459
for some $A \in GL(2m,2)$.
460
\end{Def}
461
\end{frame}
462
\begin{frame}
463
\frametitle{Extended translation equivalence}
464
465
\begin{Def}
466
For bent functions $f,g : \F_2^{2m} \To \F_2$,
467
468
$f$ is \Emph{extended translation equivalent} to $g$ if and only if
469
\begin{align*}
470
g(x) &= f(x + b) + \langle c, x \rangle + \delta
471
\end{align*}
472
for $b, c \in \F_2^{2m}$, $\delta \in \F_2$.
473
\end{Def}
474
\end{frame}
475
476
\begin{frame}
477
\frametitle{Cayley equivalence}
478
\begin{Def}
479
%
480
For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,
481
482
we call $f$ and $g$ \Emph{Cayley equivalent},
483
and write $f \equiv g$,
484
485
if and only if $f(0)=g(0)=0$ and $\Cay{f} \equiv \Cay{g}$ as graphs.
486
487
~
488
489
Equivalently, $f \equiv g$ if and only if $f(0)=g(0)=0$ and
490
491
there exists a bijection $\pi : \F_2^{2m} \To \F_2^{2m}$ such that
492
\begin{align*}
493
g(x+y) &= f \big(\pi(x)+\pi(y)\big) \quad \text{for all~} x,y \in \F_2^{2m}.
494
\end{align*}
495
\end{Def}
496
\end{frame}
497
\begin{frame}
498
\frametitle{Extended Cayley equivalence}
499
\begin{Def}
500
For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,
501
502
if there exist $\delta, \epsilon \in \{0,1\}$ such that $f + \delta \equiv g + \epsilon$,
503
504
we call $f$ and $g$ \Emph{extended Cayley (EC) equivalent} and write $f \cong g$.
505
\end{Def}
506
Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\F_2^{2m}$.
507
\end{frame}
508
509
\begin{frame}
510
\frametitle{General linear equivalence \\ implies Cayley equivalence}
511
512
\begin{Theorem}
513
If $f$ is bent with $f(0)=0$ and $g(x) := f(A x)$ where $A \in GL(2m,2)$,
514
then $g$ is bent with $g(0)=0$ and $f \equiv g$.
515
\end{Theorem}
516
\begin{proof}
517
\begin{align*}
518
g(x+y) &= f\big(A(x+y)\big) = f(A x + A y)\quad \text{for all~} x,y \in \F_2^{2m}.
519
\end{align*}
520
\end{proof}
521
522
\end{frame}
523
524
\begin{frame}
525
\frametitle{Extended affine, extended translation, and extended Cayley equivalence (1)}
526
527
\begin{Theorem}
528
For $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$,
529
$f : \F_2^{2m} \To \F_2$,
530
531
the function
532
\begin{align*}
533
h(x) &:= f(A x + b) + \langle c, x \rangle + \delta
534
\intertext{can be expressed as $h(x) = g(A x)$ where}
535
g(x) &:= f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,
536
\end{align*}
537
and therefore if $f$ is bent then $h \cong g$.
538
\end{Theorem}
539
\end{frame}
540
541
\begin{frame}
542
\frametitle{Extended affine, extended translation, and extended Cayley equivalence (2)}
543
544
Therefore, to determine the extended Cayley equivalence classes within the extended affine equivalence class of
545
a bent function $f : \F_2^{2m} \To \F_2$, for which $f(0)=0$, we need only examine
546
the extended translation equivalent functions of the form
547
\begin{align*}
548
f(x+b) + \langle c, x \rangle + f(b),
549
\end{align*}
550
for each $b, c \in \F_2^{2m}$.
551
\end{frame}
552
553
\begin{frame}
554
\frametitle{Quadratic bent functions have two \\ extended Cayley classes}
555
\begin{Theorem}
556
For each $m>0$, the extended affine equivalence class of quadratic bent functions
557
$q : \F_2^{2m} \To \F_2$ contains exactly two extended Cayley equivalence classes,
558
corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.
559
\end{Theorem}
560
561
\end{frame}
562
563
\end{colortheme}
564
565
\section{Block designs}
566
567
\begin{colortheme}{seagull}
568
569
\begin{frame}
570
\frametitle{The two block designs of a bent function}
571
572
The first block design of a bent function $f$ is obtained by interpreting
573
the adjacency matrix of $\Cay{f}$ as the incidence matrix of a block design.
574
In this case we do not need $f(0)=0$.
