CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2017 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Simon Hudon

Instances for identity and composition functors
-/

import category.functor

universe variables u v w

section lemmas

open function

variables {F : Type u → Type v}
variables [applicative F] [is_lawful_applicative F]
variables {α β γ σ : Type u}

attribute [functor_norm] seq_assoc pure_seq_eq_map map_pure seq_map_assoc map_seq

lemma applicative.map_seq_map (f : α → β → γ) (g : σ → β) (x : F α) (y : F σ) :
  (f <$> x) <*> (g <$> y) = (flip (∘) g ∘ f) <$> x <*> y :=
by simp [flip] with functor_norm

lemma applicative.pure_seq_eq_map' (f : α → β) :
  (<*>) (pure f : F (α → β)) = (<$>) f :=
by ext; simp with functor_norm

theorem applicative.ext {F} : ∀ {A1 : applicative F} {A2 : applicative F}
  [@is_lawful_applicative F A1] [@is_lawful_applicative F A2]
  (H1 : ∀ {α : Type u} (x : α),
    @has_pure.pure _ A1.to_has_pure _ x = @has_pure.pure _ A2.to_has_pure _ x)
  (H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α),
    @has_seq.seq _ A1.to_has_seq _ _ f x = @has_seq.seq _ A2.to_has_seq _ _ f x),
  A1 = A2
| {to_functor := F1, seq := s1, pure := p1, seq_left := sl1, seq_right := sr1}
  {to_functor := F2, seq := s2, pure := p2, seq_left := sl2, seq_right := sr2} L1 L2 H1 H2 :=
begin
  have : @p1 = @p2, {funext α x, apply H1}, subst this,
  have : @s1 = @s2, {funext α β f x, apply H2}, subst this,
  cases L1, cases L2,
  have : F1 = F2,
  { resetI, apply functor.ext, intros,
    exact (L1_pure_seq_eq_map _ _).symm.trans (L2_pure_seq_eq_map _ _) },
  subst this,
  congr; funext α β x y,
  { exact (L1_seq_left_eq _ _).trans (L2_seq_left_eq _ _).symm },
  { exact (L1_seq_right_eq _ _).trans (L2_seq_right_eq _ _).symm }
end

end lemmas

instance : is_comm_applicative id :=
by refine { .. }; intros; refl

namespace comp

open function (hiding comp)
open functor

variables {F : Type u → Type w} {G : Type v → Type u}

variables [applicative F] [applicative G]

protected def seq {α β : Type v} : comp F G (α → β) → comp F G α → comp F G β
| (comp.mk f) (comp.mk x) := comp.mk $ (<*>) <$> f <*> x

instance : has_pure (comp F G) :=
⟨λ _ x, comp.mk $ pure $ pure x⟩

instance : has_seq (comp F G) :=
⟨λ _ _ f x, comp.seq f x⟩

@[simp] protected lemma run_pure {α : Type v} :
  ∀ x : α, (pure x : comp F G α).run = pure (pure x)
| _ := rfl

@[simp] protected lemma run_seq {α β : Type v} (f : comp F G (α → β)) (x : comp F G α) :
  (f <*> x).run = (<*>) <$> f.run <*> x.run := rfl

instance : applicative (comp F G) :=
{ map := @comp.map F G _ _,
  seq := @comp.seq F G _ _,
  ..comp.has_pure }

variables [is_lawful_applicative F] [is_lawful_applicative G]
variables {α β γ : Type v}

lemma map_pure (f : α → β) (x : α) : (f <$> pure x : comp F G β) = pure (f x) :=
comp.ext $ by simp

lemma seq_pure (f : comp F G (α → β)) (x : α) :
  f <*> pure x = (λ g : α → β, g x) <$> f :=
comp.ext $ by simp [(∘)] with functor_norm

lemma seq_assoc (x : comp F G α) (f : comp F G (α → β)) (g : comp F G (β → γ)) :
   g <*> (f <*> x) = (@function.comp α β γ <$> g) <*> f <*> x :=
comp.ext $ by simp [(∘)] with functor_norm

lemma pure_seq_eq_map (f : α → β) (x : comp F G α) :
  pure f <*> x = f <$> x :=
comp.ext $ by simp [applicative.pure_seq_eq_map'] with functor_norm

instance : is_lawful_applicative (comp F G) :=
{ pure_seq_eq_map := @comp.pure_seq_eq_map F G _ _ _ _,
  map_pure := @comp.map_pure F G _ _ _ _,
  seq_pure := @comp.seq_pure F G _ _ _ _,
  seq_assoc := @comp.seq_assoc F G _ _ _ _ }

theorem applicative_id_comp {F} [AF : applicative F] [LF : is_lawful_applicative F] :
  @comp.applicative id F _ _ = AF :=
@applicative.ext F _ _ (@comp.is_lawful_applicative id F _ _ _ _) _
  (λ α x, rfl) (λ α β f x, rfl)

theorem applicative_comp_id {F} [AF : applicative F] [LF : is_lawful_applicative F] :
  @comp.applicative F id _ _ = AF :=
@applicative.ext F _ _ (@comp.is_lawful_applicative F id _ _ _ _) _
  (λ α x, rfl) (λ α β f x, show id <$> f <*> x = f <*> x, by rw id_map)

open is_comm_applicative

instance {f : Type u → Type w} {g : Type v → Type u}
  [applicative f] [applicative g]
  [is_comm_applicative f] [is_comm_applicative g] :
  is_comm_applicative (comp f g) :=
by { refine { .. @comp.is_lawful_applicative f g _ _ _ _, .. },
     intros, casesm* comp _ _ _, simp! [map,has_seq.seq] with functor_norm,
     rw [commutative_map],
     simp [comp.mk,flip,(∘)] with functor_norm,
     congr, funext, rw [commutative_map], congr }

end comp

open functor

@[functor_norm]
lemma comp.seq_mk {α β : Type w}
  {f : Type u → Type v} {g : Type w → Type u}
  [applicative f] [applicative g]
  (h : f (g (α → β))) (x : f (g α)) :
  comp.mk h <*> comp.mk x = comp.mk (has_seq.seq <$> h <*> x) := rfl

instance {α} [has_one α] [has_mul α] : applicative (const α) :=
{ pure := λ β x, (1 : α),
  seq := λ β γ f x, (f * x : α) }

instance {α} [monoid α] : is_lawful_applicative (const α) :=
by refine { .. }; intros; simp [mul_assoc]

instance {α} [has_zero α] [has_add α] : applicative (add_const α) :=
{ pure := λ β x, (0 : α),
  seq := λ β γ f x, (f + x : α) }

instance {α} [add_monoid α] : is_lawful_applicative (add_const α) :=
by refine { .. }; intros; simp