Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
22144 views
1
\documentclass[pdf,sprung,slideColor,nocolorBG]{beamer}
2
%
3
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
4
\mode<presentation>
5
6
\newenvironment{colortheme}[1]{
7
\def\ProvidesPackageRCS $##1${\relax}
8
\renewcommand{\ProcessOptions}{\relax}
9
\makeatletter
10
\input beamercolortheme#1.sty
11
\makeatother
12
}{}
13
14
\let\Tiny=\tiny
15
\usetheme{Adelaide}
16
\usefonttheme[stillsansseriftext]{serif}
17
\setbeamerfont{structure}{series=\bfseries}
18
\setbeamertemplate{frametitle}[default][center]
19
\usepackage[figurename={}]{caption}
20
\usepackage[latin1]{inputenc}
21
%\usepackage{amsmath} %needed for \begin{align}... \end{align} environment
22
\usepackage{amsfonts}
23
\usepackage{amssymb}
24
%\usepackage{amscd}
25
%\usepackage[all]{xy}
26
\usepackage{xcolor}
27
\usepackage{enumerate}
28
%
29
\newcommand{\slidecite}[1]{\tiny{(#1)}\normalsize{}}
30
\newcommand{\smallcite}[1]{\small{(#1)}\normalsize{}}
31
32
\newcommand{\mb}[1]{\mathbb{#1}}
33
\newcommand{\mf}[1]{\mathbf{#1}}
34
\newcommand{\Emph}[1]{\emph{\textcolor{blue}{#1}}}
35
\newcommand{\Red}[1]{\mathbf{\textcolor{red}{#1}}}
36
37
\newcommand{\abs}[1]{\left| #1 \right|}
38
\newcommand{\norm}[1]{\left\| #1 \right\|}
39
\newcommand{\To}{\rightarrow}
40
41
\newcommand{\Cay}[1]{\operatorname{Cay}\left(#1\right)}
42
\newcommand{\Clique}[1]{\omega\left(#1\right)}
43
\newcommand{\dual}[1]{\widetilde{#1}}
44
\newcommand{\support}[1]{\operatorname{supp}\left(#1\right)}
45
\newcommand{\weight}[1]{\operatorname{wt}\left(#1\right)}
46
\newcommand{\weightclass}[1]{\operatorname{wc}\left(#1\right)}
47
48
\newcommand{\F}{\mb{F}}
49
\newcommand{\G}{\mb{G}}
50
\newcommand{\R}{\mb{R}}
51
\newcommand{\Z}{\mb{Z}}
52
\newtheorem{Def}{Definition}
53
\newtheorem{Conjecture}{Conjecture}
54
\newtheorem{Question}{Question}
55
\newtheorem{Proposition}{Proposition}
56
57
\title[Yet another database of strongly regular graphs]{Yet another database of
58
\\
59
strongly regular graphs:
60
\\
61
Classifying bent functions by
62
\\
63
their Cayley graphs}
64
\author{Paul Leopardi}
65
66
\date{For Tight Frames and Approximation
67
\\
68
Taipa, February 2018}
69
70
\institute{University of Melbourne
71
\\
72
Australian Government - Bureau of Meteorology}
73
\titlegraphic{
74
%\includegraphics[angle=0,width=10mm]{../../common/beamer-anu-colourlogo.png}
75
%\includegraphics[angle=0,width=20mm]{../../common/carma_logo.jpg}
76
}
77
\begin{document}
78
79
\frame{\titlepage}
80
\begin{frame}
81
\frametitle{Acknowledgements}
82
\begin{center}
83
Robin Bowen,
84
An Braeken,
85
Nathan Clisby,
86
Robert Craigen,
87
Joanne Hall,
88
David Joyner,
89
Philippe Langevin,
90
Matthew Leingang,
91
William Martin,
92
Padraig {\'O} Cath{\'a}in,
93
Judy-anne Osborn,
94
Dima Pasechnik,
95
William Stein,
96
Natalia Tokareva, and
97
Sanming Zhou.
98
99
~
100
101
Australian National University. University of Newcastle, Australia. University of Melbourne.
102
103
Australian Government - Bureau of Meteorology.
104
105
~
106
107
National Computational Infrastructure.
108
109
~
110
111
SageMath, CoCalc, Bliss, Nauty, MPI4py, SQLite3, DB Browser for SQLite, PostgreSQL, Psycopg2.
112
\end{center}
113
\end{frame}
114
115
\begin{frame}
116
\frametitle{Serious Question}
117
\begin{center}
118
\vspace{+10mm}
119
\large{}
120
What would \Emph{you} do with a ``large'' database of strongly regular graphs?
121
\normalsize{}
122
\end{center}
123
\end{frame}
124
125
\begin{frame}
126
\frametitle{Overview}
127
%\begin{center}
128
\begin{itemize}
129
\item
130
Classifing bent functions by their Cayley graphs.
131
\begin{itemize}
132
\item
133
Preliminaries.
134
\item
135
Cayley graphs and linear codes.
136
\item
137
Equivalence of bent functions.
138
\item
139
Computational results for quadratic forms.
140
\item
141
Block designs.
142
\item
143
Computational results for low dimensions.
144
\item
145
Questions.
146
\end{itemize}
147
148
~
149
150
\item
151
Databases of strongly regular graphs
152
\begin{itemize}
153
\item
154
Precedents: databases of strongly regular graphs.
155
156
\item
157
Preliminary database designs.
158
159
\item
160
Prototype databases.
161
162
\item
163
Prospects.
164
165
\item
166
Source code and documentation.
167
\end{itemize}
168
169
\end{itemize}
170
171
%\end{center}
172
\end{frame}
173
174
\section{Classifying bent functions}
175
176
\subsection{Preliminaries}
177
178
\begin{colortheme}{jubata}
179
180
\begin{frame}
181
\frametitle{Motivation}
182
183
In a construction for Hada\-mard matrices, I encountered
184
two sequences of \Emph{bent} Boolean functions,
185
\begin{align*}
186
\sigma_m &: \F_2^{2m} \To \F_2, \quad \tau_m : \F_2^{2m} \To \F_2,
187
\end{align*}
188
whose Cayley graphs are \Emph{strongly regular} with parameters
189
\begin{align*}
190
(v,k,\lambda,\mu) &= (4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1}),
191
\end{align*}
192
but the graphs for $\sigma_m$ and $\tau_m$ are isomorphic only when
193
194
$m=1,2$ or $3.$
195
196
~
197
198
Question: \Emph{Which strongly regular graphs arise as Cayley graphs of bent Boolean functions?}
199
200
\slidecite{L 2014, 2015, 2017}
201
\end{frame}
202
\end{colortheme}
203
204
\begin{colortheme}{seagull}
205
206
\begin{frame}
207
\frametitle{Bent functions}
208
% Bent functions can be defined in a number of equivalent ways.
209
% The definition used here involves the Walsh Hadamard Transform.
210
\begin{Def}
211
\label{def-Walsh-Hadamard-transform}
212
The Walsh Hadamard transform of
213
a Boolean function $f : \F_2^{2m} \To \F_2$ is
214
\begin{align*}
215
W_f(x)
216
&:=
217
\sum_{y \in \F_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}
218
\end{align*}
219
\end{Def}
220
221
\begin{Def}
222
\label{def-Bent-function}
223
A Boolean function $f : \F_2^{2m} \To \F_2$ is \Emph{bent}
224
if and only if its Walsh Hada\-mard transform has constant absolute value $2^{m}$.
225
% \cite[p. 74]{Dil74}
226
% \cite[p. 300]{Rot76}.
227
\end{Def}
228
\slidecite{Dillon 1974; Rothaus 1976}
229
\end{frame}
230
\begin{frame}
231
\frametitle{Dual bent functions}
232
233
\begin{Def}
234
\label{def-dual-Bent-function}
235
For a bent function $f : \F_2^{2m} \To \F_2$, the function $\dual{f}$, defined by
236
\begin{align*}
237
(-1)^{\dual{f}(x)} &:= 2^{-m} W_f(x)
238
\end{align*}
239
is called the \Emph{dual} of $f$.
240
\end{Def}
241
242
~
243
244
The function $\dual{f}$ is also a bent function on $\F_2^{2m}$.
245
246
~
247
248
~
249
250
\slidecite{Dillon 1974; Rothaus 1976}
251
\end{frame}
252
253
\begin{frame}
254
\frametitle{Example}
255
256
The function $f : \F_2^2 \To \F_2$ defined by $f(x) := x_0 x_1$
257
is bent, since
258
\begin{align*}
259
W_f(x)
260
=&
261
\sum_{y \in \F_2^2} (-1)^{f(y) + \langle x, y \rangle}
262
\\
263
=&\ (-1)^{f(0,0) + \langle x, (0,0) \rangle}
264
+ (-1)^{f(1,0) + \langle x, (1,0) \rangle} +
265
\\
266
\phantom{=}&\ (-1)^{f(0,1) + \langle x, (0,1) \rangle}
267
+ (-1)^{f(1,1) + \langle x, (1,1) \rangle}
268
\\
269
=&\ (-1)^{0 + 0} + (-1)^{0 + x_0} + (-1)^{0 + x_1} + (-1)^{1 + x_0 + x_1}
270
\\
271
=&\ 1 + (-1)^{x_0} + (-1)^{x_1} - (-1)^{x_0 + x_1}
272
\\
273
=&\ 2 \times (-1)^{f(x)},
274
\end{align*}
275
so $\dual{f} = f$, and $f$ is \Emph{self-dual}.
