CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Simon Hudon

Instances of `traversable` for types from the core library
-/

import category.traversable.basic category.basic category.functor category.applicative
import data.list.basic data.set.lattice

universes u v

section option

open functor

variables {F G : Type u → Type u}
variables [applicative F] [applicative G]
variables [is_lawful_applicative F] [is_lawful_applicative G]

lemma option.id_traverse {α} (x : option α) : option.traverse id.mk x = x :=
by cases x; refl

lemma option.comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : option α) :
  option.traverse (comp.mk ∘ (<$>) f ∘ g) x =
  comp.mk (option.traverse f <$> option.traverse g x) :=
by cases x; simp! with functor_norm; refl

lemma option.traverse_eq_map_id {α β} (f : α → β) (x : option α) :
  traverse (id.mk ∘ f) x = id.mk (f <$> x) :=
by cases x; refl

variable (η : applicative_transformation F G)

lemma option.naturality {α β} (f : α → F β) (x : option α) :
  η (option.traverse f x) = option.traverse (@η _ ∘ f) x :=
by cases x with x; simp! [*] with functor_norm

end option

instance : is_lawful_traversable option :=
{ id_traverse := @option.id_traverse,
  comp_traverse := @option.comp_traverse,
  traverse_eq_map_id := @option.traverse_eq_map_id,
  naturality := @option.naturality }

namespace list

variables {F G : Type u → Type u}
variables [applicative F] [applicative G]

section
variables [is_lawful_applicative F] [is_lawful_applicative G]

open applicative functor
open list (cons)

protected lemma id_traverse {α} (xs : list α) :
  list.traverse id.mk xs = xs :=
by induction xs; simp! * with functor_norm; refl

protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : list α) :
  list.traverse (comp.mk ∘ (<$>) f ∘ g) x =
  comp.mk (list.traverse f <$> list.traverse g x) :=
by induction x; simp! * with functor_norm; refl

protected lemma traverse_eq_map_id {α β} (f : α → β) (x : list α) :
  list.traverse (id.mk ∘ f) x = id.mk (f <$> x) :=
by induction x; simp! * with functor_norm; refl

variable (η : applicative_transformation F G)

protected lemma naturality {α β} (f : α → F β) (x : list α) :
  η (list.traverse f x) = list.traverse (@η _ ∘ f) x :=
by induction x; simp! * with functor_norm
open nat

instance : is_lawful_traversable list :=
{ id_traverse := @list.id_traverse,
  comp_traverse := @list.comp_traverse,
  traverse_eq_map_id := @list.traverse_eq_map_id,
  naturality := @list.naturality }
end

section traverse
variables {α' β' : Type u} (f : α' → F β')

@[simp] lemma traverse_nil : traverse f ([] : list α') = (pure [] : F (list β')) := rfl

@[simp] lemma traverse_cons (a : α') (l : list α') :
  traverse f (a :: l) = (::) <$> f a <*> traverse f l := rfl

variables [is_lawful_applicative F]

@[simp] lemma traverse_append :
  ∀ (as bs : list α'), traverse f (as ++ bs) = (++) <$> traverse f as <*> traverse f bs
| [] bs :=
  have has_append.append ([] : list β') = id, by funext; refl,
  by simp [this] with functor_norm
| (a :: as) bs := by simp [traverse_append as bs] with functor_norm; congr

lemma mem_traverse {f : α' → set β'} :
  ∀(l : list α') (n : list β'), n ∈ traverse f l ↔ forall₂ (λb a, b ∈ f a) n l
| []      []      := by simp
| (a::as) []      := by simp; exact assume h, match h with end
| []      (b::bs) := by simp
| (a::as) (b::bs) :=
  suffices (b :: bs : list β') ∈ traverse f (a :: as) ↔ b ∈ f a ∧ bs ∈ traverse f as,
    by simpa [mem_traverse as bs],
  iff.intro
    (assume ⟨_, ⟨b, hb, rfl⟩, _, hl, rfl⟩, ⟨hb, hl⟩)
    (assume ⟨hb, hl⟩, ⟨_, ⟨b, hb, rfl⟩, _, hl, rfl⟩)

end traverse

end list

namespace sum

section traverse
variables {σ : Type u}
variables {F G : Type u → Type u}
variables [applicative F] [applicative G]

open applicative functor
open list (cons)

variables [is_lawful_applicative F] [is_lawful_applicative G]

protected lemma id_traverse {σ α} (x : σ ⊕ α) : sum.traverse id.mk x = x :=
by cases x; refl

protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : σ ⊕ α) :
  sum.traverse (comp.mk ∘ (<$>) f ∘ g) x =
  comp.mk (sum.traverse f <$> sum.traverse g x) :=
by cases x; simp! [sum.traverse,map_id] with functor_norm; refl

protected lemma traverse_eq_map_id {α β} (f : α → β) (x : σ ⊕ α) :
  sum.traverse (id.mk ∘ f) x = id.mk (f <$> x) :=
by induction x; simp! * with functor_norm; refl

protected lemma map_traverse {α β γ} (g : α → G β) (f : β → γ) (x : σ ⊕ α) :
  (<$>) f <$> sum.traverse g x = sum.traverse ((<$>) f ∘ g) x :=
by cases x; simp [sum.traverse, id_map] with functor_norm; congr; refl

protected lemma traverse_map {α β γ : Type u} (g : α → β) (f : β → G γ) (x : σ ⊕ α) :
  sum.traverse f (g <$> x) = sum.traverse (f ∘ g) x :=
by cases x; simp [sum.traverse, id_map] with functor_norm; refl

variable (η : applicative_transformation F G)

protected lemma naturality {α β} (f : α → F β) (x : σ ⊕ α) :
  η (sum.traverse f x) = sum.traverse (@η _ ∘ f) x :=
by cases x; simp! [sum.traverse] with functor_norm

end traverse

instance {σ : Type u} : is_lawful_traversable.{u} (sum σ) :=
{ id_traverse := @sum.id_traverse σ,
  comp_traverse := @sum.comp_traverse σ,
  traverse_eq_map_id := @sum.traverse_eq_map_id σ,
  naturality := @sum.naturality σ }

end sum