Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GEP475GROUPINEEDANAP

2890 views
Kernel: Python 3 (Anaconda)

Wednesday Jan 18th 2017

import pandas as pd
netatmo = pd.read_csv('Jan18th2017.csv', parse_dates=True, index_col=1)
netatmo.columns
Index(['Timestamp', 'Temperature', 'Humidity', 'CO2', 'Noise', 'Pressure'], dtype='object')
%matplotlib inline netatmo['CO2'].plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7f0db640d2b0>
Image in a Jupyter notebook
time2 = '2017-01-18 18:09:00' time1 = '2017-01-18 18:24:00'

Wednesday Jan 25th 2017

netatmo2 = pd.read_csv('Jan25th2017.csv', parse_dates=True, index_col=1)
netatmo2.columns
Index(['Timestamp', 'Temperature', 'Humidity', 'CO2', 'Noise', 'Pressure'], dtype='object')
%matplotlib inline netatmo2['CO2'].plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7f0db6487908>
Image in a Jupyter notebook

Wednesday Feb. 8th 2017

netatmo3 = pd.read_csv('Feb8th2017.csv', parse_dates=True, index_col=1)
netatmo2.columns
Index(['Timestamp', 'Temperature', 'Humidity', 'CO2', 'Noise', 'Pressure'], dtype='object')
%matplotlib inline netatmo3['CO2'].plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7f0db42dc9e8>
Image in a Jupyter notebook
%matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd data = pd.read_csv('NetAtmo2017.csv', index_col=1, parse_dates=True) data[:]
time2 = '2017-01-25 18:09:00' time1 = '2017-01-25 19:09:00' data[time1:time2]