Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Path: Maths_Challenges / _target / deps / mathlib / src / category_theory / limits / shapes / finite_limits.lean
Views: 18536License: APACHE
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import category_theory.limits.shapes.products import category_theory.discrete_category import data.fintype universes v u open category_theory namespace category_theory.limits /-- A category with a `fintype` of objects, and a `fintype` for each morphism space. -/ class fin_category (J : Type v) [small_category J] := (decidable_eq_obj : decidable_eq J . tactic.apply_instance) (fintype_obj : fintype J . tactic.apply_instance) (decidable_eq_hom : Π (j j' : J), decidable_eq (j ⟶ j') . tactic.apply_instance) (fintype_hom : Π (j j' : J), fintype (j ⟶ j') . tactic.apply_instance) attribute [instance] fin_category.decidable_eq_obj fin_category.fintype_obj fin_category.decidable_eq_hom fin_category.fintype_hom -- We need a `decidable_eq` instance here to construct `fintype` on the morphism spaces. instance fin_category_discrete_of_decidable_fintype (J : Type v) [fintype J] [decidable_eq J] : fin_category (discrete J) := { } variables (C : Type u) [𝒞 : category.{v} C] include 𝒞 class has_finite_limits := (has_limits_of_shape : Π (J : Type v) [small_category J] [fin_category J], has_limits_of_shape.{v} J C) class has_finite_colimits := (has_colimits_of_shape : Π (J : Type v) [small_category J] [fin_category J], has_colimits_of_shape.{v} J C) attribute [instance] has_finite_limits.has_limits_of_shape has_finite_colimits.has_colimits_of_shape @[priority 100] -- see Note [lower instance priority] instance [has_limits.{v} C] : has_finite_limits.{v} C := { has_limits_of_shape := λ J _ _, by { resetI, apply_instance } } @[priority 100] -- see Note [lower instance priority] instance [has_colimits.{v} C] : has_finite_colimits.{v} C := { has_colimits_of_shape := λ J _ _, by { resetI, apply_instance } } end category_theory.limits