Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot, Kevin Buzzard, Scott Morrison, Johan Commelin, Chris Hughes, Johannes Hölzl, Yury Kudryashov Homomorphisms of multiplicative and additive (semi)groups and monoids. -/ import algebra.group.to_additive algebra.group.basic /-! # monoid and group homomorphisms This file defines the basic structures for monoid and group homomorphisms, both unbundled (e.g. `is_monoid_hom f`) and bundled (e.g. `monoid_hom M N`, a.k.a. `M →* N`). The unbundled ones are deprecated and the plan is to slowly remove them from mathlib. ## main definitions monoid_hom, is_monoid_hom (deprecated), is_group_hom (deprecated) ## Notations →* for bundled monoid homs (also use for group homs) →+ for bundled add_monoid homs (also use for add_group homs) ## implementation notes There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. There is no `group_hom` -- the idea is that `monoid_hom` is used. The constructor for `monoid_hom` needs a proof of `map_one` as well as `map_mul`; a separate constructor `monoid_hom.mk'` will construct group homs (i.e. monoid homs between groups) given only a proof that multiplication is preserved, Throughout the `monoid_hom` section implicit `{}` brackets are often used instead of type class `[]` brackets. This is done when the instances can be inferred because they are implicit arguments to the type `monoid_hom`. When they can be inferred from the type it is faster to use this method than to use type class inference. ## Tags is_group_hom, is_monoid_hom, monoid_hom -/ library_note "low priority instance on morphisms" "We have instances stating that the composition or the product of two morphisms is again a morphism. Type class inference will 'succeed' in applying these instances when they shouldn't apply (for example when the goal is just `⊢ is_mul_hom f` the instances `is_mul_hom.comp` or `is_mul_hom.mul` might still succeed). This can cause type class inference to loop. To avoid this, we make the priority of these instances very low. We should think about not making these declarations instances in the first place." universes u v variables {α : Type u} {β : Type v} /-- Predicate for maps which preserve an addition. -/ class is_add_hom {α β : Type*} [has_add α] [has_add β] (f : α → β) : Prop := (map_add : ∀ x y, f (x + y) = f x + f y) /-- Predicate for maps which preserve a multiplication. -/ @[to_additive] class is_mul_hom {α β : Type*} [has_mul α] [has_mul β] (f : α → β) : Prop := (map_mul : ∀ x y, f (x * y) = f x * f y) namespace is_mul_hom variables [has_mul α] [has_mul β] {γ : Type*} [has_mul γ] /-- The identity map preserves multiplication. -/ @[to_additive "The identity map preserves addition"] instance id : is_mul_hom (id : α → α) := {map_mul := λ _ _, rfl} /-- The composition of maps which preserve multiplication, also preserves multiplication. -/ -- see Note [low priority instance on morphisms] @[priority 10, to_additive "The composition of addition preserving maps also preserves addition"] instance comp (f : α → β) (g : β → γ) [is_mul_hom f] [hg : is_mul_hom g] : is_mul_hom (g ∘ f) := { map_mul := λ x y, by simp only [function.comp, map_mul f, map_mul g] } /-- A product of maps which preserve multiplication, preserves multiplication when the target is commutative. -/ -- see Note [low priority instance on morphisms] @[instance, priority 10, to_additive] lemma mul {α β} [semigroup α] [comm_semigroup β] (f g : α → β) [is_mul_hom f] [is_mul_hom g] : is_mul_hom (λa, f a * g a) := { map_mul := assume a b, by simp only [map_mul f, map_mul g, mul_comm, mul_assoc, mul_left_comm] } /-- The inverse of a map which preserves multiplication, preserves multiplication when the target is commutative. -/ @[instance, to_additive] lemma inv {α β} [has_mul α] [comm_group β] (f : α → β) [is_mul_hom f] : is_mul_hom (λa, (f a)⁻¹) := { map_mul := assume a b, (map_mul f a b).symm ▸ mul_inv _ _ } end is_mul_hom section prio set_option default_priority 100 -- see Note [default priority] /-- Predicate for add_monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/ class is_add_monoid_hom [add_monoid α] [add_monoid β] (f : α → β) extends is_add_hom f : Prop := (map_zero : f 0 = 0) /-- Predicate for monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/ @[to_additive is_add_monoid_hom] class is_monoid_hom [monoid α] [monoid β] (f : α → β) extends is_mul_hom f : Prop := (map_one : f 1 = 1) end prio namespace is_monoid_hom variables [monoid α] [monoid β] (f : α → β) [is_monoid_hom f] /-- A monoid homomorphism preserves multiplication. -/ @[to_additive] lemma map_mul (x y) : f (x * y) = f x * f y := is_mul_hom.map_mul f x y end is_monoid_hom /-- A map to a group preserving multiplication is a monoid homomorphism. -/ @[to_additive] theorem is_monoid_hom.of_mul [monoid α] [group β] (f : α → β) [is_mul_hom f] : is_monoid_hom f := { map_one := mul_self_iff_eq_one.1 $ by rw [← is_mul_hom.map_mul f, one_mul] } namespace is_monoid_hom variables [monoid α] [monoid β] (f : α → β) [is_monoid_hom f] /-- The identity map is a monoid homomorphism. -/ @[to_additive] instance id : is_monoid_hom (@id α) := { map_one := rfl } /-- The composite of two monoid homomorphisms is a monoid homomorphism. -/ @[priority 10, to_additive] -- see Note [low priority instance on morphisms] instance comp {γ} [monoid γ] (g : β → γ) [is_monoid_hom g] : is_monoid_hom (g ∘ f) := { map_one := show g _ = 1, by rw [map_one f, map_one g] } end is_monoid_hom namespace is_add_monoid_hom /-- Left multiplication in a ring is an additive monoid morphism. -/ instance is_add_monoid_hom_mul_left {γ : Type*} [semiring γ] (x : γ) : is_add_monoid_hom (λ y : γ, x * y) := { map_zero := mul_zero x, map_add := λ y z, mul_add x y z } /-- Right multiplication in a ring is an additive monoid morphism. -/ instance is_add_monoid_hom_mul_right {γ : Type*} [semiring γ] (x : γ) : is_add_monoid_hom (λ y : γ, y * x) := { map_zero := zero_mul x, map_add := λ y z, add_mul y z x } end is_add_monoid_hom section prio set_option default_priority 100 -- see Note [default priority] /-- Predicate for additive group homomorphism (deprecated -- use bundled `monoid_hom`). -/ class is_add_group_hom [add_group α] [add_group β] (f : α → β) extends is_add_hom f : Prop /-- Predicate for group homomorphisms (deprecated -- use bundled `monoid_hom`). -/ @[to_additive is_add_group_hom] class is_group_hom [group α] [group β] (f : α → β) extends is_mul_hom f : Prop end prio /-- Construct `is_group_hom` from its only hypothesis. The default constructor tries to get `is_mul_hom` from class instances, and this makes some proofs fail. -/ @[to_additive] lemma is_group_hom.mk' [group α] [group β] {f : α → β} (hf : ∀ x y, f (x * y) = f x * f y) : is_group_hom f := { map_mul := hf } namespace is_group_hom variables [group α] [group β] (f : α → β) [is_group_hom f] open is_mul_hom (map_mul) /-- A group homomorphism is a monoid homomorphism. -/ @[priority 100, to_additive to_is_add_monoid_hom] -- see Note [lower instance priority] instance to_is_monoid_hom : is_monoid_hom f := is_monoid_hom.of_mul f /-- A group homomorphism sends 1 to 1. -/ @[to_additive] lemma map_one : f 1 = 1 := is_monoid_hom.map_one f /-- A group homomorphism sends inverses to inverses. -/ @[to_additive] theorem map_inv (a : α) : f a⁻¹ = (f a)⁻¹ := eq_inv_of_mul_eq_one $ by rw [← map_mul f, inv_mul_self, map_one f] /-- The identity is a group homomorphism. -/ @[to_additive] instance id : is_group_hom (@id α) := { } /-- The composition of two group homomomorphisms is a group homomorphism. -/ @[priority 10, to_additive] -- see Note [low priority instance on morphisms] instance comp {γ} [group γ] (g : β → γ) [is_group_hom g] : is_group_hom (g ∘ f) := { } /-- A group homomorphism is injective iff its kernel is trivial. -/ @[to_additive] lemma injective_iff (f : α → β) [is_group_hom f] : function.injective f ↔ (∀ a, f a = 1 → a = 1) := ⟨λ h _, by rw ← is_group_hom.map_one f; exact @h _ _, λ h x y hxy, by rw [← inv_inv (f x), inv_eq_iff_mul_eq_one, ← map_inv f, ← map_mul f] at hxy; simpa using inv_eq_of_mul_eq_one (h _ hxy)⟩ /-- The product of group homomorphisms is a group homomorphism if the target is commutative. -/ @[instance, priority 10, to_additive] -- see Note [low priority instance on morphisms] lemma mul {α β} [group α] [comm_group β] (f g : α → β) [is_group_hom f] [is_group_hom g] : is_group_hom (λa, f a * g a) := { } /-- The inverse of a group homomorphism is a group homomorphism if the target is commutative. -/ @[instance, to_additive] lemma inv {α β} [group α] [comm_group β] (f : α → β) [is_group_hom f] : is_group_hom (λa, (f a)⁻¹) := { } end is_group_hom /-- Inversion is a group homomorphism if the group is commutative. -/ @[instance, to_additive is_add_group_hom] lemma inv.is_group_hom [comm_group α] : is_group_hom (has_inv.inv : α → α) := { map_mul := mul_inv } namespace is_add_group_hom variables [add_group α] [add_group β] (f : α → β) [is_add_group_hom f] /-- Additive group homomorphisms commute with subtraction. -/ lemma map_sub (a b) : f (a - b) = f a - f b := calc f (a + -b) = f a + f (-b) : is_add_hom.map_add f _ _ ... = f a + -f b : by rw [map_neg f] end is_add_group_hom /-- The difference of two additive group homomorphisms is an additive group homomorphism if the target is commutative. -/ @[instance] lemma is_add_group_hom.sub {α β} [add_group α] [add_comm_group β] (f g : α → β) [is_add_group_hom f] [is_add_group_hom g] : is_add_group_hom (λa, f a - g a) := is_add_group_hom.add f (λa, - g a) /-- Bundled add_monoid homomorphisms; use this for bundled add_group homomorphisms too. -/ structure add_monoid_hom (M : Type*) (N : Type*) [add_monoid M] [add_monoid N] := (to_fun : M → N) (map_zero' : to_fun 0 = 0) (map_add' : ∀ x y, to_fun (x + y) = to_fun x + to_fun y) infixr ` →+ `:25 := add_monoid_hom /-- Bundled monoid homomorphisms; use this for bundled group homomorphisms too. -/ @[to_additive add_monoid_hom] structure monoid_hom (M : Type*) (N : Type*) [monoid M] [monoid N] := (to_fun : M → N) (map_one' : to_fun 1 = 1) (map_mul' : ∀ x y, to_fun (x * y) = to_fun x * to_fun y) infixr ` →* `:25 := monoid_hom @[to_additive] instance {M : Type*} {N : Type*} {mM : monoid M} {mN : monoid N} : has_coe_to_fun (M →* N) := ⟨_, monoid_hom.to_fun⟩ namespace monoid_hom variables {M : Type*} {N : Type*} {P : Type*} [mM : monoid M] [mN : monoid N] {mP : monoid P} variables {G : Type*} {H : Type*} [group G] [comm_group H] include mM mN /-- Interpret a map `f : M → N` as a homomorphism `M →* N`. -/ @[to_additive "Interpret a map `f : M → N` as a homomorphism `M →+ N`."] def of (f : M → N) [h : is_monoid_hom f] : M →* N := { to_fun := f, map_one' := h.2, map_mul' := h.1.1 } variables {mM mN mP} @[simp, to_additive] lemma coe_of (f : M → N) [is_monoid_hom f] : ⇑ (monoid_hom.of f) = f := rfl @[to_additive] lemma coe_inj ⦃f g : M →* N⦄ (h : (f : M → N) = g) : f = g := by cases f; cases g; cases h; refl @[ext, to_additive] lemma ext ⦃f g : M →* N⦄ (h : ∀ x, f x = g x) : f = g := coe_inj (funext h) @[to_additive] lemma ext_iff {f g : M →* N} : f = g ↔ ∀ x, f x = g x := ⟨λ h x, h ▸ rfl, λ h, ext h⟩ /-- If f is a monoid homomorphism then f 1 = 1. -/ @[simp, to_additive] lemma map_one (f : M →* N) : f 1 = 1 := f.map_one' /-- If f is a monoid homomorphism then f (a * b) = f a * f b. -/ @[simp, to_additive] lemma map_mul (f : M →* N) (a b : M) : f (a * b) = f a * f b := f.map_mul' a b @[to_additive is_add_monoid_hom] instance (f : M →* N) : is_monoid_hom (f : M → N) := { map_mul := f.map_mul, map_one := f.map_one } omit