CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.monad.algebra
import category_theory.adjunction.fully_faithful

namespace category_theory
open category

universes v₁ v₂ u₁ u₂ -- declare the `v`'s first; see `category_theory.category` for an explanation

variables {C : Type u₁} [𝒞 : category.{v₁} C] {D : Type u₂} [𝒟 : category.{v₂} D]
include 𝒞 𝒟
variables (R : D ⥤ C)

namespace adjunction

instance monad (R : D ⥤ C) [is_right_adjoint R] : monad.{v₁} ((left_adjoint R) ⋙ R) :=
let L := left_adjoint R in
let h := (is_right_adjoint.adj R) in
{ η := h.unit,
  μ := whisker_right (whisker_left L h.counit) R,
  assoc' := λ X, by { dsimp, erw [←R.map_comp, h.counit.naturality, R.map_comp], refl },
  right_unit' := λ X, by { dsimp, rw [←R.map_comp], simp }, }

@[simp] lemma monad_η_app [is_right_adjoint R] (X) :
  (η_ ((left_adjoint R) ⋙ R)).app X = (is_right_adjoint.adj R).unit.app X := rfl
@[simp] lemma monad_μ_app [is_right_adjoint R] (X) :
  (μ_ ((left_adjoint R) ⋙ R)).app X = R.map ((is_right_adjoint.adj R).counit.app ((left_adjoint R).obj X)) := rfl

end adjunction

namespace monad

-- We can't use `@[simps]` here because it can't cope with `let` statements.
def comparison [is_right_adjoint R] : D ⥤ algebra ((left_adjoint R) ⋙ R) :=
let h := (is_right_adjoint.adj R) in
{ obj := λ X,
  { A := R.obj X,
    a := R.map (h.counit.app X),
    assoc' := by { dsimp, conv { to_rhs, erw [←R.map_comp, h.counit.naturality, R.map_comp], }, refl } },
  map := λ X Y f,
  { f := R.map f,
    h' := begin dsimp, erw [←R.map_comp, h.counit.naturality, R.map_comp, functor.id_map], refl, end } }.

@[simp] lemma comparison_map_f [is_right_adjoint R] {X Y} (f : X ⟶ Y) :
  ((comparison R).map f).f = R.map f := rfl
@[simp] lemma comparison_obj_a [is_right_adjoint R] (X) :
  ((comparison R).obj X).a = R.map ((is_right_adjoint.adj R).counit.app X) := rfl

def comparison_forget [is_right_adjoint R] : comparison R ⋙ forget ((left_adjoint R) ⋙ R) ≅ R :=
{ hom := { app := λ X, 𝟙 _, },
  inv := { app := λ X, 𝟙 _, } }

end monad

section prio
set_option default_priority 100 -- see Note [default priority]
/-- A functor is *reflective*, or *a reflective inclusion*, if it is fully faithful and right adjoint. -/
class reflective (R : D ⥤ C) extends is_right_adjoint R, full R, faithful R.

/-- A right adjoint functor `R : D ⥤ C` is *monadic* if the comparison function `monad.comparison R` from `D` to the
category of Eilenberg-Moore algebras for the adjunction is an equivalence. -/
class monadic_right_adjoint (R : D ⥤ C) extends is_right_adjoint R :=
(eqv : is_equivalence (monad.comparison R))
end prio

instance μ_iso_of_reflective [reflective R] : is_iso (μ_ ((left_adjoint R) ⋙ R)) :=
by { dsimp [adjunction.monad], apply_instance }

attribute [instance] monadic_right_adjoint.eqv

-- PROJECT prove Beck's monadicity theorem, e.g. from Section 5.5 of [Riehl][riehl2017]

namespace reflective

lemma comparison_ess_surj_aux [reflective R] (X : monad.algebra ((left_adjoint R) ⋙ R)) :
  ((is_right_adjoint.adj R).unit).app (R.obj ((left_adjoint R).obj (X.A)))
    = R.map ((left_adjoint R).map ((is_right_adjoint.adj R).unit.app X.A)) :=
begin
 -- both are left inverses to μ_X.
 apply (cancel_mono ((μ_ ((left_adjoint R) ⋙ R)).app _)).1,
 { dsimp, erw [adjunction.right_triangle_components, ←R.map_comp], simp, },
 { apply is_iso.mono_of_iso _,
   apply nat_iso.is_iso_app_of_is_iso }
end

instance [reflective R] (X : monad.algebra ((left_adjoint R) ⋙ R)) :
  is_iso ((is_right_adjoint.adj R).unit.app X.A) :=
let L := left_adjoint R in
let h := (is_right_adjoint.adj R) in
{ inv := X.a,
  hom_inv_id' := X.unit,
  inv_hom_id' :=
  begin
    dsimp,
    erw [h.unit.naturality, comparison_ess_surj_aux,
          ←R.map_comp, ←L.map_comp, X.unit, L.map_id, R.map_id],
    refl
  end }

instance comparison_ess_surj [reflective R]: ess_surj (monad.comparison R) :=
let L := left_adjoint R in
let h := (is_right_adjoint.adj R) in
{ obj_preimage := λ X, L.obj X.A,
  iso' := λ X,
  { hom :=
    { f := (as_iso (h.unit.app X.A)).inv,
      h' :=
      begin
        dsimp,
        apply (cancel_epi (R.map (L.map ((h.unit).app (X.A))))).1,
        rw [is_iso.hom_inv_id_assoc, ←category.assoc, ←R.map_comp,adjunction.left_triangle_components],
        erw [functor.map_id, category.id_comp],
        apply (cancel_epi ((h.unit).app (X.A))).1,
        rw is_iso.hom_inv_id,
        exact X.unit,
      end },
    inv :=
    { f := (as_iso (h.unit.app X.A)).hom,
      h' :=
      begin
        dsimp,
        erw [←R.map_comp, adjunction.left_triangle_components, R.map_id],
        apply (cancel_epi ((h.unit).app (X.A))).1,
        conv { to_rhs, erw [←category.assoc, X.unit] },
        erw [comp_id, id_comp],
      end },
    hom_inv_id' := by { ext, exact (as_iso (h.unit.app X.A)).inv_hom_id, },
    inv_hom_id' := by { ext, exact (as_iso (h.unit.app X.A)).hom_inv_id, }, } }

instance comparison_full [full R] [is_right_adjoint R] : full (monad.comparison R) :=
{ preimage := λ X Y f, R.preimage f.f }
instance comparison_faithful [faithful R] [is_right_adjoint R] : faithful (monad.comparison R) :=
{ injectivity' := λ X Y f g w, by { have w' := (congr_arg monad.algebra.hom.f w), exact R.injectivity w' } }

end reflective

/-- Any reflective inclusion has a monadic right adjoint.
    cf Prop 5.3.3 of [Riehl][riehl2017] -/
@[priority 100] -- see Note [lower instance priority]
instance monadic_of_reflective [reflective R] : monadic_right_adjoint R :=
{ eqv := equivalence.equivalence_of_fully_faithfully_ess_surj _ }

end category_theory