CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18542
License: APACHE
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Simon Hudon

The Kleisli construction on the Type category

TODO: generalise this to work with category_theory.monad
-/
import category_theory.category

universes u v

namespace category_theory

def Kleisli (m) [monad.{u v} m] := Type u

def Kleisli.mk (m) [monad.{u v} m] (α : Type u) : Kleisli m := α

instance Kleisli.category_struct {m} [monad m] : category_struct (Kleisli m) :=
{ hom := λ α β, α → m β,
  id := λ α x, (pure x : m α),
  comp := λ X Y Z f g, f >=> g }

instance Kleisli.category {m} [monad m] [is_lawful_monad m] : category (Kleisli m) :=
by refine { hom := λ α β, α → m β,
            id := λ α x, (pure x : m α),
            comp := λ X Y Z f g, f >=> g,
            id_comp' := _, comp_id' := _, assoc' := _ };
   intros; ext; simp only [(>=>)] with functor_norm

@[simp] lemma Kleisli.id_def {m} [monad m] [is_lawful_monad m] (α : Kleisli m) :
  𝟙 α = @pure m _ α := rfl

lemma Kleisli.comp_def {m} [monad m] [is_lawful_monad m] (α β γ : Kleisli m)
  (xs : α ⟶ β) (ys : β ⟶ γ) (a : α) :
  (xs ≫ ys) a = xs a >>= ys := rfl

end category_theory