575
576
~
577
\begin{Def}
578
The second block design of a bent function $f$ is defined by the incidence matrix
579
$D(f)$ where
580
\begin{align*}
581
D(f)_{c,x} &:= f(x) + \langle c, x \rangle + \dual{f}(c).
582
\end{align*}
583
This is a symmetric block design with the \Emph{symmetric difference property},
584
called the \Emph{SDP design} of $f$.
585
\end{Def}
586
587
~
588
589
\slidecite{Kantor 1975; Dillon and Schatz 1987; Neumann 2006}
590
\end{frame}
591
592
\end{colortheme}
593
594
\begin{colortheme}{jubata}
595
596
\begin{frame}
597
\frametitle{The weight class matrix is \\ the SDP design matrix}
598
\begin{Theorem}
599
For every bent function $f$, the \Emph{weight class matrix} of the ET class of $f$
600
equals the incidence matrix of the SDP design of $f$.
601
602
~
603
604
Specifically,
605
\begin{align*}
606
\weightclass{x \mapsto f(x+b) + \langle c, x \rangle + f(b)}
607
&=
608
f(b) + \langle c, b \rangle + \dual{f}(c)
609
\\
610
&=
611
D(f)_{c,b}.
612
\end{align*}
613
614
\end{Theorem}
615
616
\end{frame}
617
618
\end{colortheme}
619
620
\section{Computational results for low dimensions}
621
622
\begin{colortheme}{jubata}
623
624
\begin{frame}
625
\frametitle{For 2 dimensions: classes}
626
627
One extended affine class, containing the extended translation class $[f_{2,1}]$,
628
where $f_{2,1}(x) := x_0 x_1$ is self dual.
629
630
~
631
632
Two extended Cayley classes:
633
\begin{align*}
634
\begin{array}{|cccl|}
635
\hline
636
\text{Class} &
637
\text{Parameters} &
638
\text{2-rank} &
639
\text{Clique polynomial}
640
\\
641
\hline
642
1 &
643
(4, 1, 0, 0) & 4 &
644
2t^{2} + 4t + 1
645
\\
646
2 &
647
K_4 & 4 &
648
t^{4} + 4t^{3} + 6t^{2} + 4t + 1
649
\\
650
\hline
651
\end{array}
652
\end{align*}
653
654
\end{frame}
655
\begin{frame}
656
\frametitle{For ET class $[f_{2,1}]$: matrices}
657
\begin{figure}
658
\centering
659
\begin{minipage}{.48\textwidth}
660
\centering
661
\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_weight_class_matrix.png}
662
\captionof{figure}{$[f_{2,1}]$: weight classes}
663
\label{fig:c2_1_weight_class_matrix}
664
\end{minipage}%
665
\begin{minipage}{.48\textwidth}
666
\centering
667
\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_bent_cayley_graph_index_matrix.png}
668
\captionof{figure}{$[f_{2,1}]$: extended Cayley classes}
669
\label{fig:c2_1_bent_cayley_graph_index_matrix}
670
\end{minipage}
671
\end{figure}
672
\end{frame}
673
\begin{frame}
674
\frametitle{For 4 dimensions: classes}
675
676
One extended affine class, containing the extended translation class $[f_{4,1}]$, where
677
$f_{4,1}(x) := x_0 x_1 + x_2 x_3$ is self dual.
