Boolean-Cayley-graphs / papers-talks / MCGTC-2017-Malta / Leopardi-Bent-functions-MCGTC-2017-talk.tex
22144 views\documentclass[pdf,sprung,slideColor,nocolorBG]{beamer}1%2%\documentclass[hyperref={pdfpagelabels=false}]{beamer}3\mode<presentation>45\newenvironment{colortheme}[1]{6\def\ProvidesPackageRCS $##1${\relax}7\renewcommand{\ProcessOptions}{\relax}8\makeatletter9\input beamercolortheme#1.sty10\makeatother11}{}1213\let\Tiny=\tiny14\usetheme{Adelaide}15\usefonttheme[stillsansseriftext]{serif}16\setbeamerfont{structure}{series=\bfseries}17\setbeamertemplate{frametitle}[default][center]18\usepackage[figurename={}]{caption}19\usepackage[latin1]{inputenc}20%\usepackage{amsmath} %needed for \begin{align}... \end{align} environment21\usepackage{amsfonts}22\usepackage{amssymb}23%\usepackage{amscd}24%\usepackage[all]{xy}25\usepackage{xcolor}26\usepackage{enumerate}27%28\newcommand{\slidecite}[1]{\tiny{(#1)}\normalsize{}}29\newcommand{\smallcite}[1]{\small{(#1)}\normalsize{}}3031\newcommand{\mb}[1]{\mathbb{#1}}32\newcommand{\mf}[1]{\mathbf{#1}}33\newcommand{\Emph}[1]{\emph{\textcolor{blue}{#1}}}3435\newcommand{\abs}[1]{\left| #1 \right|}36\newcommand{\norm}[1]{\left\| #1 \right\|}37\newcommand{\To}{\rightarrow}3839\newcommand{\Cay}[1]{\operatorname{Cay}\left(#1\right)}40\newcommand{\Clique}[1]{\omega\left(#1\right)}41\newcommand{\dual}[1]{\widetilde{#1}}42\newcommand{\support}[1]{\operatorname{supp}\left(#1\right)}43\newcommand{\weight}[1]{\operatorname{wt}\left(#1\right)}44\newcommand{\weightclass}[1]{\operatorname{wc}\left(#1\right)}4546\newcommand{\F}{\mb{F}}47\newcommand{\G}{\mb{G}}48\newcommand{\R}{\mb{R}}49\newcommand{\Z}{\mb{Z}}50\newtheorem{Def}{Definition}51\newtheorem{Conjecture}{Conjecture}52\newtheorem{Question}{Question}53\newtheorem{Proposition}{Proposition}5455\title{Classifying bent functions by their Cayley graphs}56\author{Paul Leopardi}5758\date{For 2MCGTC59\\60Malta61\\62June 2017}6364\institute{University of Melbourne65\\66Australian Government - Bureau of Meteorology}67\titlegraphic{68%\includegraphics[angle=0,width=10mm]{../../common/beamer-anu-colourlogo.png}69%\includegraphics[angle=0,width=20mm]{../../common/carma_logo.jpg}70}71\begin{document}7273\frame{\titlepage}74\begin{frame}75\frametitle{Acknowledgements}76\begin{center}77Nathan Clisby,78Robert Craigen,79Joanne Hall,80David Joyner, Philippe Langevin, William Martin,81Padraig {\'O} Cath{\'a}in,82Judy-anne Osborn, Dima Pasechnik and William Stein.8384~8586kodlu on MathOverflow.8788~8990Matthew Leingang for Beamer colour themes.9192~9394Australian National University. University of Newcastle, Australia. University of Melbourne.9596~9798Australian Government - Bureau of Meteorology.99100~101102SageMath, Bliss, Nauty.103\end{center}104\end{frame}105106\begin{frame}107\frametitle{Overview}108%\begin{center}109\begin{itemize}110\item111Preliminaries.112113~114115\item116Cayley graphs and linear codes.117118~119120\item121Equivalence of bent functions.122123~124125\item126Block designs.127128~129130\item131Computational results for low dimensions.132133~134135\item136Questions.137138~139140\item141Source code and documentation.142\end{itemize}143144%\end{center}145\end{frame}146147\section{Preliminaries}148149\begin{colortheme}{seagull}150151\begin{frame}152\frametitle{Bent functions}153% Bent functions can be defined in a number of equivalent ways.154% The definition used here involves the Walsh Hadamard Transform.155\begin{Def}156\label{def-Walsh-Hadamard-transform}157The Walsh Hadamard transform of158a Boolean function $f : \F_2^{2m} \To \F_2$ is159\begin{align*}160W_f(x)161&:=162\sum_{y \in \F_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}163\end{align*}164\end{Def}165166\begin{Def}167\label{def-Bent-function}168A Boolean function $f : \F_2^{2m} \To \F_2$ is \Emph{bent}169if and only if its Walsh Hada\-mard transform has constant absolute value $2^{m}$.170% \cite[p. 74]{Dil74}171% \cite[p. 300]{Rot76}.172\end{Def}173\slidecite{Dillon 1974; Rothaus 1976}174\end{frame}175\begin{frame}176\frametitle{Dual bent functions}177178\begin{Def}179\label{def-dual-Bent-function}180For a bent function $f : \F_2^{2m} \To \F_2$, the function $\dual{f}$, defined by181\begin{align*}182(-1)^{\dual{f}(x)} &:= 2^{-m} W_f(x)183\end{align*}184is called the \Emph{dual} of $f$.185\end{Def}186187~188189The function $\dual{f}$ is also a bent function on $\F_2^{2m}$.190191~192193\slidecite{Dillon 1974; Rothaus 1976; Tokareva 2011}194\end{frame}195196\end{colortheme}197198\begin{colortheme}{jubata}199200\begin{frame}201\frametitle{Weights and weight classes}202\begin{Def}203The \Emph{weight} of a binary function is the cardinality of its \Emph{support}.204For $f$ on $\F_2^{2m}$205\begin{align*}206\support{f} &:= \{x \in \F_2^{2m} \mid f(x)=1 \}.207\end{align*}208209A bent function $f$ on $\F_2^{2m}$ has weight210\begin{align*}211\weight{f} &= 2^{2 m - 1} - 2^{m-1} \quad (\text{weight