276
%
277
\end{frame}
278
279
\begin{frame}
280
\frametitle{Bent functions and affine functions}
281
Bent functions are at maximum Hamming distance from affine functions.
282
For $f : \F_2^2 \To \F_2,$ this distance is 1 \slidecite{Meier and Staffelbach 1989}.
283
\scriptsize{}
284
\begin{align*}
285
\begin{array}{|cccc|}
286
\hline
287
(0,0)& (1,0)& (0,1)& (1,1)
288
\\
289
\hline
290
0 & 0 & 0 & 0
291
\\
292
\Red{0}& \Red{0} & \Red{0} & \Red{1}
293
\\
294
\Red{0}& \Red{0} & \Red{1} & \Red{0}
295
\\
296
0 & 0 & 1 & 1
297
\\
298
\Red{0}& \Red{1} & \Red{0} & \Red{0}
299
\\
300
0 & 1 & 0 & 1
301
\\
302
0 & 1 & 1 & 0
303
\\
304
\Red{0}& \Red{1} & \Red{1} & \Red{1}
305
\\
306
\Red{1}& \Red{0} & \Red{0} & \Red{0}
307
\\
308
1 & 0 & 0 & 1
309
\\
310
1 & 0 & 1 & 0
311
\\
312
\Red{1}& \Red{0} & \Red{1} & \Red{1}
313
\\
314
1 & 1 & 0 & 0
315
\\
316
\Red{1}& \Red{1} & \Red{0} & \Red{1}
317
\\
318
\Red{1}& \Red{1} & \Red{1} & \Red{0}
319
\\
320
1 & 1 & 1 & 1
321
\\
322
\hline
323
\end{array}
324
\end{align*}
325
\normalsize{}
326
\end{frame}
327
328
\end{colortheme}
329
330
\begin{colortheme}{jubata}
331
332
\begin{frame}
333
\frametitle{Weights and weight classes}
334
\begin{Def}
335
The \Emph{weight} of a binary function is the cardinality of its \Emph{support}.
336
For $f$ on $\F_2^{2m}$
337
\begin{align*}
338
\support{f} &:= \{x \in \F_2^{2m} \mid f(x)=1 \}.
339
\end{align*}
340
341
A bent function $f$ on $\F_2^{2m}$ has weight
342
\begin{align*}
343
\weight{f} &= 2^{2 m - 1} - 2^{m-1} \quad (\text{weight class~} \weightclass{f}=0), \text{~or}
344
\\
345
\weight{f} &= 2^{2 m - 1} + 2^{m-1} \quad (\text{weight class~} \weightclass{f}=1).
346
\end{align*}
347
% If $f(0)=0$ then $\weightclass{\Cay{f}} := \weightclass{f}$.
348
\end{Def}
349
\end{frame}
350
351
\end{colortheme}
352
353
\subsection{Cayley graphs and linear codes}
354
355
\begin{colortheme}{seagull}
356
357
\begin{frame}
358
\frametitle{The Cayley graph of a Boolean function}
359
%\begin{center}
360
The \Emph{Cayley graph} $\Cay{f}$ of a Boolean function
361
362
~
363
364
\begin{align*}
365
%
366
f : \F_2^n \To \F_2 \quad \text{where} \quad f(0) = 0
367
%
368
\end{align*}
369
370
~
371
372
is
373
an undirected graph with
374
375
\begin{align*}
376
V(\Cay{f}) &:= \F_2^n, \quad (x,y) \in E(\Cay{f}) \Leftrightarrow f(x+y) = 1.
377
\end{align*}
378
379
~
380
381
\slidecite{Bernasconi and Codenotti 1999}
382
\end{frame}
383
384
\begin{frame}
385
\frametitle{Strongly regular graphs}
386
%\begin{center}
387
A simple graph $\Gamma$ of order $v$ is \Emph{strongly regular} with parameters
388
$(v,k,\lambda,\mu)$ if
389
390
~
391
392
\begin{itemize}
393
\item
394
each vertex has degree $k,$
395
396
~
397
\item
398
each adjacent pair of vertices has $\lambda$ common neighbours, and
399
400
~
401
\item
402
each nonadjacent pair of vertices has $\mu$ common neighbours.
403
\end{itemize}
404
405
~
406
407
~
408
409
\slidecite{Brouwer, Cohen and Neumaier 1989}
410
411
%\end{center}
412
\end{frame}
413
414
\begin{frame}
415
\frametitle{Bent functions and strongly regular graphs}
416
417
\begin{Proposition}
418
\smallcite{Bernasconi and Codenotti 1999}
419
420
The Cayley graph $\Cay{f}$ of a bent function $f$ on $\F_2^{2m}$
421
422
with $f(0)=0$ is a strongly regular graph with $\lambda = \mu.$
423
\end{Proposition}
424
425
The parameters of $\Cay{f}$ are
426
\begin{align*}
427
(v,k,\lambda) = &(4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})
428
\\
429
\text{or} \quad &(4^m, 2^{2 m - 1} + 2^{m-1}, 2^{2 m - 2} + 2^{m-1}).
430
\end{align*}
431
432
~
433
434
\slidecite{Menon 1962; Dillon 1974; Bernasconi and Codenotti 1999}
435
%\end{center}
436
\end{frame}
437
438
\begin{frame}
439
\frametitle{Projective two-weight binary codes}
440
441
\begin{Def}
442
A \Emph{two-weight binary code} with parameters $[n,k,d]$ is a $k$ dimensional subspace of $\F_2^n$
443
with
444
minimum Hamming distance $d$, such that the set of Hamming weights of the non-zero vectors has size
445
2.
446
447
~
448
449
``A \Emph{generator matrix} $G$ of a linear code $[n, k]$ code $C$ is any matrix
450
of rank $k$ (over $\F_2$) with rows from $C.$''
451
452
~
453
454
``A linear $[n, k]$ code is called \Emph{projective} if no two columns of a generator matrix
455
$G$ are linearly dependent, i.e., if the columns of $G$ are pairwise different points in a
456
projective $(k-1)$-dimensional space.''
457
In the case of $\F_2$, no two columns are equal.
458
459
~
460
461
\end{Def}
462
463
\slidecite{Tonchev 1996; Bouyukliev, Fack, Willems and Winne 2006}
464
465
\end{frame}
466
467
\begin{frame}
468
\frametitle{From bent function to linear code (1)}
469
\begin{Def}
470
471
\smallcite{Carlet 2007; Ding and Ding 2015, Corollary 10}
472
473
For a bent function $f : \F_2^{2m} \To \F_2$,
474
define the linear code $C(f)$ by the generator matrix
475
\begin{align*}
476
M C(f) &\in \F_2^{4^m \times \weight{f}},
477
\\
478
M C(f)_{x,y} &:= \langle x, \support{f}(y) \rangle,
479
\end{align*}
480
with $x$ in lexicographic order of $\F_2^{2m}$
481
and $\support{f}(y)$ in lexicographic order of $\support{f}$.
482
483
The $4^m$ words of the code $C(f)$ are the rows of the generator matrix $M C(f)$.
484
\end{Def}
485
486
\slidecite{Carlet 2007; Ding and Ding 2015, Corollary 10}
487
488
\end{frame}
489
\begin{frame}
490
\frametitle{From bent function to linear code (2)}
491
\begin{Proposition}
492
\smallcite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}
493
494
For a bent function $f : \F_2^{2m} \To \F_2$, the linear code $C(f)$
495
is a projective two-weight code.
496
497
~
498
499
The possible weights of non-zero code words are:
500
\begin{align*}
501
\begin{cases}
502
2^{2m-2}, 2^{2m-2} - 2^{m-1} & \text{if~} \weightclass{f}=0.
503
\\
504
2^{2m-2}, 2^{2m-2} + 2^{m-1} & \text{if~} \weightclass{f}=1.
505
\end{cases}
506
\end{align*}
507
508
\end{Proposition}
509
510
\slidecite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}
511
512
\end{frame}
513
514
\begin{frame}
515
\frametitle{From linear code to strongly regular graph}
516
\begin{Def}
517
\label{R-f-def}
518
Given $f : \F_2^{2m} \To \F_2$, form the linear code $C(f)$.
519
520
The graph $R(f)$ is defined as:
521
522
Vertices of $R(f)$ are code words of $C(f)$.
523
524
For $v,w \in C(f)$, edge $(u,v) \in R(f)$ if and only if
525
\begin{align*}
526
\begin{cases}
527
\weight{u+v} = 2^{2m-2} - 2^{m-1} & (\text{if~}\weightclass{f}=0).
528
\\
529
\weight{u+v} = 2^{2m-2} + 2^{m-1} & (\text{if~}\weightclass{f}=1).
530
\end{cases}
531
\end{align*}
532
533
\end{Def}
534
Since $C(f)$ is a projective two-weight code,
535
$R(f)$ is a strongly regular graph.
536
537
\slidecite{Delsarte 1972, Theorem 2}
538
\end{frame}
539
540
\end{colortheme}
541
542
\begin{colortheme}{jubata}
543
544
\begin{frame}
545
\frametitle{The strongly regular graph $R(f)$ is \\ the Cayley graph of the dual}
546
547
\begin{Theorem}
548
For $f : \F_2^{2m} \To \F_2$, with $f(0)=0$,
549
\begin{align*}
550
R(f) &\equiv \Cay{\dual{f} + \dual{f}(0)} = \Cay{\dual{f} + \weightclass{f}}.
