CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Mario Carneiro

The primitive recursive functions are the least collection of functions
nat → nat which are closed under projections (using the mkpair
pairing function), composition, zero, successor, and primitive recursion
(i.e. nat.rec where the motive is C n := nat).

We can extend this definition to a large class of basic types by
using canonical encodings of types as natural numbers (Gödel numbering),
which we implement through the type class `encodable`. (More precisely,
we need that the composition of encode with decode yields a
primitive recursive function, so we have the `primcodable` type class
for this.)
-/
import data.equiv.list

open denumerable encodable

namespace nat

def elim {C : Sort*} : C → (ℕ → C → C) → ℕ → C := @nat.rec (λ _, C)

@[simp] theorem elim_zero {C} (a f) : @nat.elim C a f 0 = a := rfl
@[simp] theorem elim_succ {C} (a f n) :
  @nat.elim C a f (succ n) = f n (nat.elim a f n) := rfl

def cases {C : Sort*} (a : C) (f : ℕ → C) : ℕ → C := nat.elim a (λ n _, f n)

@[simp] theorem cases_zero {C} (a f) : @nat.cases C a f 0 = a := rfl
@[simp] theorem cases_succ {C} (a f n) : @nat.cases C a f (succ n) = f n := rfl

@[simp, reducible] def unpaired {α} (f : ℕ → ℕ → α) (n : ℕ) : α :=
f n.unpair.1 n.unpair.2

/-- The primitive recursive functions `ℕ → ℕ`. -/
inductive primrec : (ℕ → ℕ) → Prop
| zero : primrec (λ n, 0)
| succ : primrec succ
| left : primrec (λ n, n.unpair.1)
| right : primrec (λ n, n.unpair.2)
| pair {f g} : primrec f → primrec g → primrec (λ n, mkpair (f n) (g n))
| comp {f g} : primrec f → primrec g → primrec (λ n, f (g n))
| prec {f g} : primrec f → primrec g → primrec (unpaired (λ z n,
   n.elim (f z) (λ y IH, g $ mkpair z $ mkpair y IH)))

namespace primrec

theorem of_eq {f g : ℕ → ℕ} (hf : primrec f) (H : ∀ n, f n = g n) : primrec g :=
(funext H : f = g) ▸ hf

theorem const : ∀ (n : ℕ), primrec (λ _, n)
| 0 := zero
| (n+1) := succ.comp (const n)

protected theorem id : primrec id :=
(left.pair right).of_eq $ λ n, by simp

theorem prec1 {f} (m : ℕ) (hf : primrec f) : primrec (λ n,
   n.elim m (λ y IH, f $ mkpair y IH)) :=
((prec (const m) (hf.comp right)).comp
  (zero.pair primrec.id)).of_eq $
λ n, by simp; dsimp; rw [unpair_mkpair]

theorem cases1 {f} (m : ℕ) (hf : primrec f) : primrec (nat.cases m f) :=
(prec1 m (hf.comp left)).of_eq $ by simp [cases]

theorem cases {f g} (hf : primrec f) (hg : primrec g) :
  primrec (unpaired (λ z n, n.cases (f z) (λ y, g $ mkpair z y))) :=
(prec hf (hg.comp (pair left (left.comp right)))).of_eq $ by simp [cases]

protected theorem swap : primrec (unpaired (function.swap mkpair)) :=
(pair right left).of_eq $ λ n, by simp

theorem swap' {f} (hf : primrec (unpaired f)) : primrec (unpaired (function.swap f)) :=
(hf.comp primrec.swap).of_eq $ λ n, by simp

theorem pred : primrec pred :=
(cases1 0 primrec.id).of_eq $ λ n, by cases n; simp *

theorem add : primrec (unpaired (+)) :=
(prec primrec.id ((succ.comp right).comp right)).of_eq $
λ p, by simp; induction p.unpair.2; simp [*, -add_comm, add_succ]

theorem sub : primrec (unpaired has_sub.sub) :=
(prec primrec.id ((pred.comp right).comp right)).of_eq $
λ p, by simp; induction p.unpair.2; simp [*, -add_comm, sub_succ]

