CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2019 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Johan Commelin
-/
import category_theory.equivalence
import data.equiv.basic

namespace category_theory
open category

universes v₁ v₂ v₃ u₁ u₂ u₃ -- declare the `v`'s first; see `category_theory.category` for an explanation

local attribute [elab_simple] whisker_left whisker_right

variables {C : Type u₁} [𝒞 : category.{v₁} C] {D : Type u₂} [𝒟 : category.{v₂} D]
include 𝒞 𝒟

/--
`F ⊣ G` represents the data of an adjunction between two functors
`F : C ⥤ D` and `G : D ⥤ C`. `F` is the left adjoint and `G` is the right adjoint.
-/
structure adjunction (F : C ⥤ D) (G : D ⥤ C) :=
(hom_equiv : Π (X Y), (F.obj X ⟶ Y) ≃ (X ⟶ G.obj Y))
(unit : 𝟭 C ⟶ F.comp G)
(counit : G.comp F ⟶ 𝟭 D)
(hom_equiv_unit' : Π {X Y f}, (hom_equiv X Y) f = (unit : _ ⟶ _).app X ≫ G.map f . obviously)
(hom_equiv_counit' : Π {X Y g}, (hom_equiv X Y).symm g = F.map g ≫ counit.app Y . obviously)

infix ` ⊣ `:15 := adjunction

class is_left_adjoint (left : C ⥤ D) :=
(right : D ⥤ C)
(adj : left ⊣ right)

class is_right_adjoint (right : D ⥤ C) :=
(left : C ⥤ D)
(adj : left ⊣ right)

def left_adjoint (R : D ⥤ C) [is_right_adjoint R] : C ⥤ D :=
is_right_adjoint.left R
def right_adjoint (L : C ⥤ D) [is_left_adjoint L] : D ⥤ C :=
is_left_adjoint.right L

namespace adjunction

restate_axiom hom_equiv_unit'
restate_axiom hom_equiv_counit'
attribute [simp, priority 10] hom_equiv_unit hom_equiv_counit

section

variables {F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X' X : C} {Y Y' : D}

@[simp, priority 10] lemma hom_equiv_naturality_left_symm (f : X' ⟶ X) (g : X ⟶ G.obj Y) :
  (adj.hom_equiv X' Y).symm (f ≫ g) = F.map f ≫ (adj.hom_equiv X Y).symm g :=
by rw [hom_equiv_counit, F.map_comp, assoc, adj.hom_equiv_counit.symm]

@[simp] lemma hom_equiv_naturality_left (f : X' ⟶ X) (g : F.obj X ⟶ Y) :
  (adj.hom_equiv X' Y) (F.map f ≫ g) = f ≫ (adj.hom_equiv X Y) g :=
by rw [← equiv.eq_symm_apply]; simp [-hom_equiv_unit]

@[simp, priority 10] lemma hom_equiv_naturality_right (f : F.obj X ⟶ Y) (g : Y ⟶ Y') :
  (adj.hom_equiv X Y') (f ≫ g) = (adj.hom_equiv X Y) f ≫ G.map g :=
by rw [hom_equiv_unit, G.map_comp, ← assoc, ←hom_equiv_unit]

@[simp] lemma hom_equiv_naturality_right_symm (f : X ⟶ G.obj Y) (g : Y ⟶ Y') :
  (adj.hom_equiv X Y').symm (f ≫ G.map g) = (adj.hom_equiv X Y).symm f ≫ g :=
by rw [equiv.symm_apply_eq]; simp [-hom_equiv_counit]

@[simp] lemma left_triangle :
  (whisker_right adj.unit F) ≫ (whisker_left F adj.counit) = nat_trans.id _ :=
begin
  ext, dsimp,
  erw [← adj.hom_equiv_counit, equiv.symm_apply_eq, adj.hom_equiv_unit],
  simp
end

@[simp] lemma right_triangle :
  (whisker_left G adj.unit) ≫ (whisker_right adj.counit G) = nat_trans.id _ :=
begin
  ext, dsimp,
  erw [← adj.hom_equiv_unit, ← equiv.eq_symm_apply, adj.hom_equiv_counit],
  simp
end

@[simp, reassoc] lemma left_triangle_components :
  F.map (adj.unit.app X) ≫ adj.counit.app (F.obj X) = 𝟙 (F.obj X) :=
congr_arg (λ (t : nat_trans _ (𝟭 C ⋙ F)), t.app X) adj.left_triangle

@[simp, reassoc] lemma right_triangle_components {Y : D} :
  adj.unit.app (G.obj Y) ≫ G.map (adj.counit.app Y) = 𝟙 (G.obj Y) :=
congr_arg (λ (t : nat_trans _ (G ⋙ 𝟭 C)), t.app Y) adj.right_triangle

