Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import category_theory.concrete_category /-! # Category of categories This file contains definition of category `Cat` of all categories. In this category objects are categories and morphisms are functors between these categories. ## Implementation notes Though `Cat` is not a concrete category, we use `bundled` to define its carrier type. -/ universes v u namespace category_theory /-- Category of categories. -/ def Cat := bundled category.{v u} namespace Cat instance str (C : Cat.{v u}) : category.{v u} C.α := C.str /-- Construct a bundled `Cat` from the underlying type and the typeclass. -/ def of (C : Type u) [category.{v} C] : Cat.{v u} := bundled.of C /-- Category structure on `Cat` -/ instance category : large_category.{max v u} Cat.{v u} := { hom := λ C D, C.α ⥤ D.α, id := λ C, 𝟭 C.α, comp := λ C D E F G, F ⋙ G, id_comp' := λ C D F, by cases F; refl, comp_id' := λ C D F, by cases F; refl, assoc' := by intros; refl } /-- Functor that gets the set of objects of a category. It is not called `forget`, because it is not a faithful functor. -/ def objects : Cat.{v u} ⥤ Type u := { obj := bundled.α, map := λ C D F, F.obj } end Cat end category_theory