theorem mul : primrec (unpaired (*)) :=
(prec zero (add.comp (pair left (right.comp right)))).of_eq $
λ p, by simp; induction p.unpair.2; simp [*, mul_succ]

theorem pow : primrec (unpaired (^)) :=
(prec (const 1) (mul.comp (pair (right.comp right) left))).of_eq $
λ p, by simp; induction p.unpair.2; simp [*, pow_succ]

end primrec

end nat

section prio
set_option default_priority 100 -- see Note [default priority]
/-- A `primcodable` type is an `encodable` type for which
  the encode/decode functions are primitive recursive. -/
class primcodable (α : Type*) extends encodable α :=
(prim : nat.primrec (λ n, encodable.encode (decode n)))
end prio

namespace primcodable
open nat.primrec

@[priority 10] instance of_denumerable (α) [denumerable α] : primcodable α :=
⟨succ.of_eq $ by simp⟩

def of_equiv (α) {β} [primcodable α] (e : β ≃ α) : primcodable β :=
{ prim := (primcodable.prim α).of_eq $ λ n,
    show encode (decode α n) =
      (option.cases_on (option.map e.symm (decode α n))
        0 (λ a, nat.succ (encode (e a))) : ℕ),
    by cases decode α n; dsimp; simp,
  ..encodable.of_equiv α e }

instance empty : primcodable empty :=
⟨zero⟩

instance unit : primcodable punit :=
⟨(cases1 1 zero).of_eq $ λ n, by cases n; simp⟩

instance option {α : Type*} [h : primcodable α] : primcodable (option α) :=
⟨(cases1 1 ((cases1 0 (succ.comp succ)).comp (primcodable.prim α))).of_eq $
  λ n, by cases n; simp; cases decode α n; refl⟩

instance bool : primcodable bool :=
⟨(cases1 1 (cases1 2 zero)).of_eq $
λ n, begin
  cases n, {refl}, cases n, {refl},
  rw decode_ge_two, {refl},
  exact dec_trivial
end⟩

end primcodable

/-- `primrec f` means `f` is primitive recursive (after
  encoding its input and output as natural numbers). -/
def primrec {α β} [primcodable α] [primcodable β] (f : α → β) : Prop :=
nat.primrec (λ n, encode ((decode α n).map f))

namespace primrec
variables {α : Type*} {β : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable σ]
open nat.primrec

protected theorem encode : primrec (@encode α _) :=
(primcodable.prim α).of_eq $ λ n, by cases decode α n; refl

protected theorem decode : primrec (decode α) :=
succ.comp (primcodable.prim α)

theorem dom_denumerable {α β} [denumerable α] [primcodable β]
  {f : α → β} : primrec f ↔ nat.primrec (λ n, encode (f (of_nat α n))) :=
⟨λ h, (pred.comp h).of_eq $ λ n, by simp; refl,
 λ h, (succ.comp h).of_eq $ λ n, by simp; refl⟩

theorem nat_iff {f : ℕ → ℕ} : primrec f ↔ nat.primrec f :=
dom_denumerable

theorem encdec : primrec (λ n, encode (decode α n)) :=
nat_iff.2 (primcodable.prim α)

theorem option_some : primrec (@some α) :=
((cases1 0 (succ.comp succ)).comp (primcodable.prim α)).of_eq $
λ n, by cases decode α n; simp

theorem of_eq {f g : α → σ} (hf : primrec f) (H : ∀ n, f n = g n) : primrec g :=
(funext H : f = g) ▸ hf

theorem const (x : σ) : primrec (λ a : α, x) :=
((cases1 0 (const (encode x).succ)).comp (primcodable.prim α)).of_eq $
λ n, by cases decode α n; refl

protected theorem id : primrec (@id α) :=
(primcodable.prim α).of_eq $ by simp

theorem comp {f : β → σ} {g : α → β}
  (hf : primrec f) (hg : primrec g) : primrec (λ a, f (g a)) :=
((cases1 0 (hf.comp $ pred.comp hg)).comp (primcodable.prim α)).of_eq $
λ n, begin
  cases decode α n, {refl},
  simp [encodek]
end

