Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Reid Barton Facts about epimorphisms and monomorphisms. The definitions of `epi` and `mono` are in `category_theory.category`, since they are used by some lemmas for `iso`, which is used everywhere. -/ import category_theory.adjunction.basic import category_theory.fully_faithful universes v₁ v₂ u₁ u₂ namespace category_theory variables {C : Type u₁} [𝒞 : category.{v₁} C] {D : Type u₂} [𝒟 : category.{v₂} D] include 𝒞 𝒟 lemma left_adjoint_preserves_epi {F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X Y : C} {f : X ⟶ Y} (hf : epi f) : epi (F.map f) := begin constructor, intros Z g h H, replace H := congr_arg (adj.hom_equiv X Z) H, rwa [adj.hom_equiv_naturality_left, adj.hom_equiv_naturality_left, cancel_epi, equiv.apply_eq_iff_eq] at H end lemma right_adjoint_preserves_mono {F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X Y : D} {f : X ⟶ Y} (hf : mono f) : mono (G.map f) := begin constructor, intros Z g h H, replace H := congr_arg (adj.hom_equiv Z Y).symm H, rwa [adj.hom_equiv_naturality_right_symm, adj.hom_equiv_naturality_right_symm, cancel_mono, equiv.apply_eq_iff_eq] at H end lemma faithful_reflects_epi (F : C ⥤ D) [faithful F] {X Y : C} {f : X ⟶ Y} (hf : epi (F.map f)) : epi f := ⟨λ Z g h H, F.injectivity $ by rw [←cancel_epi (F.map f), ←F.map_comp, ←F.map_comp, H]⟩ lemma faithful_reflects_mono (F : C ⥤ D) [faithful F] {X Y : C} {f : X ⟶ Y} (hf : mono (F.map f)) : mono f := ⟨λ Z g h H, F.injectivity $ by rw [←cancel_mono (F.map f), ←F.map_comp, ←F.map_comp, H]⟩ end category_theory