Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Path: Maths_Challenges / _target / deps / mathlib / src / category_theory / concrete_category / unbundled_hom.lean
Views: 18536License: APACHE
/- Copyright (c) 2019 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import category_theory.concrete_category.bundled_hom /-! # Category instances for structures that use unbundled homs This file provides basic infrastructure to define concrete categories using unbundled homs (see `class unbundled_hom`), and define forgetful functors between them (see `unbundled_hom.mk_has_forget₂`). -/ universes v u namespace category_theory /-- A class for unbundled homs used to define a category. `hom` must take two types `α`, `β` and instances of the corresponding structures, and return a predicate on `α → β`. -/ class unbundled_hom {c : Type u → Type u} (hom : Π {α β}, c α → c β → (α → β) → Prop) := (hom_id : ∀ {α} (ia : c α), hom ia ia id) (hom_comp : ∀ {α β γ} {Iα : c α} {Iβ : c β} {Iγ : c γ} {g : β → γ} {f : α → β} (hg : hom Iβ Iγ g) (hf : hom Iα Iβ f), hom Iα Iγ (g ∘ f)) namespace unbundled_hom variables (c : Type u → Type u) (hom : Π ⦃α β⦄, c α → c β → (α → β) → Prop) [𝒞 : unbundled_hom hom] include 𝒞 instance bundled_hom : bundled_hom (λ α β (Iα : c α) (Iβ : c β), subtype (hom Iα Iβ)) := { to_fun := λ _ _ _ _, subtype.val, id := λ α Iα, ⟨id, hom_id hom Iα⟩, id_to_fun := by intros; refl, comp := λ _ _ _ _ _ _ g f, ⟨g.1 ∘ f.1, hom_comp c g.2 f.2⟩, comp_to_fun := by intros; refl, hom_ext := by intros; apply subtype.eq } section has_forget₂ variables {c hom} {c' : Type u → Type u} {hom' : Π ⦃α β⦄, c' α → c' β → (α → β) → Prop} [𝒞' : unbundled_hom hom'] include 𝒞' variables (obj : Π ⦃α⦄, c α → c' α) (map : ∀ ⦃α β Iα Iβ f⦄, @hom α β Iα Iβ f → hom' (obj Iα) (obj Iβ) f) /-- A custom constructor for forgetful functor between concrete categories defined using `unbundled_hom`. -/ def mk_has_forget₂ : has_forget₂ (bundled c) (bundled c') := bundled_hom.mk_has_forget₂ obj (λ X Y f, ⟨f.val, map f.property⟩) (λ _ _ _, rfl) end has_forget₂ end unbundled_hom end category_theory