theorem succ : primrec nat.succ := nat_iff.2 nat.primrec.succ

theorem pred : primrec nat.pred := nat_iff.2 nat.primrec.pred

theorem encode_iff {f : α → σ} : primrec (λ a, encode (f a)) ↔ primrec f :=
⟨λ h, nat.primrec.of_eq h $ λ n, by cases decode α n; refl,
 primrec.encode.comp⟩

theorem of_nat_iff {α β} [denumerable α] [primcodable β]
  {f : α → β} : primrec f ↔ primrec (λ n, f (of_nat α n)) :=
dom_denumerable.trans $ nat_iff.symm.trans encode_iff

protected theorem of_nat (α) [denumerable α] : primrec (of_nat α) :=
of_nat_iff.1 primrec.id

theorem option_some_iff {f : α → σ} : primrec (λ a, some (f a)) ↔ primrec f :=
⟨λ h, encode_iff.1 $ pred.comp $ encode_iff.2 h, option_some.comp⟩

theorem of_equiv {β} {e : β ≃ α} :
  by haveI := primcodable.of_equiv α e; exact
  primrec e :=
(primcodable.prim α).of_eq $ λ n,
show _ = encode (option.map e (option.map _ _)),
by cases decode α n; simp

theorem of_equiv_symm {β} {e : β ≃ α} :
  by haveI := primcodable.of_equiv α e; exact
  primrec e.symm :=
by letI := primcodable.of_equiv α e; exact
encode_iff.1
  (show primrec (λ a, encode (e (e.symm a))), by simp [primrec.encode])

theorem of_equiv_iff {β} (e : β ≃ α)
  {f : σ → β} :
  by haveI := primcodable.of_equiv α e; exact
  primrec (λ a, e (f a)) ↔ primrec f :=
by letI := primcodable.of_equiv α e; exact
⟨λ h, (of_equiv_symm.comp h).of_eq (λ a, by simp), of_equiv.comp⟩

theorem of_equiv_symm_iff {β} (e : β ≃ α)
  {f : σ → α} :
  by haveI := primcodable.of_equiv α e; exact
  primrec (λ a, e.symm (f a)) ↔ primrec f :=
by letI := primcodable.of_equiv α e; exact
⟨λ h, (of_equiv.comp h).of_eq (λ a, by simp), of_equiv_symm.comp⟩

end primrec

namespace primcodable
open nat.primrec

instance prod {α β} [primcodable α] [primcodable β] : primcodable (α × β) :=
⟨((cases zero ((cases zero succ).comp
  (pair right ((primcodable.prim β).comp left)))).comp
  (pair right ((primcodable.prim α).comp left))).of_eq $
λ n, begin
  simp [nat.unpaired],
  cases decode α n.unpair.1, { simp },
  cases decode β n.unpair.2; simp
end⟩

end primcodable

namespace primrec
variables {α : Type*} {σ : Type*} [primcodable α] [primcodable σ]
open nat.primrec

theorem fst {α β} [primcodable α] [primcodable β] :
  primrec (@prod.fst α β) :=
((cases zero ((cases zero (nat.primrec.succ.comp left)).comp
  (pair right ((primcodable.prim β).comp left)))).comp
  (pair right ((primcodable.prim α).comp left))).of_eq $
λ n, begin
  simp,
  cases decode α n.unpair.1; simp,
  cases decode β n.unpair.2; simp
end

theorem snd {α β} [primcodable α] [primcodable β] :
  primrec (@prod.snd α β) :=
((cases zero ((cases zero (nat.primrec.succ.comp right)).comp
  (pair right ((primcodable.prim β).comp left)))).comp
  (pair right ((primcodable.prim α).comp left))).of_eq $
λ n, begin
  simp,
  cases decode α n.unpair.1; simp,
  cases decode β n.unpair.2; simp
end

theorem pair {α β γ} [primcodable α] [primcodable β] [primcodable γ]
  {f : α → β} {g : α → γ} (hf : primrec f) (hg : primrec g) :
  primrec (λ a, (f a, g a)) :=
((cases1 0 (nat.primrec.succ.comp $
  pair (nat.primrec.pred.comp hf) (nat.primrec.pred.comp hg))).comp
  (primcodable.prim α)).of_eq $
λ n, by cases decode α n; simp [encodek]; refl

