Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import category_theory.monad.algebra import category_theory.adjunction.fully_faithful namespace category_theory open category universes v₁ v₂ u₁ u₂ -- declare the `v`'s first; see `category_theory.category` for an explanation variables {C : Type u₁} [𝒞 : category.{v₁} C] {D : Type u₂} [𝒟 : category.{v₂} D] include 𝒞 𝒟 variables (R : D ⥤ C) namespace adjunction instance monad (R : D ⥤ C) [is_right_adjoint R] : monad.{v₁} ((left_adjoint R) ⋙ R) := let L := left_adjoint R in let h := (is_right_adjoint.adj R) in { η := h.unit, μ := whisker_right (whisker_left L h.counit) R, assoc' := λ X, by { dsimp, erw [←R.map_comp, h.counit.naturality, R.map_comp], refl }, right_unit' := λ X, by { dsimp, rw [←R.map_comp], simp }, } @[simp] lemma monad_η_app [is_right_adjoint R] (X) : (η_ ((left_adjoint R) ⋙ R)).app X = (is_right_adjoint.adj R).unit.app X := rfl @[simp] lemma monad_μ_app [is_right_adjoint R] (X) : (μ_ ((left_adjoint R) ⋙ R)).app X = R.map ((is_right_adjoint.adj R).counit.app ((left_adjoint R).obj X)) := rfl end adjunction namespace monad -- We can't use `@[simps]` here because it can't cope with `let` statements. def comparison [is_right_adjoint R] : D ⥤ algebra ((left_adjoint R) ⋙ R) := let h := (is_right_adjoint.adj R) in { obj := λ X, { A := R.obj X, a := R.map (h.counit.app X), assoc' := by { dsimp, conv { to_rhs, erw [←R.map_comp, h.counit.naturality, R.map_comp], }, refl } }, map := λ X Y f, { f := R.map f, h' := begin dsimp, erw [←R.map_comp, h.counit.naturality, R.map_comp, functor.id_map], refl, end } }. @[simp] lemma comparison_map_f [is_right_adjoint R] {X Y} (f : X ⟶ Y) : ((comparison R).map f).f = R.map f := rfl @[simp] lemma comparison_obj_a [is_right_adjoint R] (X) : ((comparison R).obj X).a = R.map ((is_right_adjoint.adj R).counit.app X) := rfl def comparison_forget [is_right_adjoint R] : comparison R ⋙ forget ((left_adjoint R) ⋙ R) ≅ R := { hom := { app := λ X, 𝟙 _, }, inv := { app := λ X, 𝟙 _, } } end monad section prio set_option default_priority 100 -- see Note [default priority] /-- A functor is *reflective*, or *a reflective inclusion*, if it is fully faithful and right adjoint. -/ class reflective (R : D ⥤ C) extends is_right_adjoint R, full R, faithful R. /-- A right adjoint functor `R : D ⥤ C` is *monadic* if the comparison function `monad.comparison R` from `D` to the category of Eilenberg-Moore algebras for the adjunction is an equivalence. -/ class monadic_right_adjoint (R : D ⥤ C) extends is_right_adjoint R := (eqv : is_equivalence (monad.comparison R)) end prio instance μ_iso_of_reflective [reflective R] : is_iso (μ_ ((left_adjoint R) ⋙ R)) := by { dsimp [adjunction.monad], apply_instance } attribute [instance] monadic_right_adjoint.eqv -- PROJECT prove Beck's monadicity theorem, e.g. from Section 5.5 of [Riehl][riehl2017] namespace reflective lemma comparison_ess_surj_aux [reflective R] (X : monad.algebra ((left_adjoint R) ⋙ R)) : ((is_right_adjoint.adj R).unit).app (R.obj ((left_adjoint R).obj (X.A))) = R.map ((left_adjoint R).map ((is_right_adjoint.adj R).unit.app X.A)) := begin -- both are left inverses to μ_X. apply (cancel_mono ((μ_ ((left_adjoint R) ⋙ R)).app _)).1, { dsimp, erw [adjunction.right_triangle_components, ←R.map_comp], simp, }, { apply is_iso.mono_of_iso _, apply nat_iso.is_iso_app_of_is_iso } end instance [reflective R] (X : monad.algebra ((left_adjoint R) ⋙ R)) : is_iso ((is_right_adjoint.adj R).unit.app X.A) := let L := left_adjoint R in let h := (is_right_adjoint.adj R) in { inv := X.a, hom_inv_id' := X.unit, inv_hom_id' := begin dsimp, erw [h.unit.naturality, comparison_ess_surj_aux, ←R.map_comp, ←L.map_comp, X.unit, L.map_id, R.map_id], refl end } instance comparison_ess_surj [reflective R]: ess_surj (monad.comparison R) := let L := left_adjoint R in let h := (is_right_adjoint.adj R) in { obj_preimage := λ X, L.obj X.A, iso' := λ X, { hom := { f := (as_iso (h.unit.app X.A)).inv, h' := begin dsimp, apply (cancel_epi (R.map (L.map ((h.unit).app (X.A))))).1, rw [is_iso.hom_inv_id_assoc, ←category.assoc, ←R.map_comp,adjunction.left_triangle_components], erw [functor.map_id, category.id_comp], apply (cancel_epi ((h.unit).app (X.A))).1, rw is_iso.hom_inv_id, exact X.unit, end }, inv := { f := (as_iso (h.unit.app X.A)).hom, h' := begin dsimp, erw [←R.map_comp, adjunction.left_triangle_components, R.map_id], apply (cancel_epi ((h.unit).app (X.A))).1, conv { to_rhs, erw [←category.assoc, X.unit] }, erw [comp_id, id_comp], end }, hom_inv_id' := by { ext, exact (as_iso (h.unit.app X.A)).inv_hom_id, }, inv_hom_id' := by { ext, exact (as_iso (h.unit.app X.A)).hom_inv_id, }, } } instance comparison_full [full R] [is_right_adjoint R] : full (monad.comparison R) := { preimage := λ X Y f, R.preimage f.f } instance comparison_faithful [faithful R] [is_right_adjoint R] : faithful (monad.comparison R) := { injectivity' := λ X Y f g w, by { have w' := (congr_arg monad.algebra.hom.f w), exact R.injectivity w' } } end reflective /-- Any reflective inclusion has a monadic right adjoint. cf Prop 5.3.3 of [Riehl][riehl2017] -/ @[priority 100] -- see Note [lower instance priority] instance monadic_of_reflective [reflective R] : monadic_right_adjoint R := { eqv := equivalence.equivalence_of_fully_faithfully_ess_surj _ } end category_theory