mN mM @[to_additive is_add_group_hom] instance (f : G →* H) : is_group_hom (f : G → H) := { map_mul := f.map_mul } /-- The identity map from a monoid to itself. -/ @[to_additive] def id (M : Type*) [monoid M] : M →* M := { to_fun := id, map_one' := rfl, map_mul' := λ _ _, rfl } include mM mN mP /-- Composition of monoid morphisms is a monoid morphism. -/ @[to_additive] def comp (hnp : N →* P) (hmn : M →* N) : M →* P := { to_fun := hnp ∘ hmn, map_one' := by simp, map_mul' := by simp } @[simp, to_additive] lemma comp_apply (g : N →* P) (f : M →* N) (x : M) : g.comp f x = g (f x) := rfl /-- Composition of monoid homomorphisms is associative. -/ @[to_additive] lemma comp_assoc {Q : Type*} [monoid Q] (f : M →* N) (g : N →* P) (h : P →* Q) : (h.comp g).comp f = h.comp (g.comp f) := rfl omit mP variables [mM] [mN] @[to_additive] protected def one : M →* N := { to_fun := λ _, 1, map_one' := rfl, map_mul' := λ _ _, (one_mul 1).symm } @[to_additive] instance : has_one (M →* N) := ⟨monoid_hom.one⟩ @[to_additive] instance : inhabited (M →* N) := ⟨1⟩ omit mM mN /-- The product of two monoid morphisms is a monoid morphism if the target is commutative. -/ @[to_additive] protected def mul {M N} {mM : monoid M} [comm_monoid N] (f g : M →* N) : M →* N := { to_fun := λ m, f m * g m, map_one' := show f 1 * g 1 = 1, by simp, map_mul' := begin intros, show f (x * y) * g (x * y) = f x * g x * (f y * g y), rw [f.map_mul, g.map_mul, ←mul_assoc, ←mul_assoc, mul_right_comm (f x)], end } @[to_additive] instance {M N} {mM : monoid M} [comm_monoid N] : has_mul (M →* N) := ⟨monoid_hom.mul⟩ /-- (M →* N) is a comm_monoid if N is commutative. -/ @[to_additive add_comm_monoid] instance {M N} [monoid M] [comm_monoid N] : comm_monoid (M →* N) := { mul := (*), mul_assoc := by intros; ext; apply mul_assoc, one := 1, one_mul := by intros; ext; apply one_mul, mul_one := by intros; ext; apply mul_one, mul_comm := by intros; ext; apply mul_comm } /-- Group homomorphisms preserve inverse. -/ @[simp, to_additive] theorem map_inv {G H} [group G] [group H] (f : G →* H) (g : G) : f g⁻¹ = (f g)⁻¹ := eq_inv_of_mul_eq_one $ by rw [←f.map_mul, inv_mul_self, f.map_one] /-- Group homomorphisms preserve division. -/ @[simp, to_additive] theorem map_mul_inv {G H} [group G] [group H] (f : G →* H) (g h : G) : f (g * h⁻¹) = (f g) * (f h)⁻¹ := by rw [f.map_mul, f.map_inv] /-- A group homomorphism is injective iff its kernel is trivial. -/ @[to_additive] lemma injective_iff {G H} [group G] [group H] (f : G →* H) : function.injective f ↔ (∀ a, f a = 1 → a = 1) := ⟨λ h _, by rw ← f.map_one; exact @h _ _, λ h x y hxy, by rw [← inv_inv (f x), inv_eq_iff_mul_eq_one, ← f.map_inv, ← f.map_mul] at hxy; simpa using inv_eq_of_mul_eq_one (h _ hxy)⟩ include mM /-- Makes a group homomomorphism from a proof that the map preserves multiplication. -/ @[to_additive] def mk' (f : M → G) (map_mul : ∀ a b : M, f (a * b) = f a * f b) : M →* G := { to_fun := f, map_mul' := map_mul, map_one' := mul_self_iff_eq_one.1 $ by rw [←map_mul, mul_one] } omit mM /-- The inverse of a monoid homomorphism is a monoid homomorphism if the target is a commutative group.-/ @[to_additive] protected def inv {M G} {mM : monoid M} [comm_group G] (f : M →* G) : M →* G := mk' (λ g, (f g)⁻¹) $ λ a b, by rw [←mul_inv, f.map_mul] @[to_additive] instance {M G} [monoid M] [comm_group G] : has_inv (M →* G) := ⟨monoid_hom.inv⟩ /-- (M →* G) is a comm_group if G is a comm_group -/ @[to_additive add_comm_group] instance {M G} [monoid M] [comm_group G] : comm_group (M →* G) := { inv := has_inv.inv, mul_left_inv := by intros; ext; apply mul_left_inv, ..monoid_hom.comm_monoid } end monoid_hom /-- Additive group homomorphisms preserve subtraction. -/ @[simp] theorem add_monoid_hom.map_sub {G H} [add_group G] [add_group H] (f : G →+ H) (g h : G) : f (g - h) = (f g) - (f h) := f.map_add_neg g h