Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import category_theory.const universes v w u -- declare the `v`'s first; see `category_theory.category` for an explanation namespace category_theory instance punit_category : small_category punit := { hom := λ X Y, punit, id := λ _, punit.star, comp := λ _ _ _ _ _, punit.star } namespace functor variables {C : Type u} [𝒞 : category.{v} C] include 𝒞 /-- The constant functor. For `X : C`, `of.obj X` is the functor `punit ⥤ C` that maps `punit.star` to `X`. -/ def of : C ⥤ (punit.{w+1} ⥤ C) := const punit namespace of @[simp] lemma obj_obj (X : C) : (of.obj X).obj = λ _, X := rfl @[simp] lemma obj_map (X : C) : (of.obj X).map = λ _ _ _, 𝟙 X := rfl @[simp] lemma map_app {X Y : C} (f : X ⟶ Y) : (of.map f).app = λ _, f := rfl end of def star : C ⥤ punit.{w+1} := (const C).obj punit.star @[simp] lemma star_obj (X : C) : star.obj X = punit.star := rfl @[simp] lemma star_map {X Y : C} (f : X ⟶ Y) : star.map f = 𝟙 _ := rfl end functor end category_theory