551
\end{align*}
552
\end{Theorem}
553
554
\end{frame}
555
556
\end{colortheme}
557
558
\subsection{Equivalence of bent functions}
559
560
\begin{colortheme}{seagull}
561
562
\begin{frame}
563
\frametitle{Extended affine equivalence}
564
565
\begin{Def}
566
For bent functions $f,g : \F_2^{2m} \To \F_2$,
567
568
$f$ is \Emph{extended affine equivalent} to $g$ if and only if
569
\begin{align*}
570
g(x) &= f(A x + b) + \langle c, x \rangle + \delta
571
\end{align*}
572
for some $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$.
573
\end{Def}
574
575
~
576
577
~
578
579
\slidecite{Budaghyan, Carlet and Pott 2006; Carlet and Mesnager 2011}
580
\end{frame}
581
582
\end{colortheme}
583
584
\begin{colortheme}{jubata}
585
586
\begin{frame}
587
\frametitle{General linear equivalence}
588
589
\begin{Def}
590
For bent functions $f,g : \F_2^{2m} \To \F_2$,
591
$f$ is \Emph{general linear equivalent} to $g$ if and only if
592
\begin{align*}
593
g(x) &= f(A x)
594
\end{align*}
595
for some $A \in GL(2m,2)$.
596
\end{Def}
597
\end{frame}
598
\begin{frame}
599
\frametitle{Extended translation equivalence}
600
601
\begin{Def}
602
For bent functions $f,g : \F_2^{2m} \To \F_2$,
603
604
$f$ is \Emph{extended translation equivalent} to $g$ if and only if
605
\begin{align*}
606
g(x) &= f(x + b) + \langle c, x \rangle + \delta
607
\end{align*}
608
for $b, c \in \F_2^{2m}$, $\delta \in \F_2$.
609
\end{Def}
610
\end{frame}
611
612
\begin{frame}
613
\frametitle{Cayley equivalence}
614
\begin{Def}
615
%
616
For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,
617
618
we call $f$ and $g$ \Emph{Cayley equivalent},
619
and write $f \equiv g$,
620
621
if and only if $f(0)=g(0)=0$ and $\Cay{f} \equiv \Cay{g}$ as graphs.
622
623
~
624
625
Equivalently, $f \equiv g$ if and only if $f(0)=g(0)=0$ and
626
627
there exists a bijection $\pi : \F_2^{2m} \To \F_2^{2m}$ such that
628
\begin{align*}
629
g(x+y) &= f \big(\pi(x)+\pi(y)\big) \quad \text{for all~} x,y \in \F_2^{2m}.
630
\end{align*}
631
\end{Def}
632
\end{frame}
633
\begin{frame}
634
\frametitle{Extended Cayley equivalence}
635
\begin{Def}
636
For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,
637
638
if there exist $\delta, \epsilon \in \{0,1\}$ such that $f + \delta \equiv g + \epsilon$,
639
640
we call $f$ and $g$ \Emph{extended Cayley (EC) equivalent} and write $f \cong g$.
641
\end{Def}
642
Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\F_2^{2m}$.
643
\end{frame}
644
645
\begin{frame}
646
\frametitle{General linear equivalence \\ implies Cayley equivalence}
647
648
\begin{Theorem}
649
If $f$ is bent with $f(0)=0$ and $g(x) := f(A x)$ where $A \in GL(2m,2)$,
650
then $g$ is bent with $g(0)=0$ and $f \equiv g$.
651
\end{Theorem}
652
\begin{proof}
653
\begin{align*}
654
g(x+y) &= f\big(A(x+y)\big) = f(A x + A y)\quad \text{for all~} x,y \in \F_2^{2m}.
655
\end{align*}
656
\end{proof}
657
658
\end{frame}
659
660
\begin{frame}
661
\frametitle{Extended affine, extended translation, and extended Cayley equivalence (1)}
662
663
\begin{Theorem}
664
For $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$,
665
$f : \F_2^{2m} \To \F_2$,
666
667
the function
668
\begin{align*}
669
h(x) &:= f(A x + b) + \langle c, x \rangle + \delta
670
\intertext{can be expressed as $h(x) = g(A x)$ where}
671
g(x) &:= f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,
672
\end{align*}
673
and therefore if $f$ is bent then $h \cong g$.
674
\end{Theorem}
675
\end{frame}
676
677
\begin{frame}
678
\frametitle{Extended affine, extended translation, and extended Cayley equivalence (2)}
679
680
Therefore, to determine the extended Cayley equivalence classes within the extended affine equivalence class of
681
a bent function $f : \F_2^{2m} \To \F_2$, for which $f(0)=0$, we need only examine
682
the extended translation equivalent functions of the form
683
\begin{align*}
684
f(x+b) + \langle c, x \rangle + f(b),
685
\end{align*}
686
for each $b, c \in \F_2^{2m}$.
687
\end{frame}
688
689
\begin{frame}
690
\frametitle{Quadratic bent functions have two \\ extended Cayley classes}
691
\begin{Theorem}
692
For each $m>0$, the extended affine equivalence class of quadratic bent functions
693
$q : \F_2^{2m} \To \F_2$ contains exactly two extended Cayley equivalence classes,
694
corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.
695
\end{Theorem}
696
697
\end{frame}
698
699
\end{colortheme}
700
701
\subsection{Computational results for quadratic bent functions in low dimensions}
702
703
\begin{colortheme}{jubata}
704
705
\begin{frame}
706
\frametitle{For 2 dimensions: quadratic case: $[f_{2,1}]$}
707
\begin{figure}
708
\centering
709
\begin{minipage}{.48\textwidth}
710
\centering
711
\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_bent_cayley_graph_index_matrix.png}
712
\captionof{figure}{$[f_{2,1}]$: 2 extended Cayley classes}
713
\label{fig:q2_1_bent_cayley_graph_index_matrix}
714
\end{minipage}
715
\end{figure}
716
\end{frame}
717
\begin{frame}
718
\frametitle{For 4 dimensions: quadratic case: $[f_{4,1}]$}
719
\begin{figure}
720
\centering
721
\begin{minipage}{.48\textwidth}
722
\centering
723
\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_bent_cayley_graph_index_matrix.png}
724
\captionof{figure}{$[f_{4,1}]$: 2 extended Cayley classes}
725
\label{fig:q4_1_bent_cayley_graph_index_matrix}
726
\end{minipage}
727
\end{figure}
728
\end{frame}
729
\begin{frame}
730
\frametitle{For 6 dimensions: quadratic case: $[f_{6,1}]$}
731
\begin{figure}
732
\centering
733
\begin{minipage}{.48\textwidth}
734
\centering
735
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_bent_cayley_graph_index_matrix.png}
736
\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}
737
\label{fig:q6_1_bent_cayley_graph_index_matrix}
738
\end{minipage}
739
\end{figure}
740
\end{frame}
741
\begin{frame}
742
\frametitle{For 8 dimensions: quadratic case: $[f_{8,1}]$}
743
\begin{figure}
744
\centering
745
\begin{minipage}{.48\textwidth}
746
\centering
747
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_bent_cayley_graph_index_matrix.png}
748
\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}
749
\label{fig:q8_1_bent_cayley_graph_index_matrix}
750
\end{minipage}
751
\end{figure}
752
~
753
\end{frame}
754
755
\end{colortheme}
756
757
\subsection{Block designs}
758
759
\begin{colortheme}{seagull}
760
761
\begin{frame}
762
\frametitle{The two block designs of a bent function}
763
764
The first block design of a bent function $f$ is obtained by interpreting
765
the adjacency matrix of $\Cay{f}$ as the incidence matrix of a block design.
766
In this case we do not need $f(0)=0$.
767
768
~
769
\begin{Def}
770
The second block design of a bent function $f$ is defined by the incidence matrix
771
$D(f)$ where
772
\begin{align*}
773
D(f)_{c,x} &:= f(x) + \langle c, x \rangle + \dual{f}(c).
774
\end{align*}
775
This is a symmetric block design with the \Emph{symmetric difference property},
776
called the \Emph{SDP design} of $f$.
777
\end{Def}
778
779
~
780
781
\slidecite{Kantor 1975; Dillon and Schatz 1987; Neumann 2006}
782
\end{frame}
783
784
\end{colortheme}
785
786
\begin{colortheme}{jubata}
787
788
\begin{frame}
789
\frametitle{The weight class matrix is \\ the SDP design matrix}
790
\begin{Theorem}
791
For every bent function $f$, the \Emph{weight class matrix} of the ET class of $f$
792
equals the incidence matrix of the SDP design of $f$.
793
794
~
795
796
Specifically,
797
\begin{align*}
798
\weightclass{x \mapsto f(x+b) + \langle c, x \rangle + f(b)}
799
&=
800
f(b) + \langle c, b \rangle + \dual{f}(c)
801
\\
802
&=
803
D(f)_{c,b}.
804
\end{align*}
805
806
\end{Theorem}
807
808
\end{frame}
809
810
\end{colortheme}
811
812
\subsection{Computational results for low dimensions}
813
814
\begin{colortheme}{jubata}
815
816
\begin{frame}
817
\frametitle{For 2 dimensions: classes}
818
819
One extended affine class, containing the extended translation class $[f_{2,1}]$,
820
where $f_{2,1}(x) := x_0 x_1$ is self dual.
