Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Simon Hudon Instances of `traversable` for types from the core library -/ import category.traversable.basic category.basic category.functor category.applicative import data.list.basic data.set.lattice universes u v section option open functor variables {F G : Type u → Type u} variables [applicative F] [applicative G] variables [is_lawful_applicative F] [is_lawful_applicative G] lemma option.id_traverse {α} (x : option α) : option.traverse id.mk x = x := by cases x; refl lemma option.comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : option α) : option.traverse (comp.mk ∘ (<$>) f ∘ g) x = comp.mk (option.traverse f <$> option.traverse g x) := by cases x; simp! with functor_norm; refl lemma option.traverse_eq_map_id {α β} (f : α → β) (x : option α) : traverse (id.mk ∘ f) x = id.mk (f <$> x) := by cases x; refl variable (η : applicative_transformation F G) lemma option.naturality {α β} (f : α → F β) (x : option α) : η (option.traverse f x) = option.traverse (@η _ ∘ f) x := by cases x with x; simp! [*] with functor_norm end option instance : is_lawful_traversable option := { id_traverse := @option.id_traverse, comp_traverse := @option.comp_traverse, traverse_eq_map_id := @option.traverse_eq_map_id, naturality := @option.naturality } namespace list variables {F G : Type u → Type u} variables [applicative F] [applicative G] section variables [is_lawful_applicative F] [is_lawful_applicative G] open applicative functor open list (cons) protected lemma id_traverse {α} (xs : list α) : list.traverse id.mk xs = xs := by induction xs; simp! * with functor_norm; refl protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : list α) : list.traverse (comp.mk ∘ (<$>) f ∘ g) x = comp.mk (list.traverse f <$> list.traverse g x) := by induction x; simp! * with functor_norm; refl protected lemma traverse_eq_map_id {α β} (f : α → β) (x : list α) : list.traverse (id.mk ∘ f) x = id.mk (f <$> x) := by induction x; simp! * with functor_norm; refl variable (η : applicative_transformation F G) protected lemma naturality {α β} (f : α → F β) (x : list α) : η (list.traverse f x) = list.traverse (@η _ ∘ f) x := by induction x; simp! * with functor_norm open nat instance : is_lawful_traversable list := { id_traverse := @list.id_traverse, comp_traverse := @list.comp_traverse, traverse_eq_map_id := @list.traverse_eq_map_id, naturality := @list.naturality } end section traverse variables {α' β' : Type u} (f : α' → F β') @[simp] lemma traverse_nil : traverse f ([] : list α') = (pure [] : F (list β')) := rfl @[simp] lemma traverse_cons (a : α') (l : list α') : traverse f (a :: l) = (::) <$> f a <*> traverse f l := rfl variables [is_lawful_applicative F] @[simp] lemma traverse_append : ∀ (as bs : list α'), traverse f (as ++ bs) = (++) <$> traverse f as <*> traverse f bs | [] bs := have has_append.append ([] : list β') = id, by funext; refl, by simp [this] with functor_norm | (a :: as) bs := by simp [traverse_append as bs] with functor_norm; congr lemma mem_traverse {f : α' → set β'} : ∀(l : list α') (n : list β'), n ∈ traverse f l ↔ forall₂ (λb a, b ∈ f a) n l | [] [] := by simp | (a::as) [] := by simp; exact assume h, match h with end | [] (b::bs) := by simp | (a::as) (b::bs) := suffices (b :: bs : list β') ∈ traverse f (a :: as) ↔ b ∈ f a ∧ bs ∈ traverse f as, by simpa [mem_traverse as bs], iff.intro (assume ⟨_, ⟨b, hb, rfl⟩, _, hl, rfl⟩, ⟨hb, hl⟩) (assume ⟨hb, hl⟩, ⟨_, ⟨b, hb, rfl⟩, _, hl, rfl⟩) end traverse end list namespace sum section traverse variables {σ : Type u} variables {F G : Type u → Type u} variables [applicative F] [applicative G] open applicative functor open list (cons) variables [is_lawful_applicative F] [is_lawful_applicative G] protected lemma id_traverse {σ α} (x : σ ⊕ α) : sum.traverse id.mk x = x := by cases x; refl protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : σ ⊕ α) : sum.traverse (comp.mk ∘ (<$>) f ∘ g) x = comp.mk (sum.traverse f <$> sum.traverse g x) := by cases x; simp! [sum.traverse,map_id] with functor_norm; refl protected lemma traverse_eq_map_id {α β} (f : α → β) (x : σ ⊕ α) : sum.traverse (id.mk ∘ f) x = id.mk (f <$> x) := by induction x; simp! * with functor_norm; refl protected lemma map_traverse {α β γ} (g : α → G β) (f : β → γ) (x : σ ⊕ α) : (<$>) f <$> sum.traverse g x = sum.traverse ((<$>) f ∘ g) x := by cases x; simp [sum.traverse, id_map] with functor_norm; congr; refl protected lemma traverse_map {α β γ : Type u} (g : α → β) (f : β → G γ) (x : σ ⊕ α) : sum.traverse f (g <$> x) = sum.traverse (f ∘ g) x := by cases x; simp [sum.traverse, id_map] with functor_norm; refl variable (η : applicative_transformation F G) protected lemma naturality {α β} (f : α → F β) (x : σ ⊕ α) : η (sum.traverse f x) = sum.traverse (@η _ ∘ f) x := by cases x; simp! [sum.traverse] with functor_norm end traverse instance {σ : Type u} : is_lawful_traversable.{u} (sum σ) := { id_traverse := @sum.id_traverse σ, comp_traverse := @sum.comp_traverse σ, traverse_eq_map_id := @sum.traverse_eq_map_id σ, naturality := @sum.naturality σ } end sum