678
679
~
680
681
Two extended Cayley classes:
682
\begin{align*}
683
\begin{array}{|cccl|}
684
\hline
685
\text{Class} &
686
\text{Parameters} &
687
\text{2-rank} &
688
\text{Clique polynomial}
689
\\
690
\hline
691
1 &
692
(16, 6, 2, 2) &
693
6 &
694
8t^{4} + 32t^{3} + 48t^{2} + 16t + 1
695
\\
696
2 &
697
(16, 10, 6, 6) &
698
6 &
699
\begin{array}{l}
700
16t^{5} + 120t^{4} + 160t^{3} +
701
\\
702
80t^{2} + 16t + 1
703
\end{array}
704
\\
705
\hline
706
\end{array}
707
\end{align*}
708
\end{frame}
709
\begin{frame}
710
\frametitle{For ET class $[f_{4,1}]$: matrices}
711
\begin{figure}
712
\centering
713
\begin{minipage}{.48\textwidth}
714
\centering
715
\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_weight_class_matrix.png}
716
\captionof{figure}{$[f_{4,1}]$: weight classes}
717
\label{fig:c4_1_weight_class_matrix}
718
\end{minipage}%
719
\begin{minipage}{.48\textwidth}
720
\centering
721
\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_bent_cayley_graph_index_matrix.png}
722
\captionof{figure}{$[f_{4,1}]$: extended Cayley classes}
723
\label{fig:c4_1_bent_cayley_graph_index_matrix}
724
\end{minipage}
725
\end{figure}
726
\end{frame}
727
728
\end{colortheme}
729
730
\begin{colortheme}{seagull}
731
732
\begin{frame}
733
\frametitle{For 6 dimensions: ET classes}
734
735
Four extended affine classes, containing the following extended translation classes:
736
737
\begin{align*}
738
\def\arraystretch{1.2}
739
\begin{array}{|cl|}
740
\hline
741
\text{Class} &
742
\text{Representative}
743
\\
744
\hline
745
\,[f_{6,1}] & f_{6,1} :=
746
\begin{array}{l}
747
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5}
748
\end{array}
749
\\
750
\,[f_{6,2}] & f_{6,2} :=
751
\begin{array}{l}
752
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}
753
\end{array}
754
\\
755
\,[f_{6,3}] & f_{6,3} :=
756
\begin{array}{l}
757
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5}
758
\\
759
+\, x_{2} x_{4} + x_{3} x_{4}
760
\end{array}
761
\\
762
\,[f_{6,4}] & f_{6,4} :=
763
\begin{array}{l}
764
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
765
\\
766
+\, x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}
767
\end{array}
768
\\
769
\hline
770
\end{array}
771
\end{align*}
772
\slidecite{Rothaus 1976; Tokareva 2015}
773
\end{frame}
774
775
\end{colortheme}
776
777
\begin{colortheme}{jubata}
778
779
\begin{frame}
780
\frametitle{For ET class $[f_{6,1}]$: EC classes}
781
782
Bent function
783
$f_{6,1}(x) = x_0 x_1 + x_2 x_3 + x_4 x_5$ is self dual.
784
785
~
786
787
Two extended Cayley classes corresponding to Tonchev's projective two-weight codes:
788
\begin{align*}
789
\def\arraystretch{1.2}
790
\begin{array}{|ccl|}
791
\hline
792
\text{Class} &
793
\text{Parameters} & \text{Reference}
794
\\
795
\hline
796
0 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}
797
\\
798
1 & [27,6,12] & \text{Table 1.155 1 }
799
\\
800
\hline
801
\end{array}
802
\end{align*}
803
804
Graph for class 0 is also isomorphic to the complement of Royle's $(64,35,18,20)$ strongly regular
805
graph $X$.
806
807
\slidecite{Tonchev 1996, 2006; Royle 2008}
808
\end{frame}
809
\begin{frame}
810
\frametitle{For ET class $[f_{6,1}]$: matrices}
811
\begin{figure}
812
\centering
813
\begin{minipage}{.48\textwidth}
814
\centering
815
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_weight_class_matrix.png}
816
\captionof{figure}{$[f_{6,1}]$: weight classes}
817
\label{fig:6_1_weight_class_matrix}
818
\end{minipage}%
819
\begin{minipage}{.48\textwidth}
820
\centering
821
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_bent_cayley_graph_index_matrix.png}
822
\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}
823
\label{fig:6_1_bent_cayley_graph_index_matrix}
824
\end{minipage}
825
\end{figure}
826
\end{frame}
827
\begin{frame}
828
\frametitle{For ET class $[f_{6,2}]$: EC classes}
829
830
Bent function
831
$f_{6,2}(x) = x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}$.
832
833
~
834
835
Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:
836
\begin{align*}
837
\def\arraystretch{1.2}
838
\begin{array}{|ccl|}
839
\hline
840
\text{Class} &
841
\text{Parameters} & \text{Reference}
842
\\
843
\hline
844
0 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}
845
\\
846
1 & [35,6,16] & \text{Table 1.156 3 (complement)}
847
\\
848
2 & [27,6,12] & \text{Table 1.155 2 }
849
\\
850
\hline
851
\end{array}
852
\end{align*}
853
854
Graph for class 0 is also isomorphic to that of $[f_{6,1}]$ class 0.