@[simp, reassoc] lemma counit_naturality {X Y : D} (f : X ⟶ Y) :
  F.map (G.map f) ≫ (adj.counit).app Y = (adj.counit).app X ≫ f :=
adj.counit.naturality f

@[simp, reassoc] lemma unit_naturality {X Y : C} (f : X ⟶ Y) :
  (adj.unit).app X ≫ G.map (F.map f) = f ≫ (adj.unit).app Y :=
(adj.unit.naturality f).symm

end

end adjunction

namespace adjunction

structure core_hom_equiv (F : C ⥤ D) (G : D ⥤ C) :=
(hom_equiv : Π (X Y), (F.obj X ⟶ Y) ≃ (X ⟶ G.obj Y))
(hom_equiv_naturality_left_symm' : Π {X' X Y} (f : X' ⟶ X) (g : X ⟶ G.obj Y),
  (hom_equiv X' Y).symm (f ≫ g) = F.map f ≫ (hom_equiv X Y).symm g . obviously)
(hom_equiv_naturality_right' : Π {X Y Y'} (f : F.obj X ⟶ Y) (g : Y ⟶ Y'),
  (hom_equiv X Y') (f ≫ g) = (hom_equiv X Y) f ≫ G.map g . obviously)

namespace core_hom_equiv

restate_axiom hom_equiv_naturality_left_symm'
restate_axiom hom_equiv_naturality_right'
attribute [simp, priority 10] hom_equiv_naturality_left_symm hom_equiv_naturality_right

variables {F : C ⥤ D} {G : D ⥤ C} (adj : core_hom_equiv F G) {X' X : C} {Y Y' : D}

@[simp] lemma hom_equiv_naturality_left (f : X' ⟶ X) (g : F.obj X ⟶ Y) :
  (adj.hom_equiv X' Y) (F.map f ≫ g) = f ≫ (adj.hom_equiv X Y) g :=
by rw [← equiv.eq_symm_apply]; simp

@[simp] lemma hom_equiv_naturality_right_symm (f : X ⟶ G.obj Y) (g : Y ⟶ Y') :
  (adj.hom_equiv X Y').symm (f ≫ G.map g) = (adj.hom_equiv X Y).symm f ≫ g :=
by rw [equiv.symm_apply_eq]; simp

end core_hom_equiv

structure core_unit_counit (F : C ⥤ D) (G : D ⥤ C) :=
(unit : 𝟭 C ⟶ F.comp G)
(counit : G.comp F ⟶ 𝟭 D)
(left_triangle' : whisker_right unit F ≫ (functor.associator F G F).hom ≫ whisker_left F counit = nat_trans.id (𝟭 C ⋙ F) . obviously)
(right_triangle' : whisker_left G unit ≫ (functor.associator G F G).inv ≫ whisker_right counit G = nat_trans.id (G ⋙ 𝟭 C) . obviously)

namespace core_unit_counit

restate_axiom left_triangle'
restate_axiom right_triangle'
attribute [simp] left_triangle right_triangle

end core_unit_counit

variables {F : C ⥤ D} {G : D ⥤ C}

def mk_of_hom_equiv (adj : core_hom_equiv F G) : F ⊣ G :=
{ unit :=
  { app := λ X, (adj.hom_equiv X (F.obj X)) (𝟙 (F.obj X)),
    naturality' :=
    begin
      intros,
      erw [← adj.hom_equiv_naturality_left, ← adj.hom_equiv_naturality_right],
      dsimp, simp
    end },
  counit :=
  { app := λ Y, (adj.hom_equiv _ _).inv_fun (𝟙 (G.obj Y)),
    naturality' :=
    begin
      intros,
      erw [← adj.hom_equiv_naturality_left_symm, ← adj.hom_equiv_naturality_right_symm],
      dsimp, simp
    end },
  hom_equiv_unit' := λ X Y f, by erw [← adj.hom_equiv_naturality_right]; simp,
  hom_equiv_counit' := λ X Y f, by erw [← adj.hom_equiv_naturality_left_symm]; simp,
  .. adj }

def mk_of_unit_counit (adj : core_unit_counit F G) : F ⊣ G :=
{ hom_equiv := λ X Y,
  { to_fun := λ f, adj.unit.app X ≫ G.map f,
    inv_fun := λ g, F.map g ≫ adj.counit.app Y,
    left_inv := λ f, begin
      change F.map (_ ≫ _) ≫ _ = _,
      rw [F.map_comp, assoc, ←functor.comp_map, adj.counit.naturality, ←assoc],
      convert id_comp _ f,
      have t := congr_arg (λ t : nat_trans _ _, t.app _) adj.left_triangle,
      dsimp at t,
      simp only [id_comp] at t,
      exact t,
    end,
    right_inv := λ g, begin
      change _ ≫ G.map (_ ≫ _) = _,
      rw [G.map_comp, ←assoc, ←functor.comp_map, ←adj.unit.naturality, assoc],
      convert comp_id _ g,
      have t := congr_arg (λ t : nat_trans _ _, t.app _) adj.right_triangle,
      dsimp at t,
      simp only [id_comp] at t,
      exact t,
  end },
  .. adj }