class~} \weightclass{f}=0), \text{~or}212\\213\weight{f} &= 2^{2 m - 1} + 2^{m-1} \quad (\text{weight class~} \weightclass{f}=1).214\end{align*}215% If $f(0)=0$ then $\weightclass{\Cay{f}} := \weightclass{f}$.216\end{Def}217\end{frame}218219\end{colortheme}220221\section{Cayley graphs and linear codes}222223\begin{colortheme}{seagull}224225\begin{frame}226\frametitle{The Cayley graph of a Boolean function}227%\begin{center}228The \Emph{Cayley graph} $\Cay{f}$ of a Boolean function229230~231232\begin{align*}233%234f : \F_2^n \To \F_2 \quad \text{where} \quad f(0) = 0235%236\end{align*}237238~239240is241an undirected graph with242243\begin{align*}244V(\Cay{f}) &:= \F_2^n, \quad (x,y) \in E(\Cay{f}) \Leftrightarrow f(x+y) = 1.245\end{align*}246247~248249\slidecite{Bernasconi and Codenotti 1999}250\end{frame}251252\begin{frame}253\frametitle{Strongly regular graphs}254%\begin{center}255A simple graph $\Gamma$ of order $v$ is \Emph{strongly regular} with parameters256$(v,k,\lambda,\mu)$ if257258~259260\begin{itemize}261\item262each vertex has degree $k,$263264~265\item266each adjacent pair of vertices has $\lambda$ common neighbours, and267268~269\item270each nonadjacent pair of vertices has $\mu$ common neighbours.271\end{itemize}272273~274275\slidecite{Brouwer, Cohen and Neumaier 1989}276277%\end{center}278\end{frame}279280\begin{frame}281\frametitle{Bent functions and strongly regular graphs}282283\begin{Proposition}284\smallcite{Bernasconi and Codenotti 1999}285286The Cayley graph $\Cay{f}$ of a bent function $f$ on $\F_2^{2m}$287288with $f(0)=0$ is a strongly regular graph with $\lambda = \mu.$289\end{Proposition}290291The parameters of $\Cay{f}$ are292\begin{align*}293(v,k,\lambda) = &(4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})294\\295\text{or} \quad &(4^m, 2^{2 m - 1} + 2^{m-1}, 2^{2 m - 2} + 2^{m-1}).296\end{align*}297298~299300\slidecite{Menon 1962; Dillon 1974; Bernasconi and Codenotti 1999}301%\end{center}302\end{frame}303304\begin{frame}305\frametitle{Projective two-weight binary codes}306307\begin{Def}308A \Emph{two-weight binary code} with parameters $[n,k,d]$ is a $k$ dimensional subspace of $\F_2^n$309with310minimum Hamming distance $d$, such that the set of Hamming weights of the non-zero vectors has size3112.312313~314315``A \Emph{generator matrix} $G$ of a linear code $[n, k]$ code $C$ is any matrix316of rank $k$ (over $\F_2$) with rows from $C.$''317318~319320``A linear $[n, k]$ code is called \Emph{projective} if no two columns of a generator matrix321$G$ are linearly dependent, i.e., if the columns of $G$ are pairwise different points in a322projective $(k-1)$-dimensional space.''323In the case of $\F_2$, no two columns are equal.324325~326327\end{Def}328329\slidecite{Tonchev 1996; Bouyukliev, Fack, Willems and Winne 2006}330331\end{frame}332333\begin{frame}334\frametitle{From bent function to linear code (1)}335\begin{Def}336337\smallcite{Carlet 2007; Ding and Ding 2015, Corollary 10}338339For a bent function $f : \F_2^{2m} \To \F_2$,340define the linear code $C(f)$ by the generator matrix341\begin{align*}342M C(f) &\in \F_2^{4^m \times \weight{f}},343\\344M C(f)_{x,y} &:= \langle x, \support{f}(y) \rangle,345\end{align*}346with $x$ in lexicographic order of $\F_2^{2m}$347and $\support{f}(y)$ in lexicographic order of $\support{f}$.348349The $4^m$ words of the code $C(f)$ are the rows of the generator matrix $M C(f)$.350\end{Def}351352\slidecite{Carlet 2007; Ding and Ding 2015, Corollary 10}353354\end{frame}355\begin{frame}356\frametitle{From bent function to linear code (2)}357\begin{Proposition}358\smallcite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}359360For a bent function $f : \F_2^{2m} \To \F_2$, the linear code $C(f)$361is a projective two-weight code.362363~364365The possible weights of non-zero code words are:366\begin{align*}367\begin{cases}3682^{2m-2}, 2^{2m-2} - 2^{m-1} & \text{if~} \weightclass{f}=0.369\\3702^{2m-2}, 2^{2m-2} + 2^{m-1} & \text{if~} \weightclass{f}=1.371\end{cases}372\end{align*}373374\end{Proposition}375376\slidecite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}377378\end{frame}379380\begin{frame}381\frametitle{From linear code to strongly regular graph}382\begin{Def}383\label{R-f-def}384Given $f : \F_2^{2m} \To \F_2$, form the linear code $C(f)$.385386The graph $R(f)$ is defined as:387388Vertices of $R(f)$ are code words of $C(f)$.389390For $v,w \in C(f)$, edge $(u,v) \in R(f)$ if and only if391\begin{align*}392\begin{cases}393\weight{u+v} = 2^{2m-2} - 2^{m-1} & (\text{if~}\weightclass{f}=0).394\\395\weight{u+v} = 2^{2m-2} + 2^{m-1} & (\text{if~}\weightclass{f}=1).396\end{cases}397\end{align*}398399\end{Def}400Since $C(f)$ is a projective two-weight code,401$R(f)$ is a strongly regular graph.402403\slidecite{Delsarte 1972, Theorem 2}404\end{frame}405406\end{colortheme}407408\begin{colortheme}{jubata}409410\begin{frame}411\frametitle{The strongly regular graph $R(f)$ is \\ the Cayley graph of the dual}412413\begin{Theorem}414For $f : \F_2^{2m} \To \F_2$, with $f(0)=0$,415\begin{align*}416R(f) &\equiv \Cay{\dual{f} + \weightclass{f}}.417\end{align*}418\end{Theorem}419420\end{frame}421422\end{colortheme}423424\section{Equivalence of bent functions}425426\begin{colortheme}{seagull}427428\begin{frame}429\frametitle{Extended affine equivalence}430431\begin{Def}432For bent functions $f,g : \F_2^{2m} \To \F_2$,433434$f$ is \Emph{extended affine equivalent} to $g$ if and only if435\begin{align*}436g(x) &= f(A x + b) + \langle c, x \rangle + \delta437\end{align*}438for some $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$.439\end{Def}440~441442\slidecite{Tokareva 2015}443\end{frame}444445\end{colortheme}446447\begin{colortheme}{jubata}448449\begin{frame}450\frametitle{General linear equivalence}451452\begin{Def}453For bent functions $f,g : \F_2^{2m} \To \F_2$,454$f$ is \Emph{general linear equivalent} to $g$ if and only if455\begin{align*}456g(x) &= f(A x)457\end{align*}458for some $A \in GL(2m,2)$.459\end{Def}460\end{frame}461\begin{frame}462\frametitle{Extended translation equivalence}463464\begin{Def}465For bent functions $f,g : \F_2^{2m} \To \F_2$,466467$f$ is \Emph{extended translation equivalent} to $g$ if and only if468\begin{align*}469g(x) &= f(x + b) + \langle c, x \rangle + \delta470\end{align*}471for $b, c \in \F_2^{2m}$, $\delta \in \F_2$.472\end{Def}473\end{frame}474475\begin{frame}476\frametitle{Cayley equivalence}477\begin{Def}478%479For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,480481we call $f$ and $g$ \Emph{Cayley equivalent},482and write $f \equiv g$,483484if and only if $f(0)=g(0)=0$ and $\Cay{f} \equiv \Cay{g}$ as graphs.485486~487488Equivalently, $f \equiv g$ if and only if $f(0)=g(0)=0$ and489490there exists a bijection $\pi : \F_2^{2m} \To \F_2^{2m}$ such that491\begin{align*}492g(x+y) &= f \big(\pi(x)+\pi(y)\big) \quad \text{for all~} x,y \in \F_2^{2m}.493\end{align*}494\end{Def}495\end{frame}496\begin{frame}497\frametitle{Extended Cayley equivalence}498\begin{Def}499For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,500501if there exist $\delta, \epsilon \in \{0,1\}$ such that $f + \delta \equiv g + \epsilon$,502503we call $f$ and $g$ \Emph{extended Cayley (EC) equivalent} and write $f \cong g$.504\end{Def}505Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\F_2^{2m}$.506\end{frame}507508\begin{frame}509\frametitle{General linear equivalence \\ implies Cayley equivalence}510511\begin{Theorem}512If $f$ is bent with $f(0)=0$ and $g(x) := f(A x)$ where $A \in GL(2m,2)$,513then $g$ is bent with $g(0)=0$ and $f \equiv g$.514\end{Theorem}515\begin{proof}516\begin{align*}517g(x+y) &= f\big(A(x+y)\big) = f(A x + A y)\quad \text{for all~} x,y \in \F_2^{2m}.518\end{align*}519\end{proof}520521\end{frame}522523\begin{frame}524\frametitle{Extended affine, extended translation, and extended Cayley equivalence (1)}525526\begin{Theorem}527For $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$,528$f : \F_2^{2m} \To \F_2$,529530the function531\begin{align*}532h(x) &:= f(A x + b) + \langle c, x \rangle + \delta533\intertext{can be expressed as $h(x) = g(A x)$ where}534g(x) &:= f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,535\end{align*}536and therefore if $f$ is bent then $h \cong g$.537\end{Theorem}538\end{frame}539540\begin{frame}541\frametitle{Extended affine, extended translation, and extended Cayley equivalence (2)}542543Therefore, to determine the extended Cayley equivalence classes within the extended affine equivalence class of544a bent function $f : \F_2^{2m} \To \F_2$, for which $f(0)=0$, we need only examine545the extended translation equivalent functions of the form546\begin{align*}547f(x+b) + \langle c, x \rangle + f(b),548\end{align*}549for each $b, c \in \F_2^{2m}$.550\end{frame}551552\begin{frame}553\frametitle{Quadratic bent functions have two \\ extended Cayley classes}554\begin{Theorem}555For each $m>0$, the extended affine equivalence class of quadratic bent functions556$q : \F_2^{2m} \To \F_2$ contains exactly two extended Cayley equivalence classes,557corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.558\end{Theorem}559560\end{frame}561562\end{colortheme}563564\section{Block designs}565566\begin{colortheme}{seagull}567568\begin{frame}569\frametitle{The two block designs of a bent function}570571The first block design of a bent function $f$ is obtained by interpreting572the adjacency matrix of $\Cay{f}$ as the incidence matrix of a block design.573In this case we do not need $f(0)=0$.574575~576\begin{Def}577The second block design of a bent function $f$ is defined by the incidence matrix578$D(f)$ where579\begin{align*}580D(f)_{c,x} &:= f(x) + \langle c, x \rangle + \dual{f}(c).581\end{align*}582This is a symmetric block design with the \Emph{symmetric difference property},583called the \Emph{SDP design} of $f$.584\end{Def}585586~587588\slidecite{Kantor 