Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Simon Hudon -/ import category.functor category.bifunctor category.traversable.basic tactic.basic /-! # Bitraversable type class Type class for traversing bifunctors. The concepts and laws are taken from <https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Bitraversable.html> Simple examples of `bitraversable` are `prod` and `sum`. A more elaborate example is to define an a-list as: ``` def alist (key val : Type) := list (key × val) ``` Then we can use `f : key → io key'` and `g : val → io val'` to manipulate the `alist`'s key and value respectively with `bitraverse f g : alist key val → io (alist key' val')` ## Main definitions * bitraversable - exposes the `bitraverse` function * is_lawful_bitraversable - laws similar to is_lawful_traversable ## Tags traversable bitraversable iterator functor bifunctor applicative -/ universes u section prio set_option default_priority 100 -- see Note [default priority] class bitraversable (t : Type u → Type u → Type u) extends bifunctor t := (bitraverse : Π {m : Type u → Type u} [applicative m] {α α' β β'}, (α → m α') → (β → m β') → t α β → m (t α' β')) end prio export bitraversable ( bitraverse ) def bisequence {t m} [bitraversable t] [applicative m] {α β} : t (m α) (m β) → m (t α β) := bitraverse id id open functor section prio set_option default_priority 100 -- see Note [default priority] class is_lawful_bitraversable (t : Type u → Type u → Type u) [bitraversable t] extends is_lawful_bifunctor t := (id_bitraverse : ∀ {α β} (x : t α β), bitraverse id.mk id.mk x = id.mk x ) (comp_bitraverse : ∀ {F G} [applicative F] [applicative G] [is_lawful_applicative F] [is_lawful_applicative G] {α α' β β' γ γ'} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : t α α'), bitraverse (comp.mk ∘ map f ∘ g) (comp.mk ∘ map f' ∘ g') x = comp.mk (bitraverse f f' <$> bitraverse g g' x) ) (bitraverse_eq_bimap_id : ∀ {α α' β β'} (f : α → β) (f' : α' → β') (x : t α α'), bitraverse (id.mk ∘ f) (id.mk ∘ f') x = id.mk (bimap f f' x)) (binaturality : ∀ {F G} [applicative F] [applicative G] [is_lawful_applicative F] [is_lawful_applicative G] (η : applicative_transformation F G) {α α' β β'} (f : α → F β) (f' : α' → F β') (x : t α α'), η (bitraverse f f' x) = bitraverse (@η _ ∘ f) (@η _ ∘ f') x) end prio export is_lawful_bitraversable ( id_bitraverse comp_bitraverse bitraverse_eq_bimap_id ) open is_lawful_bitraversable attribute [higher_order bitraverse_id_id] id_bitraverse attribute [higher_order bitraverse_comp] comp_bitraverse attribute [higher_order] binaturality bitraverse_eq_bimap_id export is_lawful_bitraversable (bitraverse_id_id bitraverse_comp)