Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2019 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author(s): Simon Hudon
-/
import category.bitraversable.basic
category.bitraversable.lemmas
category.traversable.lemmas
tactic.solve_by_elim
/-!
# bitraversable instances
## Instances
* prod
* sum
* const
* flip
* bicompl
* bicompr
## References
* Hackage: <https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Bitraversable.html>
## Tags
traversable bitraversable functor bifunctor applicative
-/
universes u v w
variables {t : Type u → Type u → Type u} [bitraversable t]
section
variables {F : Type u → Type u} [applicative F]
def prod.bitraverse {α α' β β'} (f : α → F α') (f' : β → F β') : α × β → F (α' × β')
| (x,y) := prod.mk <$> f x <*> f' y
instance : bitraversable prod :=
{ bitraverse := @prod.bitraverse }
instance : is_lawful_bitraversable prod :=
by constructor; introsI; cases x;
simp [bitraverse,prod.bitraverse] with functor_norm; refl
open functor
def sum.bitraverse {α α' β β'} (f : α → F α') (f' : β → F β') : α ⊕ β → F (α' ⊕ β')
| (sum.inl x) := sum.inl <$> f x
| (sum.inr x) := sum.inr <$> f' x
instance : bitraversable sum :=
{ bitraverse := @sum.bitraverse }
instance : is_lawful_bitraversable sum :=
by constructor; introsI; cases x;
simp [bitraverse,sum.bitraverse] with functor_norm; refl
def const.bitraverse {α α' β β'} (f : α → F α') (f' : β → F β') : const α β → F (const α' β') := f
instance bitraversable.const : bitraversable const :=
{ bitraverse := @const.bitraverse }
instance is_lawful_bitraversable.const : is_lawful_bitraversable const :=
by constructor; introsI;
simp [bitraverse,const.bitraverse] with functor_norm; refl
def flip.bitraverse {α α' β β'} (f : α → F α') (f' : β → F β') : flip t α β → F (flip t α' β') :=
(bitraverse f' f : t β α → F (t β' α'))
instance bitraversable.flip : bitraversable (flip t) :=
{ bitraverse := @flip.bitraverse t _ }
open is_lawful_bitraversable
instance is_lawful_bitraversable.flip [is_lawful_bitraversable t]
: is_lawful_bitraversable (flip t) :=
by constructor; introsI; casesm is_lawful_bitraversable t; apply_assumption
open bitraversable functor
@[priority 10]
instance bitraversable.traversable {α} : traversable (t α) :=
{ traverse := @tsnd t _ _ }
@[priority 10]
instance bitraversable.is_lawful_traversable [is_lawful_bitraversable t] {α} :
is_lawful_traversable (t α) :=
by { constructor; introsI; simp [traverse,comp_tsnd] with functor_norm,
{ refl },
{ simp [tsnd_eq_snd_id], refl },
{ simp [tsnd,binaturality,function.comp] with functor_norm } }
end
open bifunctor traversable is_lawful_traversable is_lawful_bitraversable
open function (bicompl bicompr)
section bicompl
variables (F G : Type u → Type u) [traversable F] [traversable G]
def bicompl.bitraverse {m} [applicative m] {α β α' β'} (f : α → m β) (f' : α' → m β') :
bicompl t F G α α' → m (bicompl t F G β β') :=
(bitraverse (traverse f) (traverse f') : t (F α) (G α') → m _)
instance : bitraversable (bicompl t F G) :=
{ bitraverse := @bicompl.bitraverse t _ F G _ _ }
instance [is_lawful_traversable F] [is_lawful_traversable G] [is_lawful_bitraversable t] :
is_lawful_bitraversable (bicompl t F G) :=
begin
constructor; introsI;
simp [bitraverse,bicompl.bitraverse,bimap,traverse_id,bitraverse_id_id,comp_bitraverse] with functor_norm,
{ simp [traverse_eq_map_id',bitraverse_eq_bimap_id], },
{ revert x, dunfold bicompl,
simp [binaturality,naturality_pf] }
end
end bicompl
section bicompr
variables (F : Type u → Type u) [traversable F]
def bicompr.bitraverse {m} [applicative m] {α β α' β'} (f : α → m β) (f' : α' → m β') :
bicompr F t α α' → m (bicompr F t β β') :=
(traverse (bitraverse f f') : F (t α α') → m _)
instance : bitraversable (bicompr F t) :=
{ bitraverse := @bicompr.bitraverse t _ F _ }
instance [is_lawful_traversable F] [is_lawful_bitraversable t] :
is_lawful_bitraversable (bicompr F t) :=
begin
constructor; introsI;
simp [bitraverse,bicompr.bitraverse,bitraverse_id_id] with functor_norm,
{ simp [bitraverse_eq_bimap_id',traverse_eq_map_id'], refl },
{ revert x, dunfold bicompr, intro,
simp [naturality,binaturality'] }
end
end bicompr