1975; Dillon and Schatz 1987; Neumann 2006}589\end{frame}590591\end{colortheme}592593\begin{colortheme}{jubata}594595\begin{frame}596\frametitle{The weight class matrix is \\ the SDP design matrix}597\begin{Theorem}598For every bent function $f$, the \Emph{weight class matrix} of the ET class of $f$599equals the incidence matrix of the SDP design of $f$.600601~602603Specifically,604\begin{align*}605\weightclass{x \mapsto f(x+b) + \langle c, x \rangle + f(b)}606&=607f(b) + \langle c, b \rangle + \dual{f}(c)608\\609&=610D(f)_{c,b}.611\end{align*}612613\end{Theorem}614615\end{frame}616617\end{colortheme}618619\section{Computational results for low dimensions}620621\begin{colortheme}{jubata}622623\begin{frame}624\frametitle{For 2 dimensions: classes}625626One extended affine class, containing the extended translation class $[f_{2,1}]$,627where $f_{2,1}(x) := x_0 x_1$ is self dual.628629~630631Two extended Cayley classes:632\begin{align*}633\begin{array}{|cccl|}634\hline635\text{Class} &636\text{Parameters} &637\text{2-rank} &638\text{Clique polynomial}639\\640\hline6411 &642(4, 1, 0, 0) & 4 &6432t^{2} + 4t + 1644\\6452 &646K_4 & 4 &647t^{4} + 4t^{3} + 6t^{2} + 4t + 1648\\649\hline650\end{array}651\end{align*}652653\end{frame}654\begin{frame}655\frametitle{For ET class $[f_{2,1}]$: matrices}656\begin{figure}657\centering658\begin{minipage}{.48\textwidth}659\centering660\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_weight_class_matrix.png}661\captionof{figure}{$[f_{2,1}]$: weight classes}662\label{fig:c2_1_weight_class_matrix}663\end{minipage}%664\begin{minipage}{.48\textwidth}665\centering666\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_bent_cayley_graph_index_matrix.png}667\captionof{figure}{$[f_{2,1}]$: extended Cayley classes}668\label{fig:c2_1_bent_cayley_graph_index_matrix}669\end{minipage}670\end{figure}671\end{frame}672\begin{frame}673\frametitle{For 4 dimensions: classes}674675One extended affine class, containing the extended translation class $[f_{4,1}]$, where676$f_{4,1}(x) := x_0 x_1 + x_2 x_3$ is self dual.677678~679680Two extended Cayley classes:681\begin{align*}682\begin{array}{|cccl|}683\hline684\text{Class} &685\text{Parameters} &686\text{2-rank} &687\text{Clique polynomial}688\\689\hline6901 &691(16, 6, 2, 2) &6926 &6938t^{4} + 32t^{3} + 48t^{2} + 16t + 1694\\6952 &696(16, 10, 6, 6) &6976 &698\begin{array}{l}69916t^{5} + 120t^{4} + 160t^{3} +700\\70180t^{2} + 16t + 1702\end{array}703\\704\hline705\end{array}706\end{align*}707\end{frame}708\begin{frame}709\frametitle{For ET class $[f_{4,1}]$: matrices}710\begin{figure}711\centering712\begin{minipage}{.48\textwidth}713\centering714\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_weight_class_matrix.png}715\captionof{figure}{$[f_{4,1}]$: weight classes}716\label{fig:c4_1_weight_class_matrix}717\end{minipage}%718\begin{minipage}{.48\textwidth}719\centering720\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_bent_cayley_graph_index_matrix.png}721\captionof{figure}{$[f_{4,1}]$: extended Cayley classes}722\label{fig:c4_1_bent_cayley_graph_index_matrix}723\end{minipage}724\end{figure}725\end{frame}726727\end{colortheme}728729\begin{colortheme}{seagull}730731\begin{frame}732\frametitle{For 6 dimensions: ET classes}733734Four extended affine classes, containing the following extended translation classes:735736\begin{align*}737\def\arraystretch{1.2}738\begin{array}{|cl|}739\hline740\text{Class} &741\text{Representative}742\\743\hline744\,[f_{6,1}] & f_{6,1} :=745\begin{array}{l}746x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5}747\end{array}748\\749\,[f_{6,2}] & f_{6,2} :=750\begin{array}{l}751x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}752\end{array}753\\754\,[f_{6,3}] & f_{6,3} :=755\begin{array}{l}756x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5}757\\758+\, x_{2} x_{4} + x_{3} x_{4}759\end{array}760\\761\,[f_{6,4}] & f_{6,4} :=762\begin{array}{l}763x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}764\\765+\, x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}766\end{array}767\\768\hline769\end{array}770\end{align*}771\slidecite{Rothaus 1976; Tokareva 2015}772\end{frame}773774\end{colortheme}775776\begin{colortheme}{jubata}777778\begin{frame}779\frametitle{For ET class $[f_{6,1}]$: EC classes}780781Bent function782$f_{6,1}(x) = x_0 x_1 + x_2 x_3 + x_4 x_5$ is self dual.783784~785786Two extended Cayley classes corresponding to Tonchev's projective two-weight codes:787\begin{align*}788\def\arraystretch{1.2}789\begin{array}{|ccl|}790\hline791\text{Class} &792\text{Parameters} & \text{Reference}793\\794\hline7950 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}796\\7971 & [27,6,12] & \text{Table 1.155 1 }798\\799\hline800\end{array}801\end{align*}802803Graph for class 0 is also isomorphic to the complement of Royle's $(64,35,18,20)$ strongly regular804graph $X$.805806\slidecite{Tonchev 1996, 2006; Royle 