Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Simon Hudon
Instances of `traversable` for types from the core library
-/
import category.traversable.basic category.basic category.functor category.applicative
import data.list.basic data.set.lattice
universes u v
section option
open functor
variables {F G : Type u → Type u}
variables [applicative F] [applicative G]
variables [is_lawful_applicative F] [is_lawful_applicative G]
lemma option.id_traverse {α} (x : option α) : option.traverse id.mk x = x :=
by cases x; refl
lemma option.comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : option α) :
option.traverse (comp.mk ∘ (<$>) f ∘ g) x =
comp.mk (option.traverse f <$> option.traverse g x) :=
by cases x; simp! with functor_norm; refl
lemma option.traverse_eq_map_id {α β} (f : α → β) (x : option α) :
traverse (id.mk ∘ f) x = id.mk (f <$> x) :=
by cases x; refl
variable (η : applicative_transformation F G)
lemma option.naturality {α β} (f : α → F β) (x : option α) :
η (option.traverse f x) = option.traverse (@η _ ∘ f) x :=
by cases x with x; simp! [*] with functor_norm
end option
instance : is_lawful_traversable option :=
{ id_traverse := @option.id_traverse,
comp_traverse := @option.comp_traverse,
traverse_eq_map_id := @option.traverse_eq_map_id,
naturality := @option.naturality }
namespace list
variables {F G : Type u → Type u}
variables [applicative F] [applicative G]
section
variables [is_lawful_applicative F] [is_lawful_applicative G]
open applicative functor
open list (cons)
protected lemma id_traverse {α} (xs : list α) :
list.traverse id.mk xs = xs :=
by induction xs; simp! * with functor_norm; refl
protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : list α) :
list.traverse (comp.mk ∘ (<$>) f ∘ g) x =
comp.mk (list.traverse f <$> list.traverse g x) :=
by induction x; simp! * with functor_norm; refl
protected lemma traverse_eq_map_id {α β} (f : α → β) (x : list α) :
list.traverse (id.mk ∘ f) x = id.mk (f <$> x) :=
by induction x; simp! * with functor_norm; refl
variable (η : applicative_transformation F G)
protected lemma naturality {α β} (f : α → F β) (x : list α) :
η (list.traverse f x) = list.traverse (@η _ ∘ f) x :=
by induction x; simp! * with functor_norm
open nat
instance : is_lawful_traversable list :=
{ id_traverse := @list.id_traverse,
comp_traverse := @list.comp_traverse,
traverse_eq_map_id := @list.traverse_eq_map_id,
naturality := @list.naturality }
end
section traverse
variables {α' β' : Type u} (f : α' → F β')
@[simp] lemma traverse_nil : traverse f ([] : list α') = (pure [] : F (list β')) := rfl
@[simp] lemma traverse_cons (a : α') (l : list α') :
traverse f (a :: l) = (::) <$> f a <*> traverse f l := rfl
variables [is_lawful_applicative F]
@[simp] lemma traverse_append :
∀ (as bs : list α'), traverse f (as ++ bs) = (++) <$> traverse f as <*> traverse f bs
| [] bs :=
have has_append.append ([] : list β') = id, by funext; refl,
by simp [this] with functor_norm
| (a :: as) bs := by simp [traverse_append as bs] with functor_norm; congr
lemma mem_traverse {f : α' → set β'} :
∀(l : list α') (n : list β'), n ∈ traverse f l ↔ forall₂ (λb a, b ∈ f a) n l
| [] [] := by simp
| (a::as) [] := by simp; exact assume h, match h with end
| [] (b::bs) := by simp
| (a::as) (b::bs) :=
suffices (b :: bs : list β') ∈ traverse f (a :: as) ↔ b ∈ f a ∧ bs ∈ traverse f as,
by simpa [mem_traverse as bs],
iff.intro
(assume ⟨_, ⟨b, hb, rfl⟩, _, hl, rfl⟩, ⟨hb, hl⟩)
(assume ⟨hb, hl⟩, ⟨_, ⟨b, hb, rfl⟩, _, hl, rfl⟩)
end traverse
end list
namespace sum
section traverse
variables {σ : Type u}
variables {F G : Type u → Type u}
variables [applicative F] [applicative G]
open applicative functor
open list (cons)
variables [is_lawful_applicative F] [is_lawful_applicative G]
protected lemma id_traverse {σ α} (x : σ ⊕ α) : sum.traverse id.mk x = x :=
by cases x; refl
protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : σ ⊕ α) :
sum.traverse (comp.mk ∘ (<$>) f ∘ g) x =
comp.mk (sum.traverse f <$> sum.traverse g x) :=
by cases x; simp! [sum.traverse,map_id] with functor_norm; refl
protected lemma traverse_eq_map_id {α β} (f : α → β) (x : σ ⊕ α) :
sum.traverse (id.mk ∘ f) x = id.mk (f <$> x) :=
by induction x; simp! * with functor_norm; refl
protected lemma map_traverse {α β γ} (g : α → G β) (f : β → γ) (x : σ ⊕ α) :
(<$>) f <$> sum.traverse g x = sum.traverse ((<$>) f ∘ g) x :=
by cases x; simp [sum.traverse, id_map] with functor_norm; congr; refl
protected lemma traverse_map {α β γ : Type u} (g : α → β) (f : β → G γ) (x : σ ⊕ α) :
sum.traverse f (g <$> x) = sum.traverse (f ∘ g) x :=
by cases x; simp [sum.traverse, id_map] with functor_norm; refl
variable (η : applicative_transformation F G)
protected lemma naturality {α β} (f : α → F β) (x : σ ⊕ α) :
η (sum.traverse f x) = sum.traverse (@η _ ∘ f) x :=
by cases x; simp! [sum.traverse] with functor_norm
end traverse
instance {σ : Type u} : is_lawful_traversable.{u} (sum σ) :=
{ id_traverse := @sum.id_traverse σ,
comp_traverse := @sum.comp_traverse σ,
traverse_eq_map_id := @sum.traverse_eq_map_id σ,
naturality := @sum.naturality σ }
end sum