855
856
\slidecite{Tonchev 1996, 2006}
857
\end{frame}
858
\begin{frame}
859
\frametitle{For ET class $[f_{6,2}]$: matrices}
860
\begin{figure}
861
\centering
862
\begin{minipage}{.48\textwidth}
863
\centering
864
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_weight_class_matrix.png}
865
\captionof{figure}{$[f_{6,2}]$: weight classes}
866
\label{fig:6_2_weight_class_matrix}
867
\end{minipage}%
868
\begin{minipage}{.48\textwidth}
869
\centering
870
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_bent_cayley_graph_index_matrix.png}
871
\captionof{figure}{$[f_{6,2}]$: 3 extended Cayley classes}
872
\label{fig:6_2_bent_cayley_graph_index_matrix}
873
\end{minipage}
874
\end{figure}
875
\end{frame}
876
\begin{frame}
877
\frametitle{For ET class $[f_{6,3}]$: EC classes}
878
879
Bent function
880
\begin{align*}
881
f_{6,3}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4}
882
\\
883
&+ x_{1} x_{5} + x_{2} x_{4} + x_{3} x_{4}.
884
\end{align*}
885
886
Four extended Cayley classes corresponding to Tonchev's projective two-weight codes:
887
\begin{align*}
888
\def\arraystretch{1.2}
889
\begin{array}{|ccl|}
890
\hline
891
\text{Class} &
892
\text{Parameters} & \text{Reference}
893
\\
894
\hline
895
0 & [35,6,16] & \text{Table 1.156 4 (complement)}
896
\\
897
1 & [27,6,12] & \text{Table 1.155 3 }
898
\\
899
2 & [35,6,16] & \text{Table 1.156 5 (complement)}
900
\\
901
3 & [27,6,12] & \text{Table 1.155 4 }
902
\\
903
\hline
904
\end{array}
905
\end{align*}
906
907
\slidecite{Tonchev 1996, 2006}
908
\end{frame}
909
\begin{frame}
910
\frametitle{For ET class $[f_{6,3}]$: matrices}
911
\begin{figure}
912
\centering
913
\begin{minipage}{.48\textwidth}
914
\centering
915
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_weight_class_matrix.png}
916
\captionof{figure}{$[f_{6,3}]$: weight classes}
917
\label{fig:6_3_weight_class_matrix}
918
\end{minipage}%
919
\begin{minipage}{.48\textwidth}
920
\centering
921
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_bent_cayley_graph_index_matrix.png}
922
\captionof{figure}{$[f_{6,3}]$: 4 extended Cayley classes}
923
\label{fig:6_3_bent_cayley_graph_index_matrix}
924
\end{minipage}
925
\end{figure}
926
\end{frame}
927
\begin{frame}
928
\frametitle{For ET class $[f_{6,4}]$: EC classes}
929
930
Bent function
931
\begin{align*}
932
f_{6,4}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
933
\\
934
&+ x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}.
935
\end{align*}
936
937
Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:
938
\begin{align*}
939
\def\arraystretch{1.2}
940
\begin{array}{|ccl|}
941
\hline
942
\text{Class} &
943
\text{Parameters} & \text{Reference}
944
\\
945
\hline
946
0 & [35,6,16] & \text{Table 1.156 7 (complement)}
947
\\
948
1 & [35,6,16] & \text{Table 1.156 6 (complement)}
949
\\
950
2 & [27,6,12] & \text{Table 1.155 5 }
951
\\
952
\hline
953
\end{array}
954
\end{align*}
955
956
\slidecite{Tonchev 1996, 2006}
957
\end{frame}
958
\begin{frame}
959
\frametitle{For ET class $[f_{6,4}]$: matrices}
960
\begin{figure}
961
\centering
962
\begin{minipage}{.48\textwidth}
963
\centering
964
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_weight_class_matrix.png}
965
\captionof{figure}{$[f_{6,4}]$: weight classes}
966
\label{fig:6_4_weight_class_matrix}
967
\end{minipage}%
968
\begin{minipage}{.48\textwidth}
969
\centering
970
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_bent_cayley_graph_index_matrix.png}
971
\captionof{figure}{$[f_{6,4}]$: 3 extended Cayley classes}
972
\label{fig:6_4_bent_cayley_graph_index_matrix}
973
\end{minipage}
974
\end{figure}
975
\end{frame}
976
977
\end{colortheme}
978
979
\begin{colortheme}{seagull}
980
981
\begin{frame}
982
\frametitle{For 8 dimensions: \\ number of bent functions and EA classes}
983
984
According to Langevin and Leander (2011)
985
there are $99270589265934370305785861242880 \approx 2^{106}$ bent functions in dimension 8.
986
987
~
988
989
The number of EA classes has not yet been published, let alone a list of representatives.
