Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18542License: APACHE
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Simon Hudon The Kleisli construction on the Type category TODO: generalise this to work with category_theory.monad -/ import category_theory.category universes u v namespace category_theory def Kleisli (m) [monad.{u v} m] := Type u def Kleisli.mk (m) [monad.{u v} m] (α : Type u) : Kleisli m := α instance Kleisli.category_struct {m} [monad m] : category_struct (Kleisli m) := { hom := λ α β, α → m β, id := λ α x, (pure x : m α), comp := λ X Y Z f g, f >=> g } instance Kleisli.category {m} [monad m] [is_lawful_monad m] : category (Kleisli m) := by refine { hom := λ α β, α → m β, id := λ α x, (pure x : m α), comp := λ X Y Z f g, f >=> g, id_comp' := _, comp_id' := _, assoc' := _ }; intros; ext; simp only [(>=>)] with functor_norm @[simp] lemma Kleisli.id_def {m} [monad m] [is_lawful_monad m] (α : Kleisli m) : 𝟙 α = @pure m _ α := rfl lemma Kleisli.comp_def {m} [monad m] [is_lawful_monad m] (α β γ : Kleisli m) (xs : α ⟶ β) (ys : β ⟶ γ) (a : α) : (xs ≫ ys) a = xs a >>= ys := rfl end category_theory