CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon

Transferring `traversable` instances using isomorphisms.
-/
import data.equiv.basic category.traversable.lemmas

universes u

namespace equiv

section functor
parameters {t t' : Type u → Type u}
parameters (eqv : Π α, t α ≃ t' α)
variables [functor t]

open functor

protected def map {α β : Type u} (f : α → β) (x : t' α) : t' β :=
eqv β $ map f ((eqv α).symm x)

protected def functor : functor t' :=
{ map := @equiv.map _ }

variables [is_lawful_functor t]

protected lemma id_map {α : Type u} (x : t' α) : equiv.map id x = x :=
by simp [equiv.map, id_map]

protected lemma comp_map {α β γ : Type u} (g : α → β) (h : β → γ) (x : t' α) :
  equiv.map (h ∘ g) x = equiv.map h (equiv.map g x) :=
by simp [equiv.map]; apply comp_map

protected lemma is_lawful_functor : @is_lawful_functor _ equiv.functor :=
{ id_map := @equiv.id_map _ _,
  comp_map := @equiv.comp_map _ _ }

protected lemma is_lawful_functor' [F : _root_.functor t']
  (h₀ : ∀ {α β} (f : α → β), _root_.functor.map f = equiv.map f)
  (h₁ : ∀ {α β} (f : β), _root_.functor.map_const f = (equiv.map ∘ function.const α) f) :
  _root_.is_lawful_functor t' :=
begin
  have : F = equiv.functor,
  { unfreezeI, cases F, dsimp [equiv.functor],
    congr; ext; [rw ← h₀, rw ← h₁] },
  constructor; intros;
  haveI F' := equiv.is_lawful_functor,
  { simp, intros, ext,
    rw [h₁], rw ← this at F',
    have k := @map_const_eq t' _ _ α β, rw this at ⊢ k, rw ← k, refl },
  { rw [h₀], rw ← this at F',
    have k := id_map x, rw this at k, apply k },
  { rw [h₀], rw ← this at F',
    have k := comp_map g h x, revert k, rw this, exact id },
end

end functor

section traversable
parameters {t t' : Type u → Type u}
parameters (eqv : Π α, t α ≃ t' α)
variables [traversable t]
variables {m : Type u → Type u} [applicative m]
variables {α β : Type u}

protected def traverse (f : α → m β) (x : t' α) : m (t' β) :=
eqv β <$> traverse f ((eqv α).symm x)

protected def traversable : traversable t' :=
{ to_functor := equiv.functor eqv,
  traverse := @equiv.traverse _ }

end traversable

section equiv
parameters {t t' : Type u → Type u}
parameters (eqv : Π α, t α ≃ t' α)
variables [traversable t] [is_lawful_traversable t]
variables {F G : Type u → Type u} [applicative F] [applicative G]
variables [is_lawful_applicative F] [is_lawful_applicative G]
variables (η : applicative_transformation F G)
variables {α β γ : Type u}

open is_lawful_traversable functor

protected lemma id_traverse (x : t' α) :
  equiv.traverse eqv id.mk x = x :=
by simp! [equiv.traverse,id_bind,id_traverse,functor.map] with functor_norm

protected lemma traverse_eq_map_id (f : α → β) (x : t' α) :
  equiv.traverse eqv (id.mk ∘ f) x = id.mk (equiv.map eqv f x) :=
by simp [equiv.traverse, traverse_eq_map_id] with functor_norm; refl

protected lemma comp_traverse (f : β → F γ) (g : α → G β) (x : t' α) :
  equiv.traverse eqv (comp.mk ∘ functor.map f ∘ g) x =
  comp.mk (equiv.traverse eqv f <$> equiv.traverse eqv g x) :=
by simp [equiv.traverse,comp_traverse] with functor_norm; congr; ext; simp

protected lemma naturality (f : α → F β) (x : t' α) :
  η (equiv.traverse eqv f x) = equiv.traverse eqv (@η _ ∘ f) x :=
by simp only [equiv.traverse] with functor_norm

protected def is_lawful_traversable :
  @is_lawful_traversable t' (equiv.traversable eqv) :=
{ to_is_lawful_functor := @equiv.is_lawful_functor _ _ eqv _ _,
  id_traverse := @equiv.id_traverse _ _,
  comp_traverse := @equiv.comp_traverse _ _,
  traverse_eq_map_id := @equiv.traverse_eq_map_id _ _,
  naturality := @equiv.naturality _ _ }

protected def is_lawful_traversable' [_i : traversable t']
  (h₀ : ∀ {α β} (f : α → β),
         map f = equiv.map eqv f)
  (h₁ : ∀ {α β} (f : β),
         map_const f = (equiv.map eqv ∘ function.const α) f)
  (h₂ : ∀ {F : Type u → Type u} [applicative F] [is_lawful_applicative F]
          {α β} (f : α → F β),
         traverse f = equiv.traverse eqv f) :
  _root_.is_lawful_traversable t' :=
begin
    -- we can't use the same approach as for `is_lawful_functor'` because
    -- h₂ needs a `is_lawful_applicative` assumption
  refine {to_is_lawful_functor :=
    equiv.is_lawful_functor' eqv @h₀ @h₁, ..}; intros; resetI,
  { rw [h₂, equiv.id_traverse], apply_instance },
  { rw [h₂, equiv.comp_traverse f g x, h₂], congr,
    rw [h₂], all_goals { apply_instance } },
  { rw [h₂, equiv.traverse_eq_map_id, h₀]; apply_instance },
  { rw [h₂, equiv.naturality, h₂]; apply_instance }
end

end equiv
end equiv