Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2019 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Johan Commelin
-/
import category_theory.equivalence
import data.equiv.basic
namespace category_theory
open category
universes v₁ v₂ v₃ u₁ u₂ u₃ -- declare the `v`'s first; see `category_theory.category` for an explanation
local attribute [elab_simple] whisker_left whisker_right
variables {C : Type u₁} [𝒞 : category.{v₁} C] {D : Type u₂} [𝒟 : category.{v₂} D]
include 𝒞 𝒟
/--
`F ⊣ G` represents the data of an adjunction between two functors
`F : C ⥤ D` and `G : D ⥤ C`. `F` is the left adjoint and `G` is the right adjoint.
-/
structure adjunction (F : C ⥤ D) (G : D ⥤ C) :=
(hom_equiv : Π (X Y), (F.obj X ⟶ Y) ≃ (X ⟶ G.obj Y))
(unit : 𝟭 C ⟶ F.comp G)
(counit : G.comp F ⟶ 𝟭 D)
(hom_equiv_unit' : Π {X Y f}, (hom_equiv X Y) f = (unit : _ ⟶ _).app X ≫ G.map f . obviously)
(hom_equiv_counit' : Π {X Y g}, (hom_equiv X Y).symm g = F.map g ≫ counit.app Y . obviously)
infix ` ⊣ `:15 := adjunction
class is_left_adjoint (left : C ⥤ D) :=
(right : D ⥤ C)
(adj : left ⊣ right)
class is_right_adjoint (right : D ⥤ C) :=
(left : C ⥤ D)
(adj : left ⊣ right)
def left_adjoint (R : D ⥤ C) [is_right_adjoint R] : C ⥤ D :=
is_right_adjoint.left R
def right_adjoint (L : C ⥤ D) [is_left_adjoint L] : D ⥤ C :=
is_left_adjoint.right L
namespace adjunction
restate_axiom hom_equiv_unit'
restate_axiom hom_equiv_counit'
attribute [simp, priority 10] hom_equiv_unit hom_equiv_counit
section
variables {F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X' X : C} {Y Y' : D}
@[simp, priority 10] lemma hom_equiv_naturality_left_symm (f : X' ⟶ X) (g : X ⟶ G.obj Y) :
(adj.hom_equiv X' Y).symm (f ≫ g) = F.map f ≫ (adj.hom_equiv X Y).symm g :=
by rw [hom_equiv_counit, F.map_comp, assoc, adj.hom_equiv_counit.symm]
@[simp] lemma hom_equiv_naturality_left (f : X' ⟶ X) (g : F.obj X ⟶ Y) :
(adj.hom_equiv X' Y) (F.map f ≫ g) = f ≫ (adj.hom_equiv X Y) g :=
by rw [← equiv.eq_symm_apply]; simp [-hom_equiv_unit]
@[simp, priority 10] lemma hom_equiv_naturality_right (f : F.obj X ⟶ Y) (g : Y ⟶ Y') :
(adj.hom_equiv X Y') (f ≫ g) = (adj.hom_equiv X Y) f ≫ G.map g :=
by rw [hom_equiv_unit, G.map_comp, ← assoc, ←hom_equiv_unit]
@[simp] lemma hom_equiv_naturality_right_symm (f : X ⟶ G.obj Y) (g : Y ⟶ Y') :
(adj.hom_equiv X Y').symm (f ≫ G.map g) = (adj.hom_equiv X Y).symm f ≫ g :=
by rw [equiv.symm_apply_eq]; simp [-hom_equiv_counit]
@[simp] lemma left_triangle :
(whisker_right adj.unit F) ≫ (whisker_left F adj.counit) = nat_trans.id _ :=
begin
ext, dsimp,
erw [← adj.hom_equiv_counit, equiv.symm_apply_eq, adj.hom_equiv_unit],
simp
end
@[simp] lemma right_triangle :
(whisker_left G adj.unit) ≫ (whisker_right adj.counit G) = nat_trans.id _ :=
begin
ext, dsimp,
erw [← adj.hom_equiv_unit, ← equiv.eq_symm_apply, adj.hom_equiv_counit],
simp
end
@[simp, reassoc] lemma left_triangle_components :
F.map (adj.unit.app X) ≫ adj.counit.app (F.obj X) = 𝟙 (F.obj X) :=
congr_arg (λ (t : nat_trans _ (𝟭 C ⋙ F)), t.app X) adj.left_triangle
@[simp, reassoc] lemma right_triangle_components {Y : D} :
adj.unit.app (G.obj Y) ≫ G.map (adj.counit.app Y) = 𝟙 (G.obj Y) :=
congr_arg (λ (t : nat_trans _ (G ⋙ 𝟭 C)), t.app Y) adj.right_triangle
@[simp, reassoc] lemma counit_naturality {X Y : D} (f : X ⟶ Y) :
F.map (G.map f) ≫ (adj.counit).app Y = (adj.counit).app X ≫ f :=
adj.counit.naturality f
@[simp, reassoc] lemma unit_naturality {X Y : C} (f : X ⟶ Y) :
(adj.unit).app X ≫ G.map (F.map f) = f ≫ (adj.unit).app Y :=
(adj.unit.naturality f).symm
end
end adjunction
namespace adjunction
structure core_hom_equiv (F : C ⥤ D) (G : D ⥤ C) :=
(hom_equiv : Π (X Y), (F.obj X ⟶ Y) ≃ (X ⟶ G.obj Y))
