CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.adjunction.basic
import category_theory.yoneda

open category_theory

namespace category_theory
universes v₁ v₂ u₁ u₂

open category
open opposite

variables {C : Type u₁} [𝒞 : category.{v₁} C]
variables {D : Type u₂} [𝒟 : category.{v₂} D]
include 𝒞 𝒟
variables {L : C ⥤ D} {R : D ⥤ C} (h : L ⊣ R)

-- Lemma 4.5.13 from [Riehl][riehl2017]
-- Proof in <https://stacks.math.columbia.edu/tag/0036>
-- or at <https://math.stackexchange.com/a/2727177>
instance unit_is_iso_of_L_fully_faithful [full L] [faithful L] : is_iso (adjunction.unit h) :=
@nat_iso.is_iso_of_is_iso_app _ _ _ _ _ _ (adjunction.unit h) $ λ X,
@yoneda.is_iso _ _ _ _ ((adjunction.unit h).app X)
{ inv := { app := λ Y f, L.preimage ((h.hom_equiv (unop Y) (L.obj X)).symm f) },
  inv_hom_id' :=
  begin
    ext, dsimp,
    simp only [adjunction.hom_equiv_counit, preimage_comp, preimage_map, category.assoc],
    rw ←h.unit_naturality,
    simp,
  end,
  hom_inv_id' :=
  begin
    ext, dsimp,
    apply L.injectivity,
    simp,
  end }.

instance counit_is_iso_of_R_fully_faithful [full R] [faithful R] : is_iso (adjunction.counit h) :=
@nat_iso.is_iso_of_is_iso_app _ _ _ _ _ _ (adjunction.counit h) $ λ X,
@is_iso_of_op _ _ _ _ _ $
@coyoneda.is_iso _ _ _ _ ((adjunction.counit h).app X).op
{ inv := { app := λ Y f, R.preimage ((h.hom_equiv (R.obj X) Y) f) },
  inv_hom_id' :=
  begin
    ext, dsimp,
    simp only [adjunction.hom_equiv_unit, preimage_comp, preimage_map],
    rw ←h.counit_naturality,
    simp,
  end,
  hom_inv_id' :=
  begin
    ext, dsimp,
    apply R.injectivity,
    simp,
  end }

-- TODO also prove the converses?
-- def L_full_of_unit_is_iso [is_iso (adjunction.unit h)] : full L := sorry
-- def L_faithful_of_unit_is_iso [is_iso (adjunction.unit h)] : faithful L := sorry
-- def R_full_of_counit_is_iso [is_iso (adjunction.counit h)] : full R := sorry
-- def R_faithful_of_counit_is_iso [is_iso (adjunction.counit h)] : faithful R := sorry

-- TODO also do the statements from Riehl 4.5.13 for full and faithful separately?


end category_theory