821
822
~
823
824
Two extended Cayley classes:
825
\begin{align*}
826
\begin{array}{|cccl|}
827
\hline
828
\text{Class} &
829
\text{Parameters} &
830
\text{2-rank} &
831
\text{Clique polynomial}
832
\\
833
\hline
834
1 &
835
(4, 1, 0, 0) & 4 &
836
2t^{2} + 4t + 1
837
\\
838
2 &
839
K_4 & 4 &
840
t^{4} + 4t^{3} + 6t^{2} + 4t + 1
841
\\
842
\hline
843
\end{array}
844
\end{align*}
845
846
\end{frame}
847
\begin{frame}
848
\frametitle{For ET class $[f_{2,1}]$: matrices}
849
\begin{figure}
850
\centering
851
\begin{minipage}{.48\textwidth}
852
\centering
853
\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_weight_class_matrix.png}
854
\captionof{figure}{$[f_{2,1}]$: weight classes}
855
\label{fig:c2_1_weight_class_matrix}
856
\end{minipage}%
857
\begin{minipage}{.48\textwidth}
858
\centering
859
\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_bent_cayley_graph_index_matrix.png}
860
\captionof{figure}{$[f_{2,1}]$: extended Cayley classes}
861
\label{fig:c2_1_bent_cayley_graph_index_matrix}
862
\end{minipage}
863
\end{figure}
864
\end{frame}
865
\begin{frame}
866
\frametitle{For 4 dimensions: classes}
867
868
One extended affine class, containing the extended translation class $[f_{4,1}]$, where
869
$f_{4,1}(x) := x_0 x_1 + x_2 x_3$ is self dual.
870
871
~
872
873
Two extended Cayley classes:
874
\begin{align*}
875
\begin{array}{|cccl|}
876
\hline
877
\text{Class} &
878
\text{Parameters} &
879
\text{2-rank} &
880
\text{Clique polynomial}
881
\\
882
\hline
883
1 &
884
(16, 6, 2, 2) &
885
6 &
886
8t^{4} + 32t^{3} + 48t^{2} + 16t + 1
887
\\
888
2 &
889
(16, 10, 6, 6) &
890
6 &
891
\begin{array}{l}
892
16t^{5} + 120t^{4} + 160t^{3} +
893
\\
894
80t^{2} + 16t + 1
895
\end{array}
896
\\
897
\hline
898
\end{array}
899
\end{align*}
900
\end{frame}
901
\begin{frame}
902
\frametitle{For ET class $[f_{4,1}]$: matrices}
903
\begin{figure}
904
\centering
905
\begin{minipage}{.48\textwidth}
906
\centering
907
\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_weight_class_matrix.png}
908
\captionof{figure}{$[f_{4,1}]$: weight classes}
909
\label{fig:c4_1_weight_class_matrix}
910
\end{minipage}%
911
\begin{minipage}{.48\textwidth}
912
\centering
913
\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_bent_cayley_graph_index_matrix.png}
914
\captionof{figure}{$[f_{4,1}]$: extended Cayley classes}
915
\label{fig:c4_1_bent_cayley_graph_index_matrix}
916
\end{minipage}
917
\end{figure}
918
\end{frame}
919
920
\end{colortheme}
921
922
\begin{colortheme}{seagull}
923
924
\begin{frame}
925
\frametitle{For 6 dimensions: ET classes}
926
927
Four extended affine classes, containing the following extended translation classes:
928
929
\begin{align*}
930
\def\arraystretch{1.2}
931
\begin{array}{|cl|}
932
\hline
933
\text{Class} &
934
\text{Representative}
935
\\
936
\hline
937
\,[f_{6,1}] & f_{6,1} :=
938
\begin{array}{l}
939
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5}
940
\end{array}
941
\\
942
\,[f_{6,2}] & f_{6,2} :=
943
\begin{array}{l}
944
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}
945
\end{array}
946
\\
947
\,[f_{6,3}] & f_{6,3} :=
948
\begin{array}{l}
949
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5}
950
\\
951
+\, x_{2} x_{4} + x_{3} x_{4}
952
\end{array}
953
\\
954
\,[f_{6,4}] & f_{6,4} :=
955
\begin{array}{l}
956
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
957
\\
958
+\, x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}
959
\end{array}
960
\\
961
\hline
962
\end{array}
963
\end{align*}
964
\slidecite{Rothaus 1976; Tokareva 2015}
965
\end{frame}
966
967
\end{colortheme}
968
969
\begin{colortheme}{jubata}
970
971
\begin{frame}
972
\frametitle{For ET class $[f_{6,1}]$: EC classes}
973
974
Bent function
975
$f_{6,1}(x) = x_0 x_1 + x_2 x_3 + x_4 x_5$ is self dual.
976
977
~
978
979
Two extended Cayley classes corresponding to Tonchev's projective two-weight codes:
980
\begin{align*}
981
\def\arraystretch{1.2}
982
\begin{array}{|ccl|}
983
\hline
984
\text{Class} &
985
\text{Parameters} & \text{Reference}
986
\\
987
\hline
988
0 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}
989
\\
990
1 & [27,6,12] & \text{Table 1.155 1 }
991
\\
992
\hline
993
\end{array}
994
\end{align*}
995
996
Graph for class 0 is also isomorphic to the complement of Royle's $(64,35,18,20)$ strongly regular
997
graph $X$.
998
999
\slidecite{Tonchev 1996, 2006; Royle 2008}
1000
\end{frame}
1001
\begin{frame}
1002
\frametitle{For ET class $[f_{6,1}]$: matrices}
1003
\begin{figure}
1004
\centering
1005
\begin{minipage}{.48\textwidth}
1006
\centering
1007
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_weight_class_matrix.png}
1008
\captionof{figure}{$[f_{6,1}]$: weight classes}
1009
\label{fig:6_1_weight_class_matrix}
1010
\end{minipage}%
1011
\begin{minipage}{.48\textwidth}
1012
\centering
1013
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_bent_cayley_graph_index_matrix.png}
1014
\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}
1015
\label{fig:6_1_bent_cayley_graph_index_matrix}
1016
\end{minipage}
1017
\end{figure}
1018
\end{frame}
1019
\begin{frame}
1020
\frametitle{For ET class $[f_{6,2}]$: EC classes}
1021
1022
Bent function
1023
$f_{6,2}(x) = x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}$.
1024
1025
~
1026
1027
Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:
1028
\begin{align*}
1029
\def\arraystretch{1.2}
1030
\begin{array}{|ccl|}
1031
\hline
1032
\text{Class} &
1033
\text{Parameters} & \text{Reference}
1034
\\
1035
\hline
1036
0 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}
1037
\\
1038
1 & [35,6,16] & \text{Table 1.156 3 (complement)}
1039
\\
1040
2 & [27,6,12] & \text{Table 1.155 2 }
1041
\\
1042
\hline
1043
\end{array}
1044
\end{align*}
1045
1046
Graph for class 0 is also isomorphic to that of $[f_{6,1}]$ class 0.
1047
1048
\slidecite{Tonchev 1996, 2006}
1049
\end{frame}
1050
\begin{frame}
1051
\frametitle{For ET class $[f_{6,2}]$: matrices}
1052
\begin{figure}
1053
\centering
1054
\begin{minipage}{.48\textwidth}
1055
\centering
1056
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_weight_class_matrix.png}
1057
\captionof{figure}{$[f_{6,2}]$: weight classes}
1058
\label{fig:6_2_weight_class_matrix}
1059
\end{minipage}%
1060
\begin{minipage}{.48\textwidth}
1061
\centering
1062
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_bent_cayley_graph_index_matrix.png}
1063
\captionof{figure}{$[f_{6,2}]$: 3 extended Cayley classes}
1064
\label{fig:6_2_bent_cayley_graph_index_matrix}
1065
\end{minipage}
1066
\end{figure}
1067
\end{frame}
1068
\begin{frame}
1069
\frametitle{For ET class $[f_{6,3}]$: EC classes}
1070
1071
Bent function
1072
\begin{align*}
1073
f_{6,3}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4}
1074
\\
1075
&+ x_{1} x_{5} + x_{2} x_{4} + x_{3} x_{4}.
1076
\end{align*}
1077
1078
Four extended Cayley classes corresponding to Tonchev's projective two-weight codes:
1079
\begin{align*}
1080
\def\arraystretch{1.2}
1081
\begin{array}{|ccl|}
1082
\hline
1083
\text{Class} &
1084
\text{Parameters} & \text{Reference}
1085
\\
1086
\hline
1087
0 & [35,6,16] & \text{Table 1.156 4 (complement)}
1088
\\
1089
1 & [27,6,12] & \text{Table 1.155 3 }
1090
\\
1091
2 & [35,6,16] & \text{Table 1.156 5 (complement)}
1092
\\
1093
3 & [27,6,12] & \text{Table 1.155 4 }
1094
\\
1095
\hline
1096
\end{array}
1097
\end{align*}
1098
1099
\slidecite{Tonchev 1996, 2006}
1100
\end{frame}
1101
\begin{frame}
1102
\frametitle{For ET class $[f_{6,3}]$: matrices}
1103
\begin{figure}
1104
\centering
1105
\begin{minipage}{.48\textwidth}
1106
\centering
1107
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_weight_class_matrix.png}
1108
\captionof{figure}{$[f_{6,3}]$: weight classes}
1109
\label{fig:6_3_weight_class_matrix}
1110
\end{minipage}%
1111
\begin{minipage}{.48\textwidth}
1112
\centering
1113
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_bent_cayley_graph_index_matrix.png}
1114
\captionof{figure}{$[f_{6,3}]$: 4 extended Cayley classes}
1115
\label{fig:6_3_bent_cayley_graph_index_matrix}
1116
\end{minipage}
1117
\end{figure}
1118
\end{frame}
1119
\begin{frame}
1120
\frametitle{For ET class $[f_{6,4}]$: EC classes}
1121
1122
Bent function
1123
\begin{align*}
1124
f_{6,4}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
1125
\\
1126
&+ x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}.
