Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

31523 views
License: APACHE
oleanfile3.4.2, commit cbd2b6686ddb���~~initalgebragroupto_additive��export_decloptionnonenonesomesomeexport_declboolffffttttexport_declhas_andthenandthenandthenexport_declhas_powpowpowexport_declhas_appendappendappendexport_decldecidableis_trueis_trueis_falseis_falseto_boolto_boolexport_declhas_purepurepureexport_declhas_bindbindbindexport_declhas_monad_lift_tmonad_lift!monad_liftexport_declmonad_functor_tmonad_map$monad_mapexport_declmonad_runrun'runexport_decllistmmap*mmapmmap'*mmap'mfilter*mfiltermfoldl*mfoldlexport_declnativenat_map3rb_mapmkexport_declname_mapnativerb_mapmkexport_declexpr_mapnativerb_mapmkexport_decltacticinteraction_monadfailedfailexport_decltactic_resultinteraction_monadresultexport_decltacticFtransparencyreducibleGreduciblesemireducibleGsemireducibleexport_decltacticmk_simp_attrLmk_simp_attrexport_declmonad_exceptthrowOthrowcatchOcatchexport_declmonad_except_adapteradapt_exceptTadapt_exceptexport_declmonad_state_adapteradapt_stateWadapt_stateexport_declmonad_readerreadZreadexport_declmonad_reader_adapteradapt_reader]adapt_readerexport_declis_lawful_functormap_const_eq`map_const_eqid_map`id_mapcomp_map`comp_mapexport_declis_lawful_applicativeseq_left_eqgseq_left_eqseq_right_eqgseq_right_eqpure_seq_eq_mapgpure_seq_eq_mapmap_puregmap_pureseq_puregseq_pureseq_assocgseq_assocexport_declis_lawful_monadbind_pure_comp_eq_maptbind_pure_comp_eq_mapbind_map_eq_seqtbind_map_eq_seqpure_bindtpure_bindbind_assoctbind_assocexport_decltraversabletraverse}traversedeclfree_monoidu_1�list�PInfo�VMR�VMC��decl�equations_eqn_1��eq���eqrefl	�PInfo�ATTR_refl_lemma���EqnL�SEqnL�ATTRto_additive���to_additivevalue_typemknamemk_string
Strfree_add_monoidnameanonymousoptionnonestringATTRto_additive_aux���declfree_add_monoid��PInfo�VMR�VMC��decl�equations_eqn_1�����PInfo�declfree_monoidmonoid_proof_1u_1αa	bceq�has_appendappend)listhas_append(/%#0/#��	�$�&listappend_assoc(%#�PInfo�	decl�_proof_2��a	'$x$y&listappend(#listnil#P��	eqrefl$P�PInfo�	decl�_proof_3��a	'#+Z-#N��	listappend_nil#�PInfo�	decl���monoid	�monoidmk	�	�$+%-%#��M�����PInfo�	prt�nspace�VMR�VMC�	��append_maindecl�equations_eqn_1��'k����Uk��PInfo�	ATTR����EqnL�SEqnL�ATTRinstance���class����ATTR����ATTR����
Strmonoiddeclfree_add_monoidmonoid_proof_2���'#���%JN���U���PInfo�	decl�_proof_1�������8������A�PInfo�	decl�_proof_3���b��g�PInfo�	decl���add_monoid��mk���t�_proof_1
{�_proof_2�_proof_3�PInfo�	VMR�VMC�	��ATTR����class����decl�equations_eqn_1��'��
��U���PInfo�	declfree_monoidinhabitedu_1αinhabited�	�inhabitedmk	has_oneone	�to_has_one	��PInfo�	prt�VMR�VMC�	�decl�equations_eqn_1������������PInfo�	ATTR����EqnL�SEqnL�ATTR����class����ATTR�����ATTR����
Strinhabiteddeclfree_add_monoidinhabited�����has_zerozeroadd_monoidto_has_zero��PInfo�	VMR�VMC�	�ATTR����classinhabited���decl�equations_eqn_1�����������PInfo�	declfree_monoidone_defu_1α'	�{�rfl�	��PInfo�ATTR����ATTRsimp���ATTR����
Strzero_defATTR�����declfree_add_monoidzero_def��'�{����PInfo�ATTR����declfree_monoidmul_defu_1αxsysZ'&has_mulmul�&semigroupto_has_mul&�to_semigroup&�%#t���Z�&��PInfo�ATTR����ATTR����ATTR����
Stradd_defATTR�����%declfree_add_monoidadd_def����Z'�has_addadd�add_semigroupto_has_add�add_monoidto_add_semigroup��%#t���Z���4�PInfo�ATTR����EndFile