990
991
\slidecite{Langevin and Leander 2011}
992
\end{frame}
993
994
\begin{frame}
995
\frametitle{For 8 dimensions, up to degree 3: \\ extended translation classes}
996
997
Ten extended affine classes,
998
999
containing the following extended translation classes:
1000
1001
\tiny{}
1002
\begin{align*}
1003
\def\arraystretch{1.2}
1004
\begin{array}{|cl|}
1005
\hline
1006
\text{Class} &
1007
\text{Representative}
1008
\\
1009
\hline
1010
\,[f_{ 8 , 1 }] & f_{ 8 , 1 } :=
1011
\begin{array}{l}
1012
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5} + x_{6} x_{7}
1013
\end{array}
1014
\\
1015
\,[f_{ 8 , 2 }] & f_{ 8 , 2 } :=
1016
\begin{array}{l}
1017
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5} + x_{6} x_{7}
1018
\end{array}
1019
\\
1020
\,[f_{ 8 , 3 }] & f_{ 8 , 3 } :=
1021
\begin{array}{l}
1022
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{4} x_{7}
1023
\end{array}
1024
\\
1025
\,[f_{ 8 , 4 }] & f_{ 8 , 4 } :=
1026
\begin{array}{l}
1027
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{4} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{6} x_{7}
1028
\end{array}
1029
\\
1030
\,[f_{ 8 , 5 }] & f_{ 8 , 5 } :=
1031
\begin{array}{l}
1032
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
1033
\end{array}
1034
\\
1035
\,[f_{ 8 , 6 }] & f_{ 8 , 6 } :=
1036
\begin{array}{l}
1037
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{5} x_{7}
1038
\end{array}
1039
\\
1040
\,[f_{ 8 , 7 }] & f_{ 8 , 7 } :=
1041
\begin{array}{l}
1042
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
1043
\\
1044
+\, x_{2} x_{4} + x_{6} x_{7}
1045
\end{array}
1046
\\
1047
\,[f_{ 8 , 8 }] & f_{ 8 , 8 } :=
1048
\begin{array}{l}
1049
x_{0} x_{1} x_{2} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
1050
\end{array}
1051
\\
1052
\,[f_{ 8 , 9 }] & f_{ 8 , 9 } :=
1053
\begin{array}{l}
1054
x_{0} x_{1} x_{6} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{3} x_{6} + x_{2} x_{5} + x_{3} x_{4} + x_{4} x_{5} x_{6} + x_{6} x_{7}
1055
\end{array}
1056
\\
1057
\,[f_{ 8 , 10 }] & f_{ 8 , 10 } :=
1058
\begin{array}{l}
1059
x_{0} x_{1} x_{2} + x_{0} x_{3} x_{6} + x_{0} x_{4} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4}
1060
\\
1061
+\, x_{3} x_{7}
1062
\end{array}
1063
\\
1064
\hline
1065
\end{array}
1066
\end{align*}
1067
\slidecite{Braeken 2006; Tokareva 2015}
1068
\normalsize{}
1069
\end{frame}
1070
1071
\end{colortheme}
1072
1073
\begin{colortheme}{jubata}
1074
1075
\begin{frame}
1076
\frametitle{For ET class $[f_{8,1}]$: matrices}
1077
\begin{figure}
1078
\centering
1079
\begin{minipage}{.48\textwidth}
1080
\centering
1081
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_weight_class_matrix.png}
1082
\captionof{figure}{$[f_{8,1}]$: weight classes}
1083
\label{fig:8_1_weight_class_matrix}
1084
\end{minipage}%
1085
\begin{minipage}{.48\textwidth}
1086
\centering
1087
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_bent_cayley_graph_index_matrix.png}
1088
\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}
1089
\label{fig:8_1_bent_cayley_graph_index_matrix}
1090
\end{minipage}
1091
\end{figure}
1092
~
1093
\end{frame}
1094
\begin{frame}
1095
\frametitle{For ET class $[f_{8,2}]$: matrices}
1096
\begin{figure}
1097
\centering
1098
\begin{minipage}{.48\textwidth}
1099
\centering
1100
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_weight_class_matrix.png}
1101
\captionof{figure}{$[f_{8,2}]$: weight classes}
1102
\label{fig:8_2_weight_class_matrix}
1103
\end{minipage}%
1104
\begin{minipage}{.48\textwidth}
1105
\centering
1106
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_bent_cayley_graph_index_matrix.png}
1107
\captionof{figure}{$[f_{8,2}]$: 4 extended Cayley classes}
1108
\label{fig:8_2_bent_cayley_graph_index_matrix}
1109
\end{minipage}
1110
\end{figure}
1111
Graph for class 0 is isomorphic to graph for class 0 of $[f_{8,1}]$.