2008}807\end{frame}808\begin{frame}809\frametitle{For ET class $[f_{6,1}]$: matrices}810\begin{figure}811\centering812\begin{minipage}{.48\textwidth}813\centering814\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_weight_class_matrix.png}815\captionof{figure}{$[f_{6,1}]$: weight classes}816\label{fig:6_1_weight_class_matrix}817\end{minipage}%818\begin{minipage}{.48\textwidth}819\centering820\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_bent_cayley_graph_index_matrix.png}821\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}822\label{fig:6_1_bent_cayley_graph_index_matrix}823\end{minipage}824\end{figure}825\end{frame}826\begin{frame}827\frametitle{For ET class $[f_{6,2}]$: EC classes}828829Bent function830$f_{6,2}(x) = x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}$.831832~833834Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:835\begin{align*}836\def\arraystretch{1.2}837\begin{array}{|ccl|}838\hline839\text{Class} &840\text{Parameters} & \text{Reference}841\\842\hline8430 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}844\\8451 & [35,6,16] & \text{Table 1.156 3 (complement)}846\\8472 & [27,6,12] & \text{Table 1.155 2 }848\\849\hline850\end{array}851\end{align*}852853Graph for class 0 is also isomorphic to that of $[f_{6,1}]$ class 0.854855\slidecite{Tonchev 1996, 2006}856\end{frame}857\begin{frame}858\frametitle{For ET class $[f_{6,2}]$: matrices}859\begin{figure}860\centering861\begin{minipage}{.48\textwidth}862\centering863\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_weight_class_matrix.png}864\captionof{figure}{$[f_{6,2}]$: weight classes}865\label{fig:6_2_weight_class_matrix}866\end{minipage}%867\begin{minipage}{.48\textwidth}868\centering869\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_bent_cayley_graph_index_matrix.png}870\captionof{figure}{$[f_{6,2}]$: 3 extended Cayley classes}871\label{fig:6_2_bent_cayley_graph_index_matrix}872\end{minipage}873\end{figure}874\end{frame}875\begin{frame}876\frametitle{For ET class $[f_{6,3}]$: EC classes}877878Bent function879\begin{align*}880f_{6,3}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4}881\\882&+ x_{1} x_{5} + x_{2} x_{4} + x_{3} x_{4}.883\end{align*}884885Four extended Cayley classes corresponding to Tonchev's projective two-weight codes:886\begin{align*}887\def\arraystretch{1.2}888\begin{array}{|ccl|}889\hline890\text{Class} &891\text{Parameters} & \text{Reference}892\\893\hline8940 & [35,6,16] & \text{Table 1.156 4 (complement)}895\\8961 & [27,6,12] & \text{Table 1.155 3 }897\\8982 & [35,6,16] & \text{Table 1.156 5 (complement)}899\\9003 & [27,6,12] & \text{Table 1.155 4 }901\\902\hline903\end{array}904\end{align*}905906\slidecite{Tonchev 1996, 2006}907\end{frame}908\begin{frame}909\frametitle{For ET class $[f_{6,3}]$: matrices}910\begin{figure}911\centering912\begin{minipage}{.48\textwidth}913\centering914\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_weight_class_matrix.png}915\captionof{figure}{$[f_{6,3}]$: weight classes}916\label{fig:6_3_weight_class_matrix}917\end{minipage}%918\begin{minipage}{.48\textwidth}919\centering920\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_bent_cayley_graph_index_matrix.png}921\captionof{figure}{$[f_{6,3}]$: 4 extended Cayley classes}922\label{fig:6_3_bent_cayley_graph_index_matrix}923\end{minipage}924\end{figure}925\end{frame}926\begin{frame}927\frametitle{For ET class $[f_{6,4}]$: EC classes}928929Bent function930\begin{align*}931f_{6,4}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}932\\933&+ x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}.934\end{align*}935936Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:937\begin{align*}938\def\arraystretch{1.2}939\begin{array}{|ccl|}940\hline941\text{Class} &942\text{Parameters} & \text{Reference}943\\944\hline9450 & [35,6,16] & \text{Table 1.156 7 (complement)}946\\9471 & [35,6,16] & \text{Table 1.156 6 (complement)}948\\9492 & [27,6,12] & \text{Table 1.155 5 }950\\951\hline952\end{array}953\end{align*}954955\slidecite{Tonchev 1996, 2006}956\end{frame}957\begin{frame}958\frametitle{For ET class $[f_{6,4}]$: matrices}959\begin{figure}960\centering961\begin{minipage}{.48\textwidth}962\centering963\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_weight_class_matrix.png}964\captionof{figure}{$[f_{6,4}]$: weight classes}965\label{fig:6_4_weight_class_matrix}966\end{minipage}%967\begin{minipage}{.48\textwidth}968\centering969\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_bent_cayley_graph_index_matrix.png}970\captionof{figure}{$[f_{6,4}]$: 3 extended Cayley classes}971\label{fig:6_4_bent_cayley_graph_index_matrix}972\end{minipage}973\end{figure}974\end{frame}975976\end{colortheme}977978\begin{colortheme}{seagull}979980\begin{frame}981\frametitle{For 8 dimensions: \\ number of bent functions and EA classes}982983According to Langevin and Leander (2011)984there are $99270589265934370305785861242880 \approx 