1127
\end{align*}
1128
1129
Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:
1130
\begin{align*}
1131
\def\arraystretch{1.2}
1132
\begin{array}{|ccl|}
1133
\hline
1134
\text{Class} &
1135
\text{Parameters} & \text{Reference}
1136
\\
1137
\hline
1138
0 & [35,6,16] & \text{Table 1.156 7 (complement)}
1139
\\
1140
1 & [35,6,16] & \text{Table 1.156 6 (complement)}
1141
\\
1142
2 & [27,6,12] & \text{Table 1.155 5 }
1143
\\
1144
\hline
1145
\end{array}
1146
\end{align*}
1147
1148
\slidecite{Tonchev 1996, 2006}
1149
\end{frame}
1150
\begin{frame}
1151
\frametitle{For ET class $[f_{6,4}]$: matrices}
1152
\begin{figure}
1153
\centering
1154
\begin{minipage}{.48\textwidth}
1155
\centering
1156
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_weight_class_matrix.png}
1157
\captionof{figure}{$[f_{6,4}]$: weight classes}
1158
\label{fig:6_4_weight_class_matrix}
1159
\end{minipage}%
1160
\begin{minipage}{.48\textwidth}
1161
\centering
1162
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_bent_cayley_graph_index_matrix.png}
1163
\captionof{figure}{$[f_{6,4}]$: 3 extended Cayley classes}
1164
\label{fig:6_4_bent_cayley_graph_index_matrix}
1165
\end{minipage}
1166
\end{figure}
1167
\end{frame}
1168
1169
\end{colortheme}
1170
1171
\begin{colortheme}{seagull}
1172
1173
\begin{frame}
1174
\frametitle{For 8 dimensions: \\ number of bent functions and EA classes}
1175
1176
According to Langevin and Leander (2011)
1177
there are $99\,270\,589\,265\,934\,370\,305\,785\,861\,242\,880 \approx 2^{106}$ bent functions in dimension 8.
1178
1179
~
1180
1181
The number of EA classes has not yet been published, let alone a list of representatives.
1182
1183
~
1184
1185
~
1186
1187
~
1188
1189
~
1190
1191
\slidecite{Langevin and Leander 2011}
1192
\end{frame}
1193
1194
\begin{frame}
1195
\frametitle{For 8 dimensions, up to degree 3: \\ extended translation classes}
1196
1197
Ten extended affine classes are listed in Braeken's thesis (2006),
1198
1199
containing the following extended translation classes:
1200
1201
\tiny{}
1202
\begin{align*}
1203
\def\arraystretch{1.2}
1204
\begin{array}{|cl|}
1205
\hline
1206
\text{Class} &
1207
\text{Representative}
1208
\\
1209
\hline
1210
\,[f_{ 8 , 1 }] & f_{ 8 , 1 } :=
1211
\begin{array}{l}
1212
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5} + x_{6} x_{7}
1213
\end{array}
1214
\\
1215
\,[f_{ 8 , 2 }] & f_{ 8 , 2 } :=
1216
\begin{array}{l}
1217
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5} + x_{6} x_{7}
1218
\end{array}
1219
\\
1220
\,[f_{ 8 , 3 }] & f_{ 8 , 3 } :=
1221
\begin{array}{l}
1222
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{4} x_{7}
1223
\end{array}
1224
\\
1225
\,[f_{ 8 , 4 }] & f_{ 8 , 4 } :=
1226
\begin{array}{l}
1227
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{4} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{6} x_{7}
1228
\end{array}
1229
\\
1230
\,[f_{ 8 , 5 }] & f_{ 8 , 5 } :=
1231
\begin{array}{l}
1232
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
1233
\end{array}
1234
\\
1235
\,[f_{ 8 , 6 }] & f_{ 8 , 6 } :=
1236
\begin{array}{l}
1237
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{5} x_{7}
1238
\end{array}
1239
\\
1240
\,[f_{ 8 , 7 }] & f_{ 8 , 7 } :=
1241
\begin{array}{l}
1242
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
1243
\\
1244
+\, x_{2} x_{4} + x_{6} x_{7}
1245
\end{array}
1246
\\
1247
\,[f_{ 8 , 8 }] & f_{ 8 , 8 } :=
1248
\begin{array}{l}
1249
x_{0} x_{1} x_{2} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
1250
\end{array}
1251
\\
1252
\,[f_{ 8 , 9 }] & f_{ 8 , 9 } :=
1253
\begin{array}{l}
1254
x_{0} x_{1} x_{6} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{3} x_{6} + x_{2} x_{5} + x_{3} x_{4} + x_{4} x_{5} x_{6} + x_{6} x_{7}
1255
\end{array}
1256
\\
1257
\,[f_{ 8 , 10 }] & f_{ 8 , 10 } :=
1258
\begin{array}{l}
1259
x_{0} x_{1} x_{2} + x_{0} x_{3} x_{6} + x_{0} x_{4} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4}
1260
\\
1261
+\, x_{3} x_{7}
1262
\end{array}
1263
\\
1264
\hline
1265
\end{array}
1266
\end{align*}
1267
\slidecite{Braeken 2006; Tokareva 2015}
1268
\normalsize{}
1269
\end{frame}
1270
1271
\end{colortheme}
1272
1273
\begin{colortheme}{jubata}
1274
1275
\begin{frame}
1276
\frametitle{For ET class $[f_{8,1}]$: matrices}
1277
\begin{figure}
1278
\centering
1279
\begin{minipage}{.48\textwidth}
1280
\centering
1281
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_weight_class_matrix.png}
1282
\captionof{figure}{$[f_{8,1}]$: weight classes}
1283
\label{fig:8_1_weight_class_matrix}
1284
\end{minipage}%
1285
\begin{minipage}{.48\textwidth}
1286
\centering
1287
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_bent_cayley_graph_index_matrix.png}
1288
\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}
1289
\label{fig:8_1_bent_cayley_graph_index_matrix}
1290
\end{minipage}
1291
\end{figure}
1292
~
1293
\end{frame}
1294
\begin{frame}
1295
\frametitle{For ET class $[f_{8,2}]$: matrices}
1296
\begin{figure}
1297
\centering
1298
\begin{minipage}{.48\textwidth}
1299
\centering
1300
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_weight_class_matrix.png}
1301
\captionof{figure}{$[f_{8,2}]$: weight classes}
1302
\label{fig:8_2_weight_class_matrix}
1303
\end{minipage}%
1304
\begin{minipage}{.48\textwidth}
1305
\centering
1306
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_bent_cayley_graph_index_matrix.png}
1307
\captionof{figure}{$[f_{8,2}]$: 4 extended Cayley classes}
1308
\label{fig:8_2_bent_cayley_graph_index_matrix}
1309
\end{minipage}
1310
\end{figure}
1311
Graph for class 0 is isomorphic to graph for class 0 of $[f_{8,1}]$.