1112
\end{frame}
1113
% \begin{frame}
1114
% \frametitle{For ET class $[f_{8,3}]$: matrices}
1115
% \begin{figure}
1116
% \centering
1117
% \begin{minipage}{.48\textwidth}
1118
% \centering
1119
% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_weight_class_matrix.png}
1120
% \captionof{figure}{$[f_{8,3}]$: weight classes}
1121
% \label{fig:8_3_weight_class_matrix}
1122
% \end{minipage}%
1123
% \begin{minipage}{.48\textwidth}
1124
% \centering
1125
% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_bent_cayley_graph_index_matrix.png}
1126
% \captionof{figure}{$[f_{8,3}]$: 6 extended Cayley classes}
1127
% \label{fig:8_3_bent_cayley_graph_index_matrix}
1128
% \end{minipage}
1129
% \end{figure}
1130
% ~
1131
% \end{frame}
1132
% \begin{frame}
1133
% \frametitle{For ET class $[f_{8,4}]$: matrices}
1134
% \begin{figure}
1135
% \centering
1136
% \begin{minipage}{.48\textwidth}
1137
% \centering
1138
% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_weight_class_matrix.png}
1139
% \captionof{figure}{$[f_{8,4}]$: weight classes}
1140
% \label{fig:8_4_weight_class_matrix}
1141
% \end{minipage}%
1142
% \begin{minipage}{.48\textwidth}
1143
% \centering
1144
% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_bent_cayley_graph_index_matrix.png}
1145
% \captionof{figure}{$[f_{8,4}]$: 5 extended Cayley classes}
1146
% \label{fig:8_4_bent_cayley_graph_index_matrix}
1147
% \end{minipage}
1148
% \end{figure}
1149
% ~
1150
% \end{frame}
1151
\begin{frame}
1152
\frametitle{For ET class $[f_{8,5}]$: matrices}
1153
\begin{figure}
1154
\centering
1155
\begin{minipage}{.48\textwidth}
1156
\centering
1157
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_weight_class_matrix.png}
1158
\captionof{figure}{$[f_{8,5}]$: weight classes}
1159
\label{fig:8_5_weight_class_matrix}
1160
\end{minipage}%
1161
\begin{minipage}{.48\textwidth}
1162
\centering
1163
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_bent_cayley_graph_index_matrix.png}
1164
\captionof{figure}{$[f_{8,5}]$: 9 extended Cayley classes}
1165
\label{fig:8_5_bent_cayley_graph_index_matrix}
1166
\end{minipage}
1167
\end{figure}
1168
~
1169
\end{frame}
1170
\begin{frame}
1171
\frametitle{For ET class $[f_{8,6}]$: matrices}
1172
\begin{figure}
1173
\centering
1174
\begin{minipage}{.48\textwidth}
1175
\centering
1176
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_weight_class_matrix.png}
1177
\captionof{figure}{$[f_{8,6}]$: weight classes}
1178
\label{fig:8_6_weight_class_matrix}
1179
\end{minipage}%
1180
\begin{minipage}{.48\textwidth}
1181
\centering
1182
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_bent_cayley_graph_index_matrix.png}
1183
\captionof{figure}{$[f_{8,6}]$: 9 extended Cayley classes}
1184
\label{fig:8_6_bent_cayley_graph_index_matrix}
1185
\end{minipage}
1186
\end{figure}
1187
The same 9 classes as $[f_{8,5}]$, with the same frequencies!