2^{106}$ bent functions in dimension 8.985986~987988The number of EA classes has not yet been published, let alone a list of representatives.989990\slidecite{Langevin and Leander 2011}991\end{frame}992993\begin{frame}994\frametitle{For 8 dimensions, up to degree 3: \\ extended translation classes}995996Ten extended affine classes,997998containing the following extended translation classes:9991000\tiny{}1001\begin{align*}1002\def\arraystretch{1.2}1003\begin{array}{|cl|}1004\hline1005\text{Class} &1006\text{Representative}1007\\1008\hline1009\,[f_{ 8 , 1 }] & f_{ 8 , 1 } :=1010\begin{array}{l}1011x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5} + x_{6} x_{7}1012\end{array}1013\\1014\,[f_{ 8 , 2 }] & f_{ 8 , 2 } :=1015\begin{array}{l}1016x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5} + x_{6} x_{7}1017\end{array}1018\\1019\,[f_{ 8 , 3 }] & f_{ 8 , 3 } :=1020\begin{array}{l}1021x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{4} x_{7}1022\end{array}1023\\1024\,[f_{ 8 , 4 }] & f_{ 8 , 4 } :=1025\begin{array}{l}1026x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{4} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{6} x_{7}1027\end{array}1028\\1029\,[f_{ 8 , 5 }] & f_{ 8 , 5 } :=1030\begin{array}{l}1031x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}1032\end{array}1033\\1034\,[f_{ 8 , 6 }] & f_{ 8 , 6 } :=1035\begin{array}{l}1036x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{5} x_{7}1037\end{array}1038\\1039\,[f_{ 8 , 7 }] & f_{ 8 , 7 } :=1040\begin{array}{l}1041x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}1042\\1043+\, x_{2} x_{4} + x_{6} x_{7}1044\end{array}1045\\1046\,[f_{ 8 , 8 }] & f_{ 8 , 8 } :=1047\begin{array}{l}1048x_{0} x_{1} x_{2} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}1049\end{array}1050\\1051\,[f_{ 8 , 9 }] & f_{ 8 , 9 } :=1052\begin{array}{l}1053x_{0} x_{1} x_{6} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{3} x_{6} + x_{2} x_{5} + x_{3} x_{4} + x_{4} x_{5} x_{6} + x_{6} x_{7}1054\end{array}1055\\1056\,[f_{ 8 , 10 }] & f_{ 8 , 10 } :=1057\begin{array}{l}1058x_{0} x_{1} x_{2} + x_{0} x_{3} x_{6} + x_{0} x_{4} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4}1059\\1060+\, x_{3} x_{7}1061\end{array}1062\\1063\hline1064\end{array}1065\end{align*}1066\slidecite{Braeken 2006; Tokareva 2015}1067\normalsize{}1068\end{frame}10691070\end{colortheme}10711072\begin{colortheme}{jubata}10731074\begin{frame}1075\frametitle{For ET class $[f_{8,1}]$: matrices}1076\begin{figure}1077\centering1078\begin{minipage}{.48\textwidth}1079\centering1080\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_weight_class_matrix.png}1081\captionof{figure}{$[f_{8,1}]$: weight classes}1082\label{fig:8_1_weight_class_matrix}1083\end{minipage}%1084\begin{minipage}{.48\textwidth}1085\centering1086\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_bent_cayley_graph_index_matrix.png}1087\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}1088\label{fig:8_1_bent_cayley_graph_index_matrix}1089\end{minipage}1090\end{figure}1091~1092\end{frame}1093\begin{frame}1094\frametitle{For ET class $[f_{8,2}]$: matrices}1095\begin{figure}1096\centering1097\begin{minipage}{.48\textwidth}1098\centering1099\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_weight_class_matrix.png}1100\captionof{figure}{$[f_{8,2}]$: weight classes}1101\label{fig:8_2_weight_class_matrix}1102\end{minipage}%1103\begin{minipage}{.48\textwidth}1104\centering1105\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_bent_cayley_graph_index_matrix.png}1106\captionof{figure}{$[f_{8,2}]$: 4 extended Cayley classes}1107\label{fig:8_2_bent_cayley_graph_index_matrix}1108\end{minipage}1109\end{figure}1110Graph for class 0 is isomorphic to graph for class 0 of $[f_{8,1}]$.1111\end{frame}1112% \begin{frame}1113% \frametitle{For ET class $[f_{8,3}]$: matrices}1114% \begin{figure}1115% \centering1116% \begin{minipage}{.48\textwidth}1117% \centering1118% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_weight_class_matrix.png}1119% \captionof{figure}{$[f_{8,3}]$: weight classes}1120% \label{fig:8_3_weight_class_matrix}1121% \end{minipage}%1122% \begin{minipage}{.48\textwidth}1123% \centering1124% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_bent_cayley_graph_index_matrix.png}1125% \captionof{figure}{$[f_{8,3}]$: 6 extended Cayley classes}1126% \label{fig:8_3_bent_cayley_graph_index_matrix}1127% \end{minipage}1128% \end{figure}1129% ~1130% \end{frame}1131% \begin{frame}1132% \frametitle{For ET class $[f_{8,4}]$: matrices}1133% \begin{figure}1134% \centering1135% \begin{minipage}{.48\textwidth}1136% \centering1137% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_weight_class_matrix.png}1138% \captionof{figure}{$[f_{8,4}]$: weight classes}1139% \label{fig:8_4_weight_class_matrix}1140% \end{minipage}%1141% \begin{minipage}{.48\textwidth}1142% \centering1143% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_bent_cayley_graph_index_matrix.png}1144% \captionof{figure}{$[f_{8,4}]$: 