1312
\end{frame}
1313
\begin{frame}
1314
\frametitle{For ET class $[f_{8,3}]$: matrices}
1315
\begin{figure}
1316
\centering
1317
\begin{minipage}{.48\textwidth}
1318
\centering
1319
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_weight_class_matrix.png}
1320
\captionof{figure}{$[f_{8,3}]$: weight classes}
1321
\label{fig:8_3_weight_class_matrix}
1322
\end{minipage}%
1323
\begin{minipage}{.48\textwidth}
1324
\centering
1325
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_bent_cayley_graph_index_matrix.png}
1326
\captionof{figure}{$[f_{8,3}]$: 6 extended Cayley classes}
1327
\label{fig:8_3_bent_cayley_graph_index_matrix}
1328
\end{minipage}
1329
\end{figure}
1330
~
1331
\end{frame}
1332
\begin{frame}
1333
\frametitle{For ET class $[f_{8,4}]$: matrices}
1334
\begin{figure}
1335
\centering
1336
\begin{minipage}{.48\textwidth}
1337
\centering
1338
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_weight_class_matrix.png}
1339
\captionof{figure}{$[f_{8,4}]$: weight classes}
1340
\label{fig:8_4_weight_class_matrix}
1341
\end{minipage}%
1342
\begin{minipage}{.48\textwidth}
1343
\centering
1344
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_bent_cayley_graph_index_matrix.png}
1345
\captionof{figure}{$[f_{8,4}]$: 5 extended Cayley classes}
1346
\label{fig:8_4_bent_cayley_graph_index_matrix}
1347
\end{minipage}
1348
\end{figure}
1349
~
1350
\end{frame}
1351
\begin{frame}
1352
\frametitle{For ET class $[f_{8,5}]$: matrices}
1353
\begin{figure}
1354
\centering
1355
\begin{minipage}{.48\textwidth}
1356
\centering
1357
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_weight_class_matrix.png}
1358
\captionof{figure}{$[f_{8,5}]$: weight classes}
1359
\label{fig:8_5_weight_class_matrix}
1360
\end{minipage}%
1361
\begin{minipage}{.48\textwidth}
1362
\centering
1363
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_bent_cayley_graph_index_matrix.png}
1364
\captionof{figure}{$[f_{8,5}]$: 9 extended Cayley classes}
1365
\label{fig:8_5_bent_cayley_graph_index_matrix}
1366
\end{minipage}
1367
\end{figure}
1368
~
1369
\end{frame}
1370
\begin{frame}
1371
\frametitle{For ET class $[f_{8,6}]$: matrices}
1372
\begin{figure}
1373
\centering
1374
\begin{minipage}{.48\textwidth}
1375
\centering
1376
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_weight_class_matrix.png}
1377
\captionof{figure}{$[f_{8,6}]$: weight classes}
1378
\label{fig:8_6_weight_class_matrix}
1379
\end{minipage}%
1380
\begin{minipage}{.48\textwidth}
1381
\centering
1382
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_bent_cayley_graph_index_matrix.png}
1383
\captionof{figure}{$[f_{8,6}]$: 9 extended Cayley classes}
1384
\label{fig:8_6_bent_cayley_graph_index_matrix}
1385
\end{minipage}
1386
\end{figure}
1387
\end{frame}
1388
1389
\begin{frame}
1390
\frametitle{ET classes $[f_{8,5}]$ and $[f_{8,6}]$}
1391
\begin{figure}
1392
\centering
1393
\begin{minipage}{.48\textwidth}
1394
\centering
1395
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_5_bent_cayley_graph_index_matrix.png}
1396
\captionof{figure}{$[f_{8,5}]$: 9 extended Cayley classes}
1397
\label{fig:re8_5_bent_cayley_graph_index_matrix}
1398
\end{minipage}%
1399
\begin{minipage}{.48\textwidth}
1400
\centering
1401
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_6_bent_cayley_graph_index_matrix.png}
1402
\captionof{figure}{$[f_{8,6}]$: 9 extended Cayley classes}
1403
\label{fig:re8_6_bent_cayley_graph_index_matrix}
1404
\end{minipage}
1405
\end{figure}
1406
The same 9 EC classes, with the same frequencies!
1407
1408
\slidecite{colormap: gist\_stern, colours matched to extended Cayley classes}
1409
\end{frame}
1410
1411
\begin{frame}[fragile]
1412
\frametitle{Functions $f_{8,5}$ and $f_{8,6}$ are linearly equivalent}
1413
1414
\Emph{Proof}
1415
1416
~
1417
1418
Apply the permutation $\pi := (x_0\ x_5\ x_4)(x_1\ x_2\ x_3)(x_6\ x_7)$ to
1419
\footnotesize{
1420
\begin{align*}
1421
f_{8,5}
1422
&=
1423
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
1424
%\end{align*}
1425
%}\normalsize{}
1426
\intertext{\normalsize{to obtain}}
1427
%\small{
1428
%\begin{align*}
1429
\pi(f_{8,5})
1430
&=
1431
x_{5} x_{2} x_{3} + x_{5} x_{7} + x_{2} x_{1} x_{0} + x_{2} x_{0} + x_{2} x_{4} + x_{3} x_{1} x_{4} + x_{3} x_{0} + x_{1} x_{6}
1432
\\
1433
&=
1434
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{5} x_{7}
1435
\\
1436
&= f_{8,6}.
1437
\\
1438
&\ \Box
1439
\end{align*}
1440
}\normalsize{}
1441
\end{frame}
1442
1443
\begin{frame}
1444
\frametitle{For ET class $[f_{8,7}]$: matrices}
1445
\begin{figure}
1446
\centering
1447
\begin{minipage}{.48\textwidth}
1448
\centering
1449
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_weight_class_matrix.png}
1450
\captionof{figure}{$[f_{8,7}]$: weight classes}
1451
\label{fig:8_7_weight_class_matrix}
1452
\end{minipage}%
1453
\begin{minipage}{.48\textwidth}
1454
\centering
1455
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_bent_cayley_graph_index_matrix.png}
1456
\captionof{figure}{$[f_{8,7}]$: 5 extended Cayley classes}
1457
\label{fig:8_7_bent_cayley_graph_index_matrix}
1458
\end{minipage}
1459
\end{figure}
1460
~
1461
\end{frame}
1462
\begin{frame}
1463
\frametitle{For ET class $[f_{8,8}]$: matrices}
1464
\begin{figure}
1465
\centering
1466
\begin{minipage}{.48\textwidth}
1467
\centering
1468
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_weight_class_matrix.png}
1469
\captionof{figure}{$[f_{8,8}]$: weight classes}
1470
\label{fig:8_8_weight_class_matrix}
1471
\end{minipage}%
1472
\begin{minipage}{.48\textwidth}
1473
\centering
1474
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_bent_cayley_graph_index_matrix.png}
1475
\captionof{figure}{$[f_{8,8}]$: 6 extended Cayley classes}
1476
\label{fig:8_8_bent_cayley_graph_index_matrix}
1477
\end{minipage}
1478
\end{figure}
1479
~
1480
\end{frame}
1481
\begin{frame}
1482
\frametitle{For ET class $[f_{8,9}]$: matrices}
1483
\begin{figure}
1484
\centering
1485
\begin{minipage}{.48\textwidth}
1486
\centering
1487
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_bent_cayley_graph_index_matrix.png}
1488
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1489
\label{fig:c8_9_bent_cayley_graph_index_matrix}
1490
\end{minipage}
1491
\begin{minipage}{.48\textwidth}
1492
\centering
1493
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_dual_cayley_graph_index_matrix.png}
1494
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes of dual bent functions}
1495
\label{fig:c8_9_dual_cayley_graph_index_matrix}
1496
\end{minipage}%
1497
\end{figure}
1498
4 of the 8 classes form 2 dual pairs of classes.
1499
\end{frame}
1500
\begin{frame}
1501
\frametitle{For ET class $[f_{8,10}]$: matrices}
1502
\begin{figure}
1503
\centering
1504
\begin{minipage}{.48\textwidth}
1505
\centering
1506
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_bent_cayley_graph_index_matrix.png}
1507
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1508
\label{fig:c8_10_bent_cayley_graph_index_matrix}
1509
\end{minipage}
1510
\begin{minipage}{.48\textwidth}
1511
\centering
1512
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_dual_cayley_graph_index_matrix.png}
1513
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes of dual bent functions}
1514
\label{fig:c8_10_dual_cayley_graph_index_matrix}
1515
\end{minipage}%
1516
\end{figure}
1517
6 of the 10 classes form 3 dual pairs of classes.
1518
\end{frame}
1519
1520
\end{colortheme}
1521
1522
\begin{colortheme}{seagull}
1523
1524
\begin{frame}[fragile]
1525
\frametitle{For 8 dimensions: Bent functions from CAST-128 S-boxes}
1526
1527
The CAST-128 encryption algorithm is used in PGP and elsewhere.
1528
1529
CAST-128, including the S-boxes, is specified by IETF RFC 2144:
1530
\begin{verbatim}
1531
https://www.ietf.org/rfc/rfc2144.txt
1532
\end{verbatim}
1533
1534
The algorithm uses 8 S-boxes,
1535
each of which consists of 32 binary bent functions of degree 4 in 8 dimensions,
1536
giving a total of 256 bent functions.
