CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.monad.adjunction
import category_theory.adjunction.limits

namespace category_theory
open category
open category_theory.limits

universes v₁ v₂ u₁ u₂ -- declare the `v`'s first; see `category_theory.category` for an explanation

namespace monad

variables {C : Type u₁} [𝒞 : category.{v₁} C]
include 𝒞
variables {T : C ⥤ C} [monad.{v₁} T]

variables {J : Type v₁} [𝒥 : small_category J]
include 𝒥

namespace forget_creates_limits
variables (D : J ⥤ algebra T) [has_limit.{v₁} (D ⋙ forget T)]

@[simps] def γ : (D ⋙ forget T ⋙ T) ⟶ (D ⋙ forget T) := { app := λ j, (D.obj j).a }

@[simps] def c : cone (D ⋙ forget T) :=
{ X := T.obj (limit (D ⋙ forget T)),
  π := (functor.const_comp _ _ T).inv ≫ whisker_right (limit.cone (D ⋙ forget T)).π T ≫ (γ D) }

@[simps] def cone_point (D : J ⥤ algebra T) [has_limit.{v₁} (D ⋙ forget T)] : algebra T :=
{ A := limit (D ⋙ forget T),
  a := limit.lift _ (c D),
  unit' :=
  begin
    ext1,
    rw [category.assoc, limit.lift_π],
    dsimp,
    erw [id_comp, ←category.assoc, ←nat_trans.naturality,
        id_comp, category.assoc, algebra.unit, comp_id],
    refl,
  end,
  assoc' :=
  begin
    ext1,
    dsimp,
    simp only [limit.lift_π, γ_app, c_π, limit.cone_π, functor.const_comp, whisker_right_app,
                nat_trans.comp_app, category.assoc],
    dsimp,
    simp only [id_comp],
    conv { to_rhs,
      rw [←category.assoc, ←T.map_comp, limit.lift_π],
      dsimp [c],
      rw [id_comp], },
    conv { to_lhs,
      rw [←category.assoc, ←nat_trans.naturality, category.assoc],
      erw [algebra.assoc (D.obj j), ←category.assoc, ←T.map_comp], },
  end }

end forget_creates_limits

-- Theorem 5.6.5 from [Riehl][riehl2017]
def forget_creates_limits (D : J ⥤ algebra T) [has_limit.{v₁} (D ⋙ forget T)] : has_limit D :=
{ cone :=
  { X := forget_creates_limits.cone_point D,
    π :=
    { app := λ j, { f := limit.π (D ⋙ forget T) j },
      naturality' := λ X Y f, by { ext, dsimp, erw [id_comp, limit.w] } } },
  is_limit :=
  { lift := λ s,
    { f := limit.lift _ ((forget T).map_cone s),
      h' :=
      begin
        ext, dsimp,
        simp only [limit.lift_π, limit.cone_π, forget_map, id_comp, functor.const_comp,
                    whisker_right_app, nat_trans.comp_app, category.assoc, functor.map_cone_π],
        dsimp,
        rw [id_comp, ←category.assoc, ←T.map_comp],
        simp only [limit.lift_π, monad.forget_map, algebra.hom.h, functor.map_cone_π],
      end },
    uniq' := λ s m w, by { ext1, ext1, simpa using congr_arg algebra.hom.f (w j) } } }

end monad

variables {C : Type u₁} [𝒞 : category.{v₁} C] {D : Type u₁} [𝒟 : category.{v₁} D]
include 𝒞 𝒟
variables {J : Type v₁} [𝒥 : small_category J]

include 𝒥

instance comp_comparison_forget_has_limit
  (F : J ⥤ D) (R : D ⥤ C) [monadic_right_adjoint R] [has_limit.{v₁} (F ⋙ R)] :
  has_limit ((F ⋙ monad.comparison R) ⋙ monad.forget ((left_adjoint R) ⋙ R)) :=
(@has_limit_of_iso _ _ _ _ (F ⋙ R) _ _ (iso_whisker_left F (monad.comparison_forget R).symm))

instance comp_comparison_has_limit
  (F : J ⥤ D) (R : D ⥤ C) [monadic_right_adjoint R] [has_limit.{v₁} (F ⋙ R)] :
  has_limit (F ⋙ monad.comparison R) :=
monad.forget_creates_limits (F ⋙ monad.comparison R)

def monadic_creates_limits (F : J ⥤ D) (R : D ⥤ C) [monadic_right_adjoint R] [has_limit.{v₁} (F ⋙ R)] :
  has_limit F :=
adjunction.has_limit_of_comp_equivalence _ (monad.comparison R)

omit 𝒥

section

def has_limits_of_reflective (R : D ⥤ C) [reflective R] [has_limits.{v₁} C] : has_limits.{v₁} D :=
{ has_limits_of_shape := λ J 𝒥, by exactI
  { has_limit := λ F, monadic_creates_limits F R } }

local attribute [instance] has_limits_of_reflective
include 𝒥

-- We verify that, even jumping through these monadic hoops,
-- the limit is actually calculated in the obvious way:
example (R : D ⥤ C) [reflective R] [has_limits.{v₁} C] (F : J ⥤ D) :
limit F = (left_adjoint R).obj (limit (F ⋙ R)) := rfl

end
end category_theory