theorem unpair : primrec nat.unpair :=
(pair (nat_iff.2 nat.primrec.left) (nat_iff.2 nat.primrec.right)).of_eq $
λ n, by simp

theorem list_nth₁ : ∀ (l : list α), primrec l.nth
| []     := dom_denumerable.2 zero
| (a::l) := dom_denumerable.2 $
  (cases1 (encode a).succ $ dom_denumerable.1 $ list_nth₁ l).of_eq $
  λ n, by cases n; simp

end primrec

/-- `primrec₂ f` means `f` is a binary primitive recursive function.
  This is technically unnecessary since we can always curry all
  the arguments together, but there are enough natural two-arg
  functions that it is convenient to express this directly. -/
def primrec₂ {α β σ} [primcodable α] [primcodable β] [primcodable σ] (f : α → β → σ) :=
primrec (λ p : α × β, f p.1 p.2)

/-- `primrec_pred p` means `p : α → Prop` is a (decidable)
  primitive recursive predicate, which is to say that
  `to_bool ∘ p : α → bool` is primitive recursive. -/
def primrec_pred {α} [primcodable α] (p : α → Prop)
  [decidable_pred p] := primrec (λ a, to_bool (p a))

/-- `primrec_rel p` means `p : α → β → Prop` is a (decidable)
  primitive recursive relation, which is to say that
  `to_bool ∘ p : α → β → bool` is primitive recursive. -/
def primrec_rel {α β} [primcodable α] [primcodable β]
  (s : α → β → Prop) [∀ a b, decidable (s a b)] :=
primrec₂ (λ a b, to_bool (s a b))

namespace primrec₂
variables {α : Type*} {β : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable σ]

theorem of_eq {f g : α → β → σ} (hg : primrec₂ f) (H : ∀ a b, f a b = g a b) : primrec₂ g :=
(by funext a b; apply H : f = g) ▸ hg

theorem const (x : σ) : primrec₂ (λ (a : α) (b : β), x) := primrec.const _

protected theorem pair : primrec₂ (@prod.mk α β) :=
primrec.pair primrec.fst primrec.snd

theorem left : primrec₂ (λ (a : α) (b : β), a) := primrec.fst

theorem right : primrec₂ (λ (a : α) (b : β), b) := primrec.snd

theorem mkpair : primrec₂ nat.mkpair :=
by simp [primrec₂, primrec]; constructor

theorem unpaired {f : ℕ → ℕ → α} : primrec (nat.unpaired f) ↔ primrec₂ f :=
⟨λ h, by simpa using h.comp mkpair,
 λ h, h.comp primrec.unpair⟩

theorem unpaired' {f : ℕ → ℕ → ℕ} : nat.primrec (nat.unpaired f) ↔ primrec₂ f :=
primrec.nat_iff.symm.trans unpaired

theorem encode_iff {f : α → β → σ} : primrec₂ (λ a b, encode (f a b)) ↔ primrec₂ f :=
primrec.encode_iff

theorem option_some_iff {f : α → β → σ} : primrec₂ (λ a b, some (f a b)) ↔ primrec₂ f :=
primrec.option_some_iff

theorem of_nat_iff {α β σ}
  [denumerable α] [denumerable β] [primcodable σ]
  {f : α → β → σ} : primrec₂ f ↔ primrec₂ (λ m n : ℕ,
    f (of_nat α m) (of_nat β n)) :=
(primrec.of_nat_iff.trans $ by simp).trans unpaired

theorem uncurry {f : α → β → σ} : primrec (function.uncurry f) ↔ primrec₂ f :=
by rw [show function.uncurry f = λ (p : α × β), f p.1 p.2,
       from funext $ λ ⟨a, b⟩, rfl]; refl

theorem curry {f : α × β → σ} : primrec₂ (function.curry f) ↔ primrec f :=
by rw [← uncurry, function.uncurry_curry]

end primrec₂

section comp
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable γ] [primcodable δ] [primcodable σ]

