CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2018 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Scott Morrison
-/
import category_theory.isomorphism
import category_theory.functor_category
import category_theory.opposites
import tactic.reassoc_axiom

universes v v' u u' -- declare the `v`'s first; see `category_theory.category` for an explanation

namespace category_theory
open opposite

variables {C : Type u} [𝒞 : category.{v} C]
include 𝒞

def eq_to_hom {X Y : C} (p : X = Y) : X ⟶ Y := by rw p; exact 𝟙 _

@[simp] lemma eq_to_hom_refl (X : C) (p : X = X) : eq_to_hom p = 𝟙 X := rfl
@[simp, reassoc] lemma eq_to_hom_trans {X Y Z : C} (p : X = Y) (q : Y = Z) :
  eq_to_hom p ≫ eq_to_hom q = eq_to_hom (p.trans q) :=
by cases p; cases q; simp

def eq_to_iso {X Y : C} (p : X = Y) : X ≅ Y :=
⟨eq_to_hom p, eq_to_hom p.symm, by simp, by simp⟩

@[simp] lemma eq_to_iso.hom {X Y : C} (p : X = Y) : (eq_to_iso p).hom = eq_to_hom p :=
rfl

@[simp] lemma eq_to_iso_refl (X : C) (p : X = X) : eq_to_iso p = iso.refl X := rfl
@[simp] lemma eq_to_iso_trans {X Y Z : C} (p : X = Y) (q : Y = Z) :
  eq_to_iso p ≪≫ eq_to_iso q = eq_to_iso (p.trans q) :=
by ext; simp

@[simp] lemma eq_to_hom_op (X Y : C) (h : X = Y) : (eq_to_hom h).op = eq_to_hom (congr_arg op h.symm) :=
begin
  cases h,
  refl
end

variables {D : Type u'} [𝒟 : category.{v'} D]
include 𝒟

namespace functor

/-- Proving equality between functors. This isn't an extensionality lemma,
  because usually you don't really want to do this. -/
lemma ext {F G : C ⥤ D} (h_obj : ∀ X, F.obj X = G.obj X)
  (h_map : ∀ X Y f, F.map f = eq_to_hom (h_obj X) ≫ G.map f ≫ eq_to_hom (h_obj Y).symm) :
  F = G :=
begin
  cases F with F_obj _ _ _, cases G with G_obj _ _ _,
  have : F_obj = G_obj, by ext X; apply h_obj,
  subst this,
  congr,
  funext X Y f,
  simpa using h_map X Y f
end

-- Using equalities between functors.

lemma congr_obj {F G : C ⥤ D} (h : F = G) (X) : F.obj X = G.obj X :=
by subst h

lemma congr_hom {F G : C ⥤ D} (h : F = G) {X Y} (f : X ⟶ Y) :
  F.map f = eq_to_hom (congr_obj h X) ≫ G.map f ≫ eq_to_hom (congr_obj h Y).symm :=
by subst h; simp

end functor

lemma eq_to_hom_map (F : C ⥤ D) {X Y : C} (p : X = Y) :
  F.map (eq_to_hom p) = eq_to_hom (congr_arg F.obj p) :=
by cases p; simp

lemma eq_to_iso_map (F : C ⥤ D) {X Y : C} (p : X = Y) :
  F.map_iso (eq_to_iso p) = eq_to_iso (congr_arg F.obj p) :=
by ext; cases p; simp

lemma eq_to_hom_app {F G : C ⥤ D} (h : F = G) (X : C) :
  (eq_to_hom h : F ⟶ G).app X = eq_to_hom (functor.congr_obj h X) :=
by subst h; refl

end category_theory