(hom_equiv_naturality_left_symm' : Π {X' X Y} (f : X' ⟶ X) (g : X ⟶ G.obj Y),
(hom_equiv X' Y).symm (f ≫ g) = F.map f ≫ (hom_equiv X Y).symm g . obviously)
(hom_equiv_naturality_right' : Π {X Y Y'} (f : F.obj X ⟶ Y) (g : Y ⟶ Y'),
(hom_equiv X Y') (f ≫ g) = (hom_equiv X Y) f ≫ G.map g . obviously)
namespace core_hom_equiv
restate_axiom hom_equiv_naturality_left_symm'
restate_axiom hom_equiv_naturality_right'
attribute [simp, priority 10] hom_equiv_naturality_left_symm hom_equiv_naturality_right
variables {F : C ⥤ D} {G : D ⥤ C} (adj : core_hom_equiv F G) {X' X : C} {Y Y' : D}
@[simp] lemma hom_equiv_naturality_left (f : X' ⟶ X) (g : F.obj X ⟶ Y) :
(adj.hom_equiv X' Y) (F.map f ≫ g) = f ≫ (adj.hom_equiv X Y) g :=
by rw [← equiv.eq_symm_apply]; simp
@[simp] lemma hom_equiv_naturality_right_symm (f : X ⟶ G.obj Y) (g : Y ⟶ Y') :
(adj.hom_equiv X Y').symm (f ≫ G.map g) = (adj.hom_equiv X Y).symm f ≫ g :=
by rw [equiv.symm_apply_eq]; simp
end core_hom_equiv
structure core_unit_counit (F : C ⥤ D) (G : D ⥤ C) :=
(unit : 𝟭 C ⟶ F.comp G)
(counit : G.comp F ⟶ 𝟭 D)
(left_triangle' : whisker_right unit F ≫ (functor.associator F G F).hom ≫ whisker_left F counit = nat_trans.id (𝟭 C ⋙ F) . obviously)
(right_triangle' : whisker_left G unit ≫ (functor.associator G F G).inv ≫ whisker_right counit G = nat_trans.id (G ⋙ 𝟭 C) . obviously)
namespace core_unit_counit
restate_axiom left_triangle'
restate_axiom right_triangle'
attribute [simp] left_triangle right_triangle
end core_unit_counit
variables {F : C ⥤ D} {G : D ⥤ C}
def mk_of_hom_equiv (adj : core_hom_equiv F G) : F ⊣ G :=
{ unit :=
{ app := λ X, (adj.hom_equiv X (F.obj X)) (𝟙 (F.obj X)),
naturality' :=
begin
intros,
erw [← adj.hom_equiv_naturality_left, ← adj.hom_equiv_naturality_right],
dsimp, simp
end },
counit :=
{ app := λ Y, (adj.hom_equiv _ _).inv_fun (𝟙 (G.obj Y)),
naturality' :=
begin
intros,
erw [← adj.hom_equiv_naturality_left_symm, ← adj.hom_equiv_naturality_right_symm],
dsimp, simp
end },
hom_equiv_unit' := λ X Y f, by erw [← adj.hom_equiv_naturality_right]; simp,
hom_equiv_counit' := λ X Y f, by erw [← adj.hom_equiv_naturality_left_symm]; simp,
.. adj }
def mk_of_unit_counit (adj : core_unit_counit F G) : F ⊣ G :=
{ hom_equiv := λ X Y,
{ to_fun := λ f, adj.unit.app X ≫ G.map f,
inv_fun := λ g, F.map g ≫ adj.counit.app Y,
left_inv := λ f, begin
change F.map (_ ≫ _) ≫ _ = _,
rw [F.map_comp, assoc, ←functor.comp_map, adj.counit.naturality, ←assoc],
convert id_comp _ f,
have t := congr_arg (λ t : nat_trans _ _, t.app _) adj.left_triangle,
dsimp at t,
simp only [id_comp] at t,
exact t,
end,
right_inv := λ g, begin
change _ ≫ G.map (_ ≫ _) = _,
rw [G.map_comp, ←assoc, ←functor.comp_map, ←adj.unit.naturality, assoc],
convert comp_id _ g,
have t := congr_arg (λ t : nat_trans _ _, t.app _) adj.right_triangle,
dsimp at t,
simp only [id_comp] at t,
exact t,
end },
.. adj }
section
omit 𝒟
def id : 𝟭 C ⊣ 𝟭 C :=
{ hom_equiv := λ X Y, equiv.refl _,
unit := 𝟙 _,
counit := 𝟙 _ }
end
section
variables {E : Type u₃} [ℰ : category.{v₃} E] (H : D ⥤ E) (I : E ⥤ D)
def comp (adj₁ : F ⊣ G) (adj₂ : H ⊣ I) : F ⋙ H ⊣ I ⋙ G :=
{ hom_equiv := λ X Z, equiv.trans (adj₂.hom_equiv _ _) (adj₁.hom_equiv _ _),
unit := adj₁.unit ≫
(whisker_left F $ whisker_right adj₂.unit G) ≫ (functor.associator _ _ _).inv,
counit := (functor.associator _ _ _).hom ≫
(whisker_left I $ whisker_right adj₁.counit H) ≫ adj₂.counit }
end
section construct_left
-- Construction of a left adjoint. In order to construct a left
-- adjoint to a functor G : D → C, it suffices to give the object part
-- of a functor F : C → D together with isomorphisms Hom(FX, Y) ≃
-- Hom(X, GY) natural in Y. The action of F on morphisms can be
-- constructed from this data.