section
omit 𝒟

def id : 𝟭 C ⊣ 𝟭 C :=
{ hom_equiv := λ X Y, equiv.refl _,
  unit := 𝟙 _,
  counit := 𝟙 _ }

end

section
variables {E : Type u₃} [ℰ : category.{v₃} E] (H : D ⥤ E) (I : E ⥤ D)

def comp (adj₁ : F ⊣ G) (adj₂ : H ⊣ I) : F ⋙ H ⊣ I ⋙ G :=
{ hom_equiv := λ X Z, equiv.trans (adj₂.hom_equiv _ _) (adj₁.hom_equiv _ _),
  unit := adj₁.unit ≫
  (whisker_left F $ whisker_right adj₂.unit G) ≫ (functor.associator _ _ _).inv,
  counit := (functor.associator _ _ _).hom ≫
    (whisker_left I $ whisker_right adj₁.counit H) ≫ adj₂.counit }

end

section construct_left
-- Construction of a left adjoint. In order to construct a left
-- adjoint to a functor G : D → C, it suffices to give the object part
-- of a functor F : C → D together with isomorphisms Hom(FX, Y) ≃
-- Hom(X, GY) natural in Y. The action of F on morphisms can be
-- constructed from this data.
variables {F_obj : C → D} {G}
variables (e : Π X Y, (F_obj X ⟶ Y) ≃ (X ⟶ G.obj Y))
variables (he : Π X Y Y' g h, e X Y' (h ≫ g) = e X Y h ≫ G.map g)
include he

private lemma he' {X Y Y'} (f g) : (e X Y').symm (f ≫ G.map g) = (e X Y).symm f ≫ g :=
by intros; rw [equiv.symm_apply_eq, he]; simp

def left_adjoint_of_equiv : C ⥤ D :=
{ obj := F_obj,
  map := λ X X' f, (e X (F_obj X')).symm (f ≫ e X' (F_obj X') (𝟙 _)),
  map_comp' := λ X X' X'' f f', begin
    rw [equiv.symm_apply_eq, he, equiv.apply_symm_apply],
    conv { to_rhs, rw [assoc, ←he, id_comp, equiv.apply_symm_apply] },
    simp
  end }

def adjunction_of_equiv_left : left_adjoint_of_equiv e he ⊣ G :=
mk_of_hom_equiv
{ hom_equiv := e,
  hom_equiv_naturality_left_symm' :=
  begin
    intros,
    erw [← he' e he, ← equiv.apply_eq_iff_eq],
    simp [(he _ _ _ _ _).symm]
  end }

end construct_left

section construct_right
-- Construction of a right adjoint, analogous to the above.
variables {F} {G_obj : D → C}
variables (e : Π X Y, (F.obj X ⟶ Y) ≃ (X ⟶ G_obj Y))
variables (he : Π X' X Y f g, e X' Y (F.map f ≫ g) = f ≫ e X Y g)
include he

private lemma he' {X' X Y} (f g) : F.map f ≫ (e X Y).symm g = (e X' Y).symm (f ≫ g) :=
by intros; rw [equiv.eq_symm_apply, he]; simp

def right_adjoint_of_equiv : D ⥤ C :=
{ obj := G_obj,
  map := λ Y Y' g, (e (G_obj Y) Y') ((e (G_obj Y) Y).symm (𝟙 _) ≫ g),
  map_comp' := λ Y Y' Y'' g g', begin
    rw [← equiv.eq_symm_apply, ← he' e he, equiv.symm_apply_apply],
    conv { to_rhs, rw [← assoc, he' e he, comp_id, equiv.symm_apply_apply] },
    simp
  end }

def adjunction_of_equiv_right : F ⊣ right_adjoint_of_equiv e he :=
mk_of_hom_equiv
{ hom_equiv := e,
  hom_equiv_naturality_left_symm' := by intros; rw [equiv.symm_apply_eq, he]; simp,
  hom_equiv_naturality_right' :=
  begin
    intros X Y Y' g h,
    erw [←he, equiv.apply_eq_iff_eq, ←assoc, he' e he, comp_id, equiv.symm_apply_apply]
  end }

end construct_right

end adjunction

open adjunction

namespace equivalence

def to_adjunction (e : C ≌ D) : e.functor ⊣ e.inverse :=
mk_of_unit_counit ⟨e.unit, e.counit,
  by { ext, dsimp, simp only [id_comp], exact e.functor_unit_comp _, },
  by { ext, dsimp, simp only [id_comp], exact e.unit_inverse_comp _, }⟩

end equivalence

namespace functor

def adjunction (E : C ⥤ D) [is_equivalence E] : E ⊣ E.inv :=
(E.as_equivalence).to_adjunction

end functor

end category_theory