Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebraic_geometry.presheafed_space import topology.sheaves.stalks /-! # Stalks for presheaved spaces This file lifts constructions of stalks and pushforwards of stalks to work with the category of presheafed spaces. -/ universes v u v' u' open category_theory open category_theory.limits category_theory.category category_theory.functor open algebraic_geometry open topological_space variables {C : Type u} [𝒞 : category.{v} C] [has_colimits.{v} C] include 𝒞 local attribute [tidy] tactic.op_induction' open Top.presheaf namespace algebraic_geometry.PresheafedSpace def stalk (X : PresheafedSpace.{v} C) (x : X) : C := X.𝒪.stalk x def stalk_map {X Y : PresheafedSpace.{v} C} (α : X ⟶ Y) (x : X) : Y.stalk (α x) ⟶ X.stalk x := (stalk_functor C (α x)).map (α.c) ≫ X.𝒪.stalk_pushforward C α x namespace stalk_map @[simp] lemma id (X : PresheafedSpace.{v} C) (x : X) : stalk_map (𝟙 X) x = 𝟙 (X.stalk x) := begin dsimp [stalk_map], simp only [stalk_pushforward.id], rw [←map_comp], convert (stalk_functor C x).map_id X.𝒪, tidy, end @[simp] lemma comp {X Y Z : PresheafedSpace.{v} C} (α : X ⟶ Y) (β : Y ⟶ Z) (x : X) : stalk_map (α ≫ β) x = (stalk_map β (α x) : Z.stalk (β (α x)) ⟶ Y.stalk (α x)) ≫ (stalk_map α x : Y.stalk (α x) ⟶ X.stalk x) := begin dsimp [stalk_map, stalk_functor, stalk_pushforward], ext U, op_induction U, cases U, simp only [colim.ι_map_assoc, colimit.ι_pre_assoc, colimit.ι_pre, whisker_left_app, whisker_right_app, assoc, id_comp, map_id, map_comp], dsimp, simp only [map_id, assoc], -- FIXME Why doesn't simp do this: erw [category_theory.functor.map_id], erw [category_theory.functor.map_id], erw [id_comp, id_comp], end end stalk_map end algebraic_geometry.PresheafedSpace