theorem primrec.comp₂ {f : γ → σ} {g : α → β → γ}
  (hf : primrec f) (hg : primrec₂ g) :
  primrec₂ (λ a b, f (g a b)) := hf.comp hg

theorem primrec₂.comp
  {f : β → γ → σ} {g : α → β} {h : α → γ}
  (hf : primrec₂ f) (hg : primrec g) (hh : primrec h) :
  primrec (λ a, f (g a) (h a)) := hf.comp (hg.pair hh)

theorem primrec₂.comp₂
  {f : γ → δ → σ} {g : α → β → γ} {h : α → β → δ}
  (hf : primrec₂ f) (hg : primrec₂ g) (hh : primrec₂ h) :
  primrec₂ (λ a b, f (g a b) (h a b)) := hf.comp hg hh

theorem primrec_pred.comp
  {p : β → Prop} [decidable_pred p] {f : α → β} :
  primrec_pred p → primrec f →
  primrec_pred (λ a, p (f a)) := primrec.comp

theorem primrec_rel.comp
  {R : β → γ → Prop} [∀ a b, decidable (R a b)] {f : α → β} {g : α → γ} :
  primrec_rel R → primrec f → primrec g →
  primrec_pred (λ a, R (f a) (g a)) := primrec₂.comp

theorem primrec_rel.comp₂
  {R : γ → δ → Prop} [∀ a b, decidable (R a b)] {f : α → β → γ} {g : α → β → δ} :
  primrec_rel R → primrec₂ f → primrec₂ g →
  primrec_rel (λ a b, R (f a b) (g a b)) := primrec_rel.comp

end comp

theorem primrec_pred.of_eq {α} [primcodable α]
  {p q : α → Prop} [decidable_pred p] [decidable_pred q]
  (hp : primrec_pred p) (H : ∀ a, p a ↔ q a) : primrec_pred q :=
primrec.of_eq hp (λ a, to_bool_congr (H a))

theorem primrec_rel.of_eq {α β} [primcodable α] [primcodable β]
  {r s : α → β → Prop} [∀ a b, decidable (r a b)] [∀ a b, decidable (s a b)]
  (hr : primrec_rel r) (H : ∀ a b, r a b ↔ s a b) : primrec_rel s :=
primrec₂.of_eq hr (λ a b, to_bool_congr (H a b))

namespace primrec₂
variables {α : Type*} {β : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable σ]
open nat.primrec

theorem swap {f : α → β → σ} (h : primrec₂ f) : primrec₂ (function.swap f) :=
h.comp₂ primrec₂.right primrec₂.left

theorem nat_iff {f : α → β → σ} : primrec₂ f ↔
  nat.primrec (nat.unpaired $ λ m n : ℕ,
    encode $ (decode α m).bind $ λ a, (decode β n).map (f a)) :=
have ∀ (a : option α) (b : option β),
  option.map (λ (p : α × β), f p.1 p.2)
    (option.bind a (λ (a : α), option.map (prod.mk a) b)) =
  option.bind a (λ a, option.map (f a) b),
by intros; cases a; [refl, {cases b; refl}],
by simp [primrec₂, primrec, this]

theorem nat_iff' {f : α → β → σ} : primrec₂ f ↔ primrec₂ (λ m n : ℕ,
  option.bind (decode α m) (λ a, option.map (f a) (decode β n))) :=
nat_iff.trans $ unpaired'.trans encode_iff

end primrec₂

namespace primrec
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable γ] [primcodable δ] [primcodable σ]

theorem to₂ {f : α × β → σ} (hf : primrec f) : primrec₂ (λ a b, f (a, b)) :=
hf.of_eq $ λ ⟨a, b⟩, rfl