1537
1538
~
1539
1540
~
1541
1542
~
1543
1544
\slidecite{Adams 1997}
1545
\end{frame}
1546
1547
\end{colortheme}
1548
1549
\begin{colortheme}{jubata}
1550
1551
\begin{frame}
1552
\frametitle{CAST-128 ET class $[cast128_{1,0}]$}
1553
\begin{figure}
1554
\centering
1555
\begin{minipage}{.48\textwidth}
1556
\centering
1557
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_1_0_weight_class_matrix.png}
1558
\captionof{figure}{$[cast128_{1,0}]$: weight classes ~~~~~~ ~~~~~~~~\\~~~~~}
1559
\label{fig:cast128_1_0_weight_class_matrix}
1560
\end{minipage}
1561
\begin{minipage}{.48\textwidth}
1562
\centering
1563
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_1_0_bent_cayley_graph_index_matrix.png}
1564
\captionof{figure}{$[cast128_{1,0}]$: $65\,536$ extended Cayley classes.\\Total including duals is $131\,072$.}
1565
\label{fig:cast128_1_0_bent_cayley_graph_index_matrix}
1566
\end{minipage}%
1567
\end{figure}
1568
\slidecite{LHS colormap: gist\_stern; RHS colormap: jet}
1569
\end{frame}
1570
1571
\begin{frame}
1572
\frametitle{CAST-128 ET classes $[cast128_{2,1}]$ and $[cast128_{2,16}]$}
1573
\begin{figure}
1574
\centering
1575
\begin{minipage}{.48\textwidth}
1576
\centering
1577
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_1_bent_cayley_graph_index_matrix.png}
1578
\captionof{figure}{$[cast128_{2,1}]$: $8\,256$ extended Cayley classes.\\Total including duals is $8\,256$.}
1579
\label{fig:cast128_2_1_bent_cayley_graph_index_matrix}
1580
\end{minipage}%
1581
\begin{minipage}{.48\textwidth}
1582
\centering
1583
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_16_bent_cayley_graph_index_matrix.png}
1584
\captionof{figure}{$[cast128_{2,16}]$: $32\,768$ extended Cayley classes.\\Total including duals is $65\,536$.}
1585
\label{fig:cast128_2_16_bent_cayley_graph_index_matrix}
1586
\end{minipage}%
1587
\end{figure}
1588
\slidecite{colormap: jet}
1589
\end{frame}
1590
1591
\begin{frame}
1592
\frametitle{CAST-128 ET classes $[cast128_{4,27}]$ and $[cast128_{5,16}]$}
1593
\begin{figure}
1594
\centering
1595
\begin{minipage}{.48\textwidth}
1596
\centering
1597
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_4_27_bent_cayley_graph_index_matrix.png}
1598
\captionof{figure}{$[cast128_{4,27}]$: $65\,536$ extended Cayley classes.\\Total including duals is $65\,536$.}
1599
\label{fig:cast128_4_27_bent_cayley_graph_index_matrix}
1600
\end{minipage}%
1601
\begin{minipage}{.48\textwidth}
1602
\centering
1603
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_5_16_bent_cayley_graph_index_matrix.png}
1604
\captionof{figure}{$[cast128_{5,16}]$: $33\,280$ extended Cayley classes.\\Total including duals is $66\,560$.}
1605
\label{fig:cast128_5_16_bent_cayley_graph_index_matrix}
1606
\end{minipage}%
1607
\end{figure}
1608
\slidecite{colormap: jet}
1609
\end{frame}
1610
\begin{frame}
1611
\frametitle{CAST-128 ET classes $[cast128_{5,27}]$ and $[cast128_{6,17}]$}
1612
\begin{figure}
1613
\centering
1614
\begin{minipage}{.48\textwidth}
1615
\centering
1616
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_5_27_bent_cayley_graph_index_matrix.png}
1617
\captionof{figure}{$[cast128_{5,27}]$: $6\,144$ extended Cayley classes.\\Total including duals is $6\,144$.}
1618
\label{fig:cast128_5_27_bent_cayley_graph_index_matrix}
1619
\end{minipage}%
1620
\begin{minipage}{.48\textwidth}
1621
\centering
1622
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_6_17_bent_cayley_graph_index_matrix.png}
1623
\captionof{figure}{$[cast128_{6,17}]$: $65\,536$ extended Cayley classes.\\Total including duals is $65\,536$.}
1624
\label{fig:cast128_6_17_bent_cayley_graph_index_matrix}
1625
\end{minipage}%
1626
\end{figure}
1627
\slidecite{colormap: jet}
1628
\end{frame}
1629
1630
\begin{frame}
1631
\frametitle{CAST-128 ET classes $[cast128_{7,15}]$ and $[cast128_{7,21}]$}
1632
\begin{figure}
1633
\centering
1634
\begin{minipage}{.48\textwidth}
1635
\centering
1636
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_7_15_bent_cayley_graph_index_matrix.png}
1637
\captionof{figure}{$[cast128_{7,15}]$: $32\,768$ extended Cayley classes.\\Total including duals is $65\,536$.}
1638
\label{fig:cast128_7_15_bent_cayley_graph_index_matrix}
1639
\end{minipage}%
1640
\begin{minipage}{.48\textwidth}
1641
\centering
1642
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_7_21_bent_cayley_graph_index_matrix.png}
1643
\captionof{figure}{$[cast128_{7,21}]$: $32\,768$ extended Cayley classes.\\Total including duals is $65\,536$.}
1644
\label{fig:cast128_7_21_bent_cayley_graph_index_matrix}
1645
\end{minipage}%
1646
\end{figure}
1647
\slidecite{colormap: jet}
1648
\end{frame}
1649
\end{colortheme}
1650
1651
\begin{colortheme}{seagull}
1652
1653
\begin{frame}[fragile]
1654
\frametitle{For 8 dimensions: number of partial spread \\ bent functions and EA classes}
1655
1656
According to Langevin and Hou (2011)
1657
there are $70\,576\,747\,237\,594\,114\,392\,064 \approx 2^{75.9}$ \Emph{partial spread} bent functions in dimension 8,
1658
contained in $14\,758$ EA classes, of which $14\,756$ have degree 4.
1659
1660
~
1661
1662
The EA class representatives are listed at Langevin's web site
1663
1664
\begin{verbatim}
1665
http://langevin.univ-tln.fr/project/spread/psp.html
1666
\end{verbatim}
1667
1668
~
1669
1670
\slidecite{Langevin and Hou 2011}
1671
\end{frame}
1672
1673
\end{colortheme}
1674
1675
\begin{colortheme}{jubata}
1676
1677
\begin{frame}
1678
\frametitle{Example partial spread ET class $[psf_{9,5439}]$}
1679
\begin{figure}
1680
\centering
1681
\begin{minipage}{.48\textwidth}
1682
\centering
1683
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_bent_cayley_graph_index_matrix.png}
1684
\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1685
\label{fig:psf_9_5439_bent_cayley_graph_index_matrix}
1686
\end{minipage}
1687
\begin{minipage}{.48\textwidth}
1688
\centering
1689
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_dual_cayley_graph_index_matrix.png}
1690
\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes of dual bent functions}
1691
\label{fig:psf_9_5439_dual_cayley_graph_index_matrix}
1692
\end{minipage}%
1693
\end{figure}
1694
6 of the 16 classes form 3 dual pairs of classes.
1695
1696
\slidecite{colormap: gist\_stern}
1697
\end{frame}
1698
1699
\end{colortheme}
1700
1701
\begin{colortheme}{jubata}
1702
1703
\begin{frame}
1704
\frametitle{For 4 dimensions: $[\sigma_2]$ and $[\tau_2]$}
1705
\begin{figure}
1706
\centering
1707
\begin{minipage}{.48\textwidth}
1708
\centering
1709
\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_2_bent_cayley_graph_index_matrix.png}
1710
\captionof{figure}{$[\sigma_2]$: 2 extended Cayley classes}
1711
\label{fig:sigma_2_bent_cayley_graph_index_matrix}
1712
\end{minipage}%
1713
\begin{minipage}{.48\textwidth}
1714
\centering
1715
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_2_bent_cayley_graph_index_matrix.png}
1716
\captionof{figure}{$[\tau_2]$: 2 extended Cayley classes}
1717
\label{fig:tau_2_bent_cayley_graph_index_matrix}
1718
\end{minipage}
1719
\end{figure}
1720
\end{frame}
1721
1722
\begin{frame}
1723
\frametitle{For 6 dimensions: $[\sigma_3]$ and $[\tau_3]$}
1724
\begin{figure}
1725
\centering
1726
\begin{minipage}{.48\textwidth}
1727
\centering
1728
\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_3_bent_cayley_graph_index_matrix.png}
1729
\captionof{figure}{$[\sigma_3]$: 2 extended Cayley classes}
1730
\label{fig:sigma_3_bent_cayley_graph_index_matrix}
1731
\end{minipage}%
1732
\begin{minipage}{.48\textwidth}
1733
\centering
1734
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}
1735
\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}
1736
\label{fig:tau_3_bent_cayley_graph_index_matrix}
1737
\end{minipage}
1738
\end{figure}
1739
\end{frame}
1740
1741
\begin{frame}
1742
\frametitle{For 8 dimensions: $[\sigma_4]$ and $[\tau_4]$}
1743
\begin{figure}
1744
\centering
1745
\begin{minipage}{.48\textwidth}
1746
\centering
1747
\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_4_bent_cayley_graph_index_matrix.png}
1748
\captionof{figure}{$[\sigma_4]$: 2 extended Cayley classes}
1749
\label{fig:sigma_4_bent_cayley_graph_index_matrix}
1750
\end{minipage}%
1751
\begin{minipage}{.48\textwidth}
1752
\centering
1753
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}
1754
\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}
1755
\label{fig:tau_4_bent_cayley_graph_index_matrix}
1756
\end{minipage}
1757
\end{figure}
1758
\end{frame}
1759
\end{colortheme}
1760
1761
\subsection{Questions}
1762
1763
\begin{colortheme}{jubata}
1764
1765
\begin{frame}
1766
\frametitle{Open problems (1)}
1767
Settled only for dimensions up to 6:
1768
\begin{enumerate}
1769
\item
1770
How many EC classes are there for each dimension?
1771
Are there ``Exponential numbers'' of classes?
1772
\item
1773
In $n$ dimensions,
1774
which ET classes contain the maximum number, $4^n$, of different EC classes?
1775
\item
1776
Which EC classes overlap more than one ET class?
1777
\item
1778
Which bent functions are Cayley equivalent to their dual?
1779
\item
1780
Which bent functions are EA equivalent to their dual?
1781
\end{enumerate}
1782
1783
\slidecite{Kantor 1983; Jungnickel and Tonchev 1991; Langevin, Leander and McGuire 2008}
1784
\end{frame}
1785
1786
\begin{frame}
1787
\frametitle{Open problems (2)}
1788
Also:
1789
1790
~
1791
1792
\begin{enumerate}
1793
\item
1794
What are the remaining EA and EC classes of binary bent functions of dimension 8 and degree 4?
1795
1796
~
1797
1798
\item
1799
How do extended Cayley classes of bent functions generalize to bent functions over $\F_p$, $p \neq 2$?