5 extended Cayley classes}1145% \label{fig:8_4_bent_cayley_graph_index_matrix}1146% \end{minipage}1147% \end{figure}1148% ~1149% \end{frame}1150\begin{frame}1151\frametitle{For ET class $[f_{8,5}]$: matrices}1152\begin{figure}1153\centering1154\begin{minipage}{.48\textwidth}1155\centering1156\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_weight_class_matrix.png}1157\captionof{figure}{$[f_{8,5}]$: weight classes}1158\label{fig:8_5_weight_class_matrix}1159\end{minipage}%1160\begin{minipage}{.48\textwidth}1161\centering1162\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_bent_cayley_graph_index_matrix.png}1163\captionof{figure}{$[f_{8,5}]$: 9 extended Cayley classes}1164\label{fig:8_5_bent_cayley_graph_index_matrix}1165\end{minipage}1166\end{figure}1167~1168\end{frame}1169\begin{frame}1170\frametitle{For ET class $[f_{8,6}]$: matrices}1171\begin{figure}1172\centering1173\begin{minipage}{.48\textwidth}1174\centering1175\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_weight_class_matrix.png}1176\captionof{figure}{$[f_{8,6}]$: weight classes}1177\label{fig:8_6_weight_class_matrix}1178\end{minipage}%1179\begin{minipage}{.48\textwidth}1180\centering1181\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_bent_cayley_graph_index_matrix.png}1182\captionof{figure}{$[f_{8,6}]$: 9 extended Cayley classes}1183\label{fig:8_6_bent_cayley_graph_index_matrix}1184\end{minipage}1185\end{figure}1186The same 9 classes as $[f_{8,5}]$, with the same frequencies!1187\end{frame}1188% \begin{frame}1189% \frametitle{For ET class $[f_{8,7}]$: matrices}1190% \begin{figure}1191% \centering1192% \begin{minipage}{.48\textwidth}1193% \centering1194% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_weight_class_matrix.png}1195% \captionof{figure}{$[f_{8,7}]$: weight classes}1196% \label{fig:8_7_weight_class_matrix}1197% \end{minipage}%1198% \begin{minipage}{.48\textwidth}1199% \centering1200% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_bent_cayley_graph_index_matrix.png}1201% \captionof{figure}{$[f_{8,7}]$: 5 extended Cayley classes}1202% \label{fig:8_7_bent_cayley_graph_index_matrix}1203% \end{minipage}1204% \end{figure}1205% ~1206% \end{frame}1207% \begin{frame}1208% \frametitle{For ET class $[f_{8,8}]$: matrices}1209% \begin{figure}1210% \centering1211% \begin{minipage}{.48\textwidth}1212% \centering1213% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_weight_class_matrix.png}1214% \captionof{figure}{$[f_{8,8}]$: weight classes}1215% \label{fig:8_8_weight_class_matrix}1216% \end{minipage}%1217% \begin{minipage}{.48\textwidth}1218% \centering1219% \includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_bent_cayley_graph_index_matrix.png}1220% \captionof{figure}{$[f_{8,8}]$: 6 extended Cayley classes}1221% \label{fig:8_8_bent_cayley_graph_index_matrix}1222% \end{minipage}1223% \end{figure}1224% ~1225% \end{frame}1226\begin{frame}1227\frametitle{For ET class $[f_{8,9}]$: matrices}1228\begin{figure}1229\centering1230\begin{minipage}{.48\textwidth}1231\centering1232\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_bent_cayley_graph_index_matrix.png}1233\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}1234\label{fig:c8_9_bent_cayley_graph_index_matrix}1235\end{minipage}1236\begin{minipage}{.48\textwidth}1237\centering1238\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_dual_cayley_graph_index_matrix.png}1239\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes of dual bent functions}1240\label{fig:c8_9_dual_cayley_graph_index_matrix}1241\end{minipage}%1242\end{figure}12434 of the 8 classes form 2 dual pairs of classes.1244\end{frame}1245\begin{frame}1246\frametitle{For ET class $[f_{8,10}]$: matrices}1247\begin{figure}1248\centering1249\begin{minipage}{.48\textwidth}1250\centering1251\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_bent_cayley_graph_index_matrix.png}1252\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}1253\label{fig:c8_10_bent_cayley_graph_index_matrix}1254\end{minipage}1255\begin{minipage}{.48\textwidth}1256\centering1257\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_dual_cayley_graph_index_matrix.png}1258\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes of dual bent functions}1259\label{fig:c8_10_dual_cayley_graph_index_matrix}1260\end{minipage}%1261\end{figure}12626 of the 10 classes form 3 dual pairs of classes.1263\end{frame}12641265\end{colortheme}12661267\begin{colortheme}{seagull}12681269\begin{frame}[fragile]1270\frametitle{For 8 dimensions: number of partial spread \\ bent functions and EA classes}12711272According to Langevin and Hou (2011)1273there are $70576747237594114392064 \approx 2^{75.9}$ \Emph{partial spread} bent functions in dimension 8,1274contained in $14758$ EA classes, of which $14756$ have degree 4.12751276~12771278The EA class representatives are listed at Langevin's web