theorem nat_elim {f : α → β} {g : α → ℕ × β → β}
  (hf : primrec f) (hg : primrec₂ g) :
  primrec₂ (λ a (n : ℕ), n.elim (f a) (λ n IH, g a (n, IH))) :=
primrec₂.nat_iff.2 $ ((nat.primrec.cases nat.primrec.zero $
    (nat.primrec.prec hf $ nat.primrec.comp hg $ nat.primrec.left.pair $
      (nat.primrec.left.comp nat.primrec.right).pair $
      nat.primrec.pred.comp $ nat.primrec.right.comp nat.primrec.right).comp $
    nat.primrec.right.pair $
      nat.primrec.right.comp nat.primrec.left).comp $
  nat.primrec.id.pair $ (primcodable.prim α).comp nat.primrec.left).of_eq $
λ n, begin
  simp,
  cases decode α n.unpair.1 with a, {refl},
  simp [encodek],
  induction n.unpair.2 with m; simp [encodek],
  simp [ih, encodek]
end

theorem nat_elim' {f : α → ℕ} {g : α → β} {h : α → ℕ × β → β}
  (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
  primrec (λ a, (f a).elim (g a) (λ n IH, h a (n, IH))) :=
(nat_elim hg hh).comp primrec.id hf

theorem nat_elim₁ {f : ℕ → α → α} (a : α) (hf : primrec₂ f) :
  primrec (nat.elim a f) :=
nat_elim' primrec.id (const a) $ comp₂ hf primrec₂.right

theorem nat_cases' {f : α → β} {g : α → ℕ → β}
  (hf : primrec f) (hg : primrec₂ g) :
  primrec₂ (λ a, nat.cases (f a) (g a)) :=
nat_elim hf $ hg.comp₂ primrec₂.left $
  comp₂ fst primrec₂.right

theorem nat_cases {f : α → ℕ} {g : α → β} {h : α → ℕ → β}
  (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
  primrec (λ a, (f a).cases (g a) (h a)) :=
(nat_cases' hg hh).comp primrec.id hf

theorem nat_cases₁ {f : ℕ → α} (a : α) (hf : primrec f) :
  primrec (nat.cases a f) :=
nat_cases primrec.id (const a) (comp₂ hf primrec₂.right)

theorem nat_iterate {f : α → ℕ} {g : α → β} {h : α → β → β}
  (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
  primrec (λ a, (h a)^[f a] (g a)) :=
(nat_elim' hf hg (hh.comp₂ primrec₂.left $ snd.comp₂ primrec₂.right)).of_eq $
λ a, by induction f a; simp [*, -nat.iterate_succ, nat.iterate_succ']

theorem option_cases {o : α → option β} {f : α → σ} {g : α → β → σ}
  (ho : primrec o) (hf : primrec f) (hg : primrec₂ g) :
  @primrec _ σ _ _ (λ a, option.cases_on (o a) (f a) (g a)) :=
encode_iff.1 $
(nat_cases (encode_iff.2 ho) (encode_iff.2 hf) $
  pred.comp₂ $ primrec₂.encode_iff.2 $
  (primrec₂.nat_iff'.1 hg).comp₂
    ((@primrec.encode α _).comp fst).to₂
    primrec₂.right).of_eq $
λ a, by cases o a with b; simp [encodek]; refl

theorem option_bind {f : α → option β} {g : α → β → option σ}
  (hf : primrec f) (hg : primrec₂ g) :
  primrec (λ a, (f a).bind (g a)) :=
(option_cases hf (const none) hg).of_eq $
λ a, by cases f a; refl

theorem option_bind₁ {f : α → option σ} (hf : primrec f) :
  primrec (λ o, option.bind o f) :=
option_bind primrec.id (hf.comp snd).to₂

theorem option_map {f : α → option β} {g : α → β → σ}
  (hf : primrec f) (hg : primrec₂ g) : primrec (λ a, (f a).map (g a)) :=
option_bind hf (option_some.comp₂ hg)

theorem option_map₁ {f : α → σ} (hf : primrec f) : primrec (option.map f) :=
option_map primrec.id (hf.comp snd).to₂

theorem option_iget [inhabited α] : primrec (@option.iget α _) :=
(option_cases primrec.id (const $ default α) primrec₂.right).of_eq $
λ o, by cases o; refl

theorem option_is_some : primrec (@option.is_some α) :=
(option_cases primrec.id (const ff) (const tt).to₂).of_eq $
λ o, by cases o; refl