1800
\end{enumerate}
1801
1802
\slidecite{Langevin and Leander 2011; Chee, Tan and Zhang 2011}
1803
\end{frame}
1804
1805
\end{colortheme}
1806
1807
\section{Databases of strongly regular graphs}
1808
1809
\subsection{Precedents}
1810
1811
\begin{colortheme}{seagull}
1812
\begin{frame}
1813
\frametitle{Precedents: databases of strongly regular graphs}
1814
\begin{itemize}
1815
\item
1816
Spence's lists of strongly regular graphs on at most 64 vertices.
1817
\begin{itemize}
1818
\item
1819
Exhaustive lists of non-isomorphic graphs for some tuples of feasible parameters.
1820
\item
1821
Flat text files.
1822
\end{itemize}
1823
1824
~
1825
1826
\item
1827
Brouwer's database of parameters of strongly regular graphs.
1828
1829
~
1830
1831
\item
1832
Cohen and Pasechnik's Sage implementation of Brouwer's database, with constructions.
1833
\begin{itemize}
1834
\item
1835
Includes an example for each tuple of feasible parameters, if known.
1836
\item
1837
Sage interface.
1838
\end{itemize}
1839
\end{itemize}
1840
\slidecite{Spence 1995-2006; Brouwer 2008-2017; Cohen and Pasechnik 2016-2017}
1841
\end{frame}
1842
1843
\begin{frame}
1844
\frametitle{Other recent mathematical databases}
1845
\begin{itemize}
1846
\item
1847
ISGCI - Information System on Graph Classes and their Inclusions
1848
\begin{itemize}
1849
\item
1850
``\ldots an encyclopaedia of graph classes with an accompanying Java application that helps you to research what's known about particular graph classes.''
1851
\item
1852
Web-based and Java interfaces.
1853
\end{itemize}
1854
1855
~
1856
1857
\item
1858
LMFDB - The L-functions and modular forms database
1859
\begin{itemize}
1860
\item
1861
``The LMFDB is an extensive database of mathematical objects arising in Number Theory.''
1862
\item
1863
Based on MongoDB and Python.
1864
\item
1865
Web-based and Sage interfaces.
1866
\end{itemize}
1867
\end{itemize}
1868
\slidecite{H.N. de Ridder et al. 2001-2016; The LMFDB Collaboration 2007-2017}
1869
\end{frame}
1870
1871
\end{colortheme}
1872
1873
\subsection{Preliminary designs}
1874
1875
\begin{colortheme}{jubata}
1876
1877
\begin{frame}
1878
\frametitle{Database tables}
1879
\begin{figure}
1880
\centering
1881
\begin{minipage}{\textwidth}
1882
\centering
1883
\includegraphics[width=.75\linewidth]{../graphics/Classification-schema-SQLite.png}
1884
\captionof{figure}{Database schema for SQLite version of the classification database.}
1885
\label{fig:Classification_schema_SQLite}
1886
\end{minipage}%
1887
\end{figure}
1888
\end{frame}
1889
1890
\begin{frame}[fragile]
1891
\frametitle{Sage interface: insert function}
1892
1893
\begin{verbatim}
1894
insert_classification(conn, bfcgc, name=None):
1895
\end{verbatim}
1896
1897
\begin{itemize}
1898
\item \texttt{conn}: Database connection.
1899
1900
~
1901
1902
\item \texttt{bfcgc}: Cayley graph classification of the ET class of \\a bent function.
1903
1904
~
1905
1906
\item \texttt{name}: Name of the ET class (optional).
1907
\end{itemize}
1908
1909
\end{frame}
1910
1911
\begin{frame}[fragile]
1912
\frametitle{Sage interface: select functions}
1913
1914
\begin{verbatim}
1915
select_classification_where_bent_function(
1916
conn, bentf):
1917
\end{verbatim}
1918
\begin{itemize}
1919
\item \texttt{conn}: Database connection.
1920
\item \texttt{bentf}: Bent function representing an ET class.
1921
\end{itemize}
1922
1923
~
1924
1925
\begin{verbatim}
1926
select_classification_where_name(conn, name):
1927
\end{verbatim}
1928
\begin{itemize}
1929
\item \texttt{conn}: Database connection.
1930
\item \texttt{name}: Name of the ET class.
1931
\end{itemize}
1932
1933
\end{frame}
1934
1935
\end{colortheme}
1936
1937
\subsection{Prototype databases}
1938
1939
\begin{colortheme}{jubata}
1940
1941
\begin{frame}
1942
\frametitle{Prototype databases}
1943
Three prototype relational databases, using SQLite:
1944
1945
\begin{itemize}
1946
\item\normalsize{}
1947
Bent functions in 6 dimensions.
1948
\begin{itemize}
1949
\item\footnotesize{}
1950
Database of 11 strongly regular graphs from 4 ET classes.
1951
\item\footnotesize{}
1952
About 20 CPU minutes to calculate (2.93 GHz Intel Core i7, serial).
1953
\item\footnotesize{}
1954
Database size 780 KB.
1955
\end{itemize}
1956
1957
\item\normalsize{}
1958
Bent functions in 8 dimensions, up to degree 3.
1959
\begin{itemize}
1960
\item\footnotesize{}
1961
Database of 55 strongly regular graphs from 9 ET classes.
1962
\item\footnotesize{}
1963
About 250 CPU hours to calculate (2.93 GHz Intel Core i7, serial).
1964
\item\footnotesize{}
1965
Database size 65 MB.
1966
\end{itemize}
1967
1968
\item\normalsize{}
1969
Bent functions from the 8 S-boxes of CAST-128.
1970
\begin{itemize}
1971
\item\footnotesize{}
1972
Database of more than \Emph{32 million} ($32\,914\,496$) strongly regular graphs from 256 ET classes and their duals.
1973
\item\footnotesize{}
1974
About \Emph{9000 CPU hours} to calculate
1975
(4500 CPU hours on\\NCI Raijin, MPI, 16 ranks, for 128 ET classes and their duals).
1976
\item\footnotesize{}
1977
Database size \Emph{195 GB}.
1978
\end{itemize}
1979
\end{itemize}
1980
1981
\normalsize{}
1982
\end{frame}
1983
1984
\begin{frame}
1985
\frametitle{Time to create SQLite CAST-128 database}
1986
\begin{figure}
1987
\centering
1988
\begin{minipage}{.49\textwidth}
1989
\centering
1990
\includegraphics[width=1.0\linewidth]{../graphics/CAST128-database-insert-times-by-existing.png}
1991
\label{fig:CAST128_database_insert_times_by_existing}
1992
\end{minipage}
1993
\begin{minipage}{.49\textwidth}
1994
\centering
1995
\includegraphics[width=1.0\linewidth]{../graphics/CAST128-database-insert-times-by-time-of-day.png}
1996
\label{fig:CAST128_database_insert_times-By_time_of_day}
1997
\end{minipage}%
1998
\end{figure}
1999
It took almost 3 days to insert 256 classifications \Emph{sequentially} into the SQLite version of the CAST-128 database.
2000
\end{frame}
2001
2002
\begin{frame}
2003
\frametitle{Using DB Browser with a prototype database}
2004
\begin{figure}
2005
\centering
2006
\begin{minipage}{\textwidth}
2007
\centering
2008
\includegraphics[width=1.00\linewidth]{../graphics/Browser-session-SQLite.png}
2009
% \captionof{figure}{DB Browser session with a prototype classification database.}
2010
\label{fig:Browser_session_SQLite}
2011
\end{minipage}%
2012
\end{figure}
2013
\end{frame}
2014
2015
\end{colortheme}
2016
2017
\subsection{Prospects}
2018
2019
\begin{colortheme}{jubata}
2020
2021
\begin{frame}[fragile]
2022
\frametitle{Possible next steps}
2023
2024
\begin{itemize}
2025
\item
2026
Submit ``Classifying bent functions by their Cayley graphs.''
2027
2028
~
2029
2030
\item
2031
Submit code to Sage project for review.
2032
2033
~
2034
2035
\item
2036
Gauge demand for the database. Find collaborators.
2037
2038
~
2039
2040
\item
2041
Arrange for hosting. Research Data Services?
2042
2043
~
2044
2045
\item
2046
Scale up to the partial spread bent functions?
2047
2048
\begin{itemize}
2049
\item
2050
This could be a database of about \Emph{2 billion SRGs},
2051
\\
2052
from 14\,758 ET classes, taking about \Emph{500\,000 CPU hours}
2053
\\
2054
to calculate and about \Emph{10 TB} to store.
2055
\end{itemize}
2056
\end{itemize}
2057
\end{frame}
2058
2059
\end{colortheme}
2060
2061
\subsection{Source code}
2062
2063
\begin{colortheme}{jubata}
2064
2065
\begin{frame}[fragile]
2066
\frametitle{Source code and documentation}
2067
~
2068
2069
CoCalc: Public worksheets, Sage and Python source code
2070
2071
\begin{verbatim}
2072
http://tinyurl.com/Boolean-Cayley-graphs
2073
\end{verbatim}
2074
2075
~
2076
2077
GitHub: Sage and Python source code
2078
2079
\begin{verbatim}
2080
https://github.com/penguian/Boolean-Cayley-graphs
2081
\end{verbatim}
2082
2083
~
2084
2085
SourceForge: Documentation
2086
2087
\begin{verbatim}
2088
https://boolean-cayley-graphs.sourceforge.io/
2089
\end{verbatim}
2090
\end{frame}
2091
2092
\end{colortheme}
2093
2094
\end{document}
2095
2096