Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
Opposites.
-/
import data.opposite
namespace opposite
universes u
variables (α : Type u)
instance [has_add α] : has_add (opposite α) :=
{ add := λ x y, op (unop x + unop y) }
instance [add_semigroup α] : add_semigroup (opposite α) :=
{ add_assoc := λ x y z, unop_inj $ add_assoc (unop x) (unop y) (unop z),
.. opposite.has_add α }
instance [add_left_cancel_semigroup α] : add_left_cancel_semigroup (opposite α) :=
{ add_left_cancel := λ x y z H, unop_inj $ add_left_cancel $ op_inj H,
.. opposite.add_semigroup α }
instance [add_right_cancel_semigroup α] : add_right_cancel_semigroup (opposite α) :=
{ add_right_cancel := λ x y z H, unop_inj $ add_right_cancel $ op_inj H,
.. opposite.add_semigroup α }
instance [add_comm_semigroup α] : add_comm_semigroup (opposite α) :=
{ add_comm := λ x y, unop_inj $ add_comm (unop x) (unop y),
.. opposite.add_semigroup α }
instance [has_zero α] : has_zero (opposite α) :=
{ zero := op 0 }
instance [add_monoid α] : add_monoid (opposite α) :=
{ zero_add := λ x, unop_inj $ zero_add $ unop x,
add_zero := λ x, unop_inj $ add_zero $ unop x,
.. opposite.add_semigroup α, .. opposite.has_zero α }
instance [add_comm_monoid α] : add_comm_monoid (opposite α) :=
{ .. opposite.add_monoid α, .. opposite.add_comm_semigroup α }
instance [has_neg α] : has_neg (opposite α) :=
{ neg := λ x, op $ -(unop x) }
instance [add_group α] : add_group (opposite α) :=
{ add_left_neg := λ x, unop_inj $ add_left_neg $ unop x,
.. opposite.add_monoid α, .. opposite.has_neg α }
instance [add_comm_group α] : add_comm_group (opposite α) :=
{ .. opposite.add_group α, .. opposite.add_comm_monoid α }
instance [has_mul α] : has_mul (opposite α) :=
{ mul := λ x y, op (unop y * unop x) }
instance [semigroup α] : semigroup (opposite α) :=
{ mul_assoc := λ x y z, unop_inj $ eq.symm $ mul_assoc (unop z) (unop y) (unop x),
.. opposite.has_mul α }
instance [right_cancel_semigroup α] : left_cancel_semigroup (opposite α) :=
{ mul_left_cancel := λ x y z H, unop_inj $ mul_right_cancel $ op_inj H,
.. opposite.semigroup α }
instance [left_cancel_semigroup α] : right_cancel_semigroup (opposite α) :=
{ mul_right_cancel := λ x y z H, unop_inj $ mul_left_cancel $ op_inj H,
.. opposite.semigroup α }
instance [comm_semigroup α] : comm_semigroup (opposite α) :=
{ mul_comm := λ x y, unop_inj $ mul_comm (unop y) (unop x),
.. opposite.semigroup α }
instance [has_one α] : has_one (opposite α) :=
{ one := op 1 }
instance [monoid α] : monoid (opposite α) :=
{ one_mul := λ x, unop_inj $ mul_one $ unop x,
mul_one := λ x, unop_inj $ one_mul $ unop x,
.. opposite.semigroup α, .. opposite.has_one α }
instance [comm_monoid α] : comm_monoid (opposite α) :=
{ .. opposite.monoid α, .. opposite.comm_semigroup α }
instance [has_inv α] : has_inv (opposite α) :=
{ inv := λ x, op $ (unop x)⁻¹ }
instance [group α] : group (opposite α) :=
{ mul_left_inv := λ x, unop_inj $ mul_inv_self $ unop x,
.. opposite.monoid α, .. opposite.has_inv α }
instance [comm_group α] : comm_group (opposite α) :=
{ .. opposite.group α, .. opposite.comm_monoid α }
instance [distrib α] : distrib (opposite α) :=
{ left_distrib := λ x y z, unop_inj $ add_mul (unop y) (unop z) (unop x),
right_distrib := λ x y z, unop_inj $ mul_add (unop z) (unop x) (unop y),
.. opposite.has_add α, .. opposite.has_mul α }
instance [semiring α] : semiring (opposite α) :=
{ zero_mul := λ x, unop_inj $ mul_zero $ unop x,
mul_zero := λ x, unop_inj $ zero_mul $ unop x,
.. opposite.add_comm_monoid α, .. opposite.monoid α, .. opposite.distrib α }
instance [ring α] : ring (opposite α) :=
{ .. opposite.add_comm_group α, .. opposite.monoid α, .. opposite.semiring α }
instance [comm_ring α] : comm_ring (opposite α) :=
{ .. opposite.ring α, .. opposite.comm_semigroup α }
instance [zero_ne_one_class α] : zero_ne_one_class (opposite α) :=
{ zero_ne_one := λ h, zero_ne_one $ op_inj h,
.. opposite.has_zero α, .. opposite.has_one α }
instance [integral_domain α] : integral_domain (opposite α) :=
{ eq_zero_or_eq_zero_of_mul_eq_zero := λ x y (H : op _ = op (0:α)),
or.cases_on (eq_zero_or_eq_zero_of_mul_eq_zero $ op_inj H)
(λ hy, or.inr $ unop_inj $ hy) (λ hx, or.inl $ unop_inj $ hx),
.. opposite.comm_ring α, .. opposite.zero_ne_one_class α }
instance [field α] : field (opposite α) :=
{ mul_inv_cancel := λ x hx, unop_inj $ inv_mul_cancel $ λ hx', hx $ unop_inj hx',
inv_mul_cancel := λ x hx, unop_inj $ mul_inv_cancel $ λ hx', hx $ unop_inj hx',
.. opposite.comm_ring α, .. opposite.zero_ne_one_class α, .. opposite.has_inv α }
@[simp] lemma op_zero [has_zero α] : op (0 : α) = 0 := rfl
@[simp] lemma unop_zero [has_zero α] : unop (0 : αᵒᵖ) = 0 := rfl
@[simp] lemma op_one [has_one α] : op (1 : α) = 1 := rfl
@[simp] lemma unop_one [has_one α] : unop (1 : αᵒᵖ) = 1 := rfl
variable {α}
@[simp] lemma op_add [has_add α] (x y : α) : op (x + y) = op x + op y := rfl
@[simp] lemma unop_add [has_add α] (x y : αᵒᵖ) : unop (x + y) = unop x + unop y := rfl
@[simp] lemma op_neg [has_neg α] (x : α) : op (-x) = -op x := rfl
@[simp] lemma unop_neg [has_neg α] (x : αᵒᵖ) : unop (-x) = -unop x := rfl
@[simp] lemma op_mul [has_mul α] (x y : α) : op (x * y) = op y * op x := rfl
@[simp] lemma unop_mul [has_mul α] (x y : αᵒᵖ) : unop (x * y) = unop y * unop x := rfl
@[simp] lemma op_inv [has_inv α] (x : α) : op (x⁻¹) = (op x)⁻¹ := rfl
@[simp] lemma unop_inv [has_inv α] (x : αᵒᵖ) : unop (x⁻¹) = (unop x)⁻¹ := rfl
end opposite