Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author(s): Simon Hudon -/ import category.bitraversable.basic category.bitraversable.lemmas category.traversable.lemmas tactic.solve_by_elim /-! # bitraversable instances ## Instances * prod * sum * const * flip * bicompl * bicompr ## References * Hackage: <https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Bitraversable.html> ## Tags traversable bitraversable functor bifunctor applicative -/ universes u v w variables {t : Type u → Type u → Type u} [bitraversable t] section variables {F : Type u → Type u} [applicative F] def prod.bitraverse {α α' β β'} (f : α → F α') (f' : β → F β') : α × β → F (α' × β') | (x,y) := prod.mk <$> f x <*> f' y instance : bitraversable prod := { bitraverse := @prod.bitraverse } instance : is_lawful_bitraversable prod := by constructor; introsI; cases x; simp [bitraverse,prod.bitraverse] with functor_norm; refl open functor def sum.bitraverse {α α' β β'} (f : α → F α') (f' : β → F β') : α ⊕ β → F (α' ⊕ β') | (sum.inl x) := sum.inl <$> f x | (sum.inr x) := sum.inr <$> f' x instance : bitraversable sum := { bitraverse := @sum.bitraverse } instance : is_lawful_bitraversable sum := by constructor; introsI; cases x; simp [bitraverse,sum.bitraverse] with functor_norm; refl def const.bitraverse {α α' β β'} (f : α → F α') (f' : β → F β') : const α β → F (const α' β') := f instance bitraversable.const : bitraversable const := { bitraverse := @const.bitraverse } instance is_lawful_bitraversable.const : is_lawful_bitraversable const := by constructor; introsI; simp [bitraverse,const.bitraverse] with functor_norm; refl def flip.bitraverse {α α' β β'} (f : α → F α') (f' : β → F β') : flip t α β → F (flip t α' β') := (bitraverse f' f : t β α → F (t β' α')) instance bitraversable.flip : bitraversable (flip t) := { bitraverse := @flip.bitraverse t _ } open is_lawful_bitraversable instance is_lawful_bitraversable.flip [is_lawful_bitraversable t] : is_lawful_bitraversable (flip t) := by constructor; introsI; casesm is_lawful_bitraversable t; apply_assumption open bitraversable functor @[priority 10] instance bitraversable.traversable {α} : traversable (t α) := { traverse := @tsnd t _ _ } @[priority 10] instance bitraversable.is_lawful_traversable [is_lawful_bitraversable t] {α} : is_lawful_traversable (t α) := by { constructor; introsI; simp [traverse,comp_tsnd] with functor_norm, { refl }, { simp [tsnd_eq_snd_id], refl }, { simp [tsnd,binaturality,function.comp] with functor_norm } } end open bifunctor traversable is_lawful_traversable is_lawful_bitraversable open function (bicompl bicompr) section bicompl variables (F G : Type u → Type u) [traversable F] [traversable G] def bicompl.bitraverse {m} [applicative m] {α β α' β'} (f : α → m β) (f' : α' → m β') : bicompl t F G α α' → m (bicompl t F G β β') := (bitraverse (traverse f) (traverse f') : t (F α) (G α') → m _) instance : bitraversable (bicompl t F G) := { bitraverse := @bicompl.bitraverse t _ F G _ _ } instance [is_lawful_traversable F] [is_lawful_traversable G] [is_lawful_bitraversable t] : is_lawful_bitraversable (bicompl t F G) := begin constructor; introsI; simp [bitraverse,bicompl.bitraverse,bimap,traverse_id,bitraverse_id_id,comp_bitraverse] with functor_norm, { simp [traverse_eq_map_id',bitraverse_eq_bimap_id], }, { revert x, dunfold bicompl, simp [binaturality,naturality_pf] } end end bicompl section bicompr variables (F : Type u → Type u) [traversable F] def bicompr.bitraverse {m} [applicative m] {α β α' β'} (f : α → m β) (f' : α' → m β') : bicompr F t α α' → m (bicompr F t β β') := (traverse (bitraverse f f') : F (t α α') → m _) instance : bitraversable (bicompr F t) := { bitraverse := @bicompr.bitraverse t _ F _ } instance [is_lawful_traversable F] [is_lawful_bitraversable t] : is_lawful_bitraversable (bicompr F t) := begin constructor; introsI; simp [bitraverse,bicompr.bitraverse,bitraverse_id_id] with functor_norm, { simp [bitraverse_eq_bimap_id',traverse_eq_map_id'], refl }, { revert x, dunfold bicompr, intro, simp [naturality,binaturality'] } end end bicompr