1188
\end{frame}
1189
% \begin{frame}
1190
% \frametitle{For ET class $[f_{8,7}]$: matrices}
1191
% \begin{figure}
1192
% \centering
1193
% \begin{minipage}{.48\textwidth}
1194
% \centering
1195
% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_weight_class_matrix.png}
1196
% \captionof{figure}{$[f_{8,7}]$: weight classes}
1197
% \label{fig:8_7_weight_class_matrix}
1198
% \end{minipage}%
1199
% \begin{minipage}{.48\textwidth}
1200
% \centering
1201
% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_bent_cayley_graph_index_matrix.png}
1202
% \captionof{figure}{$[f_{8,7}]$: 5 extended Cayley classes}
1203
% \label{fig:8_7_bent_cayley_graph_index_matrix}
1204
% \end{minipage}
1205
% \end{figure}
1206
% ~
1207
% \end{frame}
1208
% \begin{frame}
1209
% \frametitle{For ET class $[f_{8,8}]$: matrices}
1210
% \begin{figure}
1211
% \centering
1212
% \begin{minipage}{.48\textwidth}
1213
% \centering
1214
% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_weight_class_matrix.png}
1215
% \captionof{figure}{$[f_{8,8}]$: weight classes}
1216
% \label{fig:8_8_weight_class_matrix}
1217
% \end{minipage}%
1218
% \begin{minipage}{.48\textwidth}
1219
% \centering
1220
% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_bent_cayley_graph_index_matrix.png}
1221
% \captionof{figure}{$[f_{8,8}]$: 6 extended Cayley classes}
1222
% \label{fig:8_8_bent_cayley_graph_index_matrix}
1223
% \end{minipage}
1224
% \end{figure}
1225
% ~
1226
% \end{frame}
1227
\begin{frame}
1228
\frametitle{For ET class $[f_{8,9}]$: matrices}
1229
\begin{figure}
1230
\centering
1231
\begin{minipage}{.48\textwidth}
1232
\centering
1233
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_bent_cayley_graph_index_matrix.png}
1234
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1235
\label{fig:c8_9_bent_cayley_graph_index_matrix}
1236
\end{minipage}
1237
\begin{minipage}{.48\textwidth}
1238
\centering
1239
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_dual_cayley_graph_index_matrix.png}
1240
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes of dual bent functions}
1241
\label{fig:c8_9_dual_cayley_graph_index_matrix}
1242
\end{minipage}%
1243
\end{figure}
1244
4 of the 8 classes form 2 dual pairs of classes.
1245
\end{frame}
1246
\begin{frame}
1247
\frametitle{For ET class $[f_{8,10}]$: matrices}
1248
\begin{figure}
1249
\centering
1250
\begin{minipage}{.48\textwidth}
1251
\centering
1252
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_bent_cayley_graph_index_matrix.png}
1253
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1254
\label{fig:c8_10_bent_cayley_graph_index_matrix}
1255
\end{minipage}
1256
\begin{minipage}{.48\textwidth}
1257
\centering
1258
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_dual_cayley_graph_index_matrix.png}
1259
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes of dual bent functions}
1260
\label{fig:c8_10_dual_cayley_graph_index_matrix}
1261
\end{minipage}%
1262
\end{figure}
1263
6 of the 10 classes form 3 dual pairs of classes.
1264
\end{frame}
1265
1266
\end{colortheme}
1267
1268
\begin{colortheme}{seagull}
1269
1270
\begin{frame}[fragile]
1271
\frametitle{For 8 dimensions: number of partial spread \\ bent functions and EA classes}
1272
1273
According to Langevin and Hou (2011)
1274
there are $70576747237594114392064 \approx 2^{75.9}$ \Emph{partial spread} bent functions in dimension 8,
1275
contained in $14758$ EA classes, of which $14756$ have degree 4.
1276
1277
~
1278
1279
The EA class representatives are listed at Langevin's web site
1280
1281
\begin{verbatim}
1282
http://langevin.univ-tln.fr/project/spread/psp.html
1283
\end{verbatim}
1284
1285
\slidecite{Langevin and Hou 2011}
1286
\end{frame}
1287
1288
\end{colortheme}
1289
1290
\begin{colortheme}{jubata}
1291
1292
\begin{frame}
1293
\frametitle{Example partial spread ET class $[psf_{9,5439}]$}
1294
\begin{figure}
1295
\centering
1296
\begin{minipage}{.48\textwidth}
1297
\centering
1298
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_bent_cayley_graph_index_matrix.png}
1299
\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1300
\label{fig:psf_9_5439_bent_cayley_graph_index_matrix}
1301
\end{minipage}
1302
\begin{minipage}{.48\textwidth}
1303
\centering
1304
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_dual_cayley_graph_index_matrix.png}
1305
\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes of dual bent functions}
1306
\label{fig:psf_9_5439_dual_cayley_graph_index_matrix}
1307
\end{minipage}%
1308
\end{figure}
1309
6 of the 16 classes form 3 dual pairs of classes.
1310
\end{frame}
1311
1312
\end{colortheme}
1313
1314
\begin{colortheme}{seagull}
1315
1316
\begin{frame}[fragile]
1317
\frametitle{For 8 dimensions: Bent functions from CAST-128 S-boxes}
1318
1319
The CAST-128 encryption algorithm is used in PGP and elsewhere.
1320
1321
CAST-128, including the S-boxes, is specified by IETF RFC 2144:
1322
\begin{verbatim}
1323
https://www.ietf.org/rfc/rfc2144.txt
1324
\end{verbatim}
1325
1326
The algorithm uses 8 S-boxes, each of which consists of 32 binary bent functions in 8 dimensions,
1327
with degree 4.