site12791280\begin{verbatim}1281http://langevin.univ-tln.fr/project/spread/psp.html1282\end{verbatim}12831284\slidecite{Langevin and Hou 2011}1285\end{frame}12861287\end{colortheme}12881289\begin{colortheme}{jubata}12901291\begin{frame}1292\frametitle{Example partial spread ET class $[psf_{9,5439}]$}1293\begin{figure}1294\centering1295\begin{minipage}{.48\textwidth}1296\centering1297\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_bent_cayley_graph_index_matrix.png}1298\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}1299\label{fig:psf_9_5439_bent_cayley_graph_index_matrix}1300\end{minipage}1301\begin{minipage}{.48\textwidth}1302\centering1303\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_dual_cayley_graph_index_matrix.png}1304\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes of dual bent functions}1305\label{fig:psf_9_5439_dual_cayley_graph_index_matrix}1306\end{minipage}%1307\end{figure}13086 of the 16 classes form 3 dual pairs of classes.1309\end{frame}13101311\end{colortheme}13121313\begin{colortheme}{seagull}13141315\begin{frame}[fragile]1316\frametitle{For 8 dimensions: Bent functions from CAST-128 S-boxes}13171318The CAST-128 encryption algorithm is used in PGP and elsewhere.13191320CAST-128, including the S-boxes, is specified by IETF RFC 2144:1321\begin{verbatim}1322https://www.ietf.org/rfc/rfc2144.txt1323\end{verbatim}13241325The algorithm uses 8 S-boxes, each of which consists of 32 binary bent functions in 8 dimensions,1326with degree 4.13271328~13291330\slidecite{Adams 1997}1331\end{frame}13321333\end{colortheme}13341335\begin{colortheme}{jubata}13361337\begin{frame}1338\frametitle{Example CAST-128 ET class $[cast128_{1,0}]$}1339\begin{figure}1340\centering1341\begin{minipage}{.48\textwidth}1342\centering13431344\includegraphics[width=.9\linewidth]{../matrix_plot/cast_128_1_0_weight_class_matrix.png}1345\captionof{figure}{$[cast128_{1,0}]$: weight classes ~~~~~~ ~~~~~~~~}1346\label{fig:cast128_1_1_weight_class_matrix}1347\end{minipage}1348\begin{minipage}{.48\textwidth}1349\centering1350\includegraphics[width=.9\linewidth]{../matrix_plot/cast_128_1_0_bent_cayley_graph_index_matrix.png}1351\captionof{figure}{$[cast128_{1,0}]$: $65\,536$ extended Cayley classes}1352\label{fig:cast_128_1_1_bent_cayley_graph_index_matrix}1353\end{minipage}%1354\end{figure}1355Dual bent functions yield another $65\,536$ extended Cayley classes!1356\end{frame}13571358\end{colortheme}13591360\section{Questions}13611362\begin{colortheme}{jubata}13631364\begin{frame}1365\frametitle{Open problems (1)}1366Settled only for dimensions up to 6:1367\begin{enumerate}1368\item1369How many EC classes are there for each dimension?1370Are there ``Exponential numbers'' of classes?1371\item1372In $n$ dimensions,1373which ET classes contain the maximum number, $4^n$, of different EC classes?1374\item1375Which EC classes overlap more than one ET class?1376\item1377Which bent functions are Cayley equivalent to their dual?1378\item1379Which bent functions are EA equivalent to their dual?1380\end{enumerate}13811382\slidecite{Kantor 1983; Jungnickel and Tonchev 1991; Langevin, Leander and McGuire 2008}1383\end{frame}13841385\begin{frame}1386\frametitle{Open problems (2)}1387Also:13881389~13901391\begin{enumerate}1392\item1393What are the remaining EA and EC classes of binary bent functions of dimension 8 and degree 4?13941395~13961397\item1398How do extended Cayley classes of bent functions generalize to bent functions over $\F_p$, $p \neq 2$?1399\end{enumerate}14001401\slidecite{Langevin and Leander 2011; Chee, Tan and Zhang 2011}1402\end{frame}14031404\end{colortheme}14051406\section{Source code}14071408\begin{colortheme}{jubata}14091410\begin{frame}[fragile]1411\frametitle{Source code and documentation}1412~14131414CoCalc: Public worksheets, Sage and Python source code14151416\begin{verbatim}1417http://tinyurl.com/Boolean-Cayley-graphs1418\end{verbatim}14191420~14211422GitHub: Sage and Python source code14231424\begin{verbatim}1425https://github.com/penguian/Boolean-Cayley-graphs1426\end{verbatim}14271428~14291430SourceForge: Documentation14311432\begin{verbatim}1433https://boolean-cayley-graphs.sourceforge.io/1434\end{verbatim}1435\end{frame}14361437\end{colortheme}14381439\section{Last}14401441\begin{colortheme}{jubata}14421443\begin{frame}1444\frametitle{Thank you.}14451446\begin{figure}1447\centering1448\begin{minipage}{.48\textwidth}1449\centering1450\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}1451\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}1452\label{fig:tau_3_bent_cayley_graph_index_matrix}1453\end{minipage}1454\begin{minipage}{.48\textwidth}1455\centering1456\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}1457\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}1458\label{fig:tau_4_bent_cayley_graph_index_matrix}1459\end{minipage}%1460\end{figure}1461\end{frame}14621463\end{colortheme}14641465\end{document}146614671468