variables {F_obj : C → D} {G}
variables (e : Π X Y, (F_obj X ⟶ Y) ≃ (X ⟶ G.obj Y))
variables (he : Π X Y Y' g h, e X Y' (h ≫ g) = e X Y h ≫ G.map g)
include he
private lemma he' {X Y Y'} (f g) : (e X Y').symm (f ≫ G.map g) = (e X Y).symm f ≫ g :=
by intros; rw [equiv.symm_apply_eq, he]; simp
def left_adjoint_of_equiv : C ⥤ D :=
{ obj := F_obj,
map := λ X X' f, (e X (F_obj X')).symm (f ≫ e X' (F_obj X') (𝟙 _)),
map_comp' := λ X X' X'' f f', begin
rw [equiv.symm_apply_eq, he, equiv.apply_symm_apply],
conv { to_rhs, rw [assoc, ←he, id_comp, equiv.apply_symm_apply] },
simp
end }
def adjunction_of_equiv_left : left_adjoint_of_equiv e he ⊣ G :=
mk_of_hom_equiv
{ hom_equiv := e,
hom_equiv_naturality_left_symm' :=
begin
intros,
erw [← he' e he, ← equiv.apply_eq_iff_eq],
simp [(he _ _ _ _ _).symm]
end }
end construct_left
section construct_right
-- Construction of a right adjoint, analogous to the above.
variables {F} {G_obj : D → C}
variables (e : Π X Y, (F.obj X ⟶ Y) ≃ (X ⟶ G_obj Y))
variables (he : Π X' X Y f g, e X' Y (F.map f ≫ g) = f ≫ e X Y g)
include he
private lemma he' {X' X Y} (f g) : F.map f ≫ (e X Y).symm g = (e X' Y).symm (f ≫ g) :=
by intros; rw [equiv.eq_symm_apply, he]; simp
def right_adjoint_of_equiv : D ⥤ C :=
{ obj := G_obj,
map := λ Y Y' g, (e (G_obj Y) Y') ((e (G_obj Y) Y).symm (𝟙 _) ≫ g),
map_comp' := λ Y Y' Y'' g g', begin
rw [← equiv.eq_symm_apply, ← he' e he, equiv.symm_apply_apply],
conv { to_rhs, rw [← assoc, he' e he, comp_id, equiv.symm_apply_apply] },
simp
end }
def adjunction_of_equiv_right : F ⊣ right_adjoint_of_equiv e he :=
mk_of_hom_equiv
{ hom_equiv := e,
hom_equiv_naturality_left_symm' := by intros; rw [equiv.symm_apply_eq, he]; simp,
hom_equiv_naturality_right' :=
begin
intros X Y Y' g h,
erw [←he, equiv.apply_eq_iff_eq, ←assoc, he' e he, comp_id, equiv.symm_apply_apply]
end }
end construct_right
end adjunction
open adjunction
namespace equivalence
def to_adjunction (e : C ≌ D) : e.functor ⊣ e.inverse :=
mk_of_unit_counit ⟨e.unit, e.counit,
by { ext, dsimp, simp only [id_comp], exact e.functor_unit_comp _, },
by { ext, dsimp, simp only [id_comp], exact e.unit_inverse_comp _, }⟩
end equivalence
namespace functor
def adjunction (E : C ⥤ D) [is_equivalence E] : E ⊣ E.inv :=
(E.as_equivalence).to_adjunction
end functor
end category_theory