1328
1329
~
1330
1331
\slidecite{Adams 1997}
1332
\end{frame}
1333
1334
\end{colortheme}
1335
1336
\begin{colortheme}{jubata}
1337
1338
\begin{frame}
1339
\frametitle{Example CAST-128 ET class $[cast128_{1,0}]$}
1340
\begin{figure}
1341
\centering
1342
\begin{minipage}{.48\textwidth}
1343
\centering
1344
1345
\includegraphics[width=.9\linewidth]{../matrix_plot/cast_128_1_0_weight_class_matrix.png}
1346
\captionof{figure}{$[cast128_{1,0}]$: weight classes ~~~~~~ ~~~~~~~~}
1347
\label{fig:cast128_1_1_weight_class_matrix}
1348
\end{minipage}
1349
\begin{minipage}{.48\textwidth}
1350
\centering
1351
\includegraphics[width=.9\linewidth]{../matrix_plot/cast_128_1_0_bent_cayley_graph_index_matrix.png}
1352
\captionof{figure}{$[cast128_{1,0}]$: $65\,536$ extended Cayley classes}
1353
\label{fig:cast_128_1_1_bent_cayley_graph_index_matrix}
1354
\end{minipage}%
1355
\end{figure}
1356
Dual bent functions yield another $65\,536$ extended Cayley classes!
1357
\end{frame}
1358
1359
\end{colortheme}
1360
1361
\section{Questions}
1362
1363
\begin{colortheme}{jubata}
1364
1365
\begin{frame}
1366
\frametitle{Open problems (1)}
1367
Settled only for dimensions up to 6:
1368
\begin{enumerate}
1369
\item
1370
How many EC classes are there for each dimension?
1371
Are there ``Exponential numbers'' of classes?
1372
\item
1373
In $n$ dimensions,
1374
which ET classes contain the maximum number, $4^n$, of different EC classes?
1375
\item
1376
Which EC classes overlap more than one ET class?
1377
\item
1378
Which bent functions are Cayley equivalent to their dual?
1379
\item
1380
Which bent functions are EA equivalent to their dual?
1381
\end{enumerate}
1382
1383
\slidecite{Kantor 1983; Jungnickel and Tonchev 1991; Langevin, Leander and McGuire 2008}
1384
\end{frame}
1385
1386
\begin{frame}
1387
\frametitle{Open problems (2)}
1388
Also:
1389
1390
~
1391
1392
\begin{enumerate}
1393
\item
1394
What are the remaining EA and EC classes of binary bent functions of dimension 8 and degree 4?
1395
1396
~
1397
1398
\item
1399
How do extended Cayley classes of bent functions generalize to bent functions over $\F_p$, $p \neq 2$?
1400
\end{enumerate}
1401
1402
\slidecite{Langevin and Leander 2011; Chee, Tan and Zhang 2011}
1403
\end{frame}
1404
1405
\end{colortheme}
1406
1407
\section{Source code}
1408
1409
\begin{colortheme}{jubata}
1410
1411
\begin{frame}[fragile]
1412
\frametitle{Source code and documentation}
1413
~
1414
1415
CoCalc: Public worksheets, Sage and Python source code
1416
1417
\begin{verbatim}
1418
http://tinyurl.com/Boolean-Cayley-graphs
1419
\end{verbatim}
1420
1421
~
1422
1423
GitHub: Sage and Python source code
1424
1425
\begin{verbatim}
1426
https://github.com/penguian/Boolean-Cayley-graphs
1427
\end{verbatim}
1428
1429
~
1430
1431
SourceForge: Documentation
1432
1433
\begin{verbatim}
1434
https://boolean-cayley-graphs.sourceforge.io/
1435
\end{verbatim}
1436
\end{frame}
1437
1438
\end{colortheme}
1439
1440
\section{Last}
1441
1442
\begin{colortheme}{jubata}
1443
1444
\begin{frame}
1445
\frametitle{Thank you.}
1446
1447
\begin{figure}
1448
\centering
1449
\begin{minipage}{.48\textwidth}
1450
\centering
1451
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}
1452
\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}
1453
\label{fig:tau_3_bent_cayley_graph_index_matrix}
1454
\end{minipage}
1455
\begin{minipage}{.48\textwidth}
1456
\centering
1457
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}
1458
\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}
1459
\label{fig:tau_4_bent_cayley_graph_index_matrix}
1460
\end{minipage}%
1461
\end{figure}
1462
\end{frame}
1463
1464
\end{colortheme}
1465
1466
\end{document}
1467
1468