theorem bind_decode_iff {f : α → β → option σ} : primrec₂ (λ a n,
  (decode β n).bind (f a)) ↔ primrec₂ f :=
⟨λ h, by simpa [encodek] using
   h.comp fst ((@primrec.encode β _).comp snd),
 λ h, option_bind (primrec.decode.comp snd) $
   h.comp (fst.comp fst) snd⟩

theorem map_decode_iff {f : α → β → σ} : primrec₂ (λ a n,
  (decode β n).map (f a)) ↔ primrec₂ f :=
bind_decode_iff.trans primrec₂.option_some_iff

theorem nat_add : primrec₂ ((+) : ℕ → ℕ → ℕ) :=
primrec₂.unpaired'.1 nat.primrec.add

theorem nat_sub : primrec₂ (has_sub.sub : ℕ → ℕ → ℕ) :=
primrec₂.unpaired'.1 nat.primrec.sub

theorem nat_mul : primrec₂ ((*) : ℕ → ℕ → ℕ) :=
primrec₂.unpaired'.1 nat.primrec.mul

theorem cond {c : α → bool} {f : α → σ} {g : α → σ}
  (hc : primrec c) (hf : primrec f) (hg : primrec g) :
  primrec (λ a, cond (c a) (f a) (g a)) :=
(nat_cases (encode_iff.2 hc) hg (hf.comp fst).to₂).of_eq $
λ a, by cases c a; refl

theorem ite {c : α → Prop} [decidable_pred c] {f : α → σ} {g : α → σ}
  (hc : primrec_pred c) (hf : primrec f) (hg : primrec g) :
  primrec (λ a, if c a then f a else g a) :=
by simpa using cond hc hf hg

theorem nat_le : primrec_rel ((≤) : ℕ → ℕ → Prop) :=
(nat_cases nat_sub (const tt) (const ff).to₂).of_eq $
λ p, begin
  dsimp [function.swap],
  cases e : p.1 - p.2 with n,
  { simp [nat.sub_eq_zero_iff_le.1 e] },
  { simp [not_le.2 (nat.lt_of_sub_eq_succ e)] }
end

theorem nat_min : primrec₂ (@min ℕ _) := ite nat_le fst snd
theorem nat_max : primrec₂ (@max ℕ _) := ite nat_le snd fst

theorem dom_bool (f : bool → α) : primrec f :=
(cond primrec.id (const (f tt)) (const (f ff))).of_eq $
λ b, by cases b; refl

theorem dom_bool₂ (f : bool → bool → α) : primrec₂ f :=
(cond fst
  ((dom_bool (f tt)).comp snd)
  ((dom_bool (f ff)).comp snd)).of_eq $
λ ⟨a, b⟩, by cases a; refl

protected theorem bnot : primrec bnot := dom_bool _
protected theorem band : primrec₂ band := dom_bool₂ _
protected theorem bor : primrec₂ bor := dom_bool₂ _

protected theorem not {p : α → Prop} [decidable_pred p]
  (hp : primrec_pred p) : primrec_pred (λ a, ¬ p a) :=
(primrec.bnot.comp hp).of_eq $ λ n, by simp

protected theorem and {p q : α → Prop}
  [decidable_pred p] [decidable_pred q]
  (hp : primrec_pred p) (hq : primrec_pred q) :
  primrec_pred (λ a, p a ∧ q a) :=
(primrec.band.comp hp hq).of_eq $ λ n, by simp

protected theorem or {p q : α → Prop}
  [decidable_pred p] [decidable_pred q]
  (hp : primrec_pred p) (hq : primrec_pred q) :
  primrec_pred (λ a, p a ∨ q a) :=
(primrec.bor.comp hp hq).of_eq $ λ n, by simp

protected theorem eq [decidable_eq α] : primrec_rel (@eq α) :=
have primrec_rel (λ a b : ℕ, a = b), from
  (primrec.and nat_le nat_le.swap).of_eq $
  λ a, by simp [le_antisymm_iff],
(this.comp₂
  (primrec.encode.comp₂ primrec₂.left)
  (primrec.encode.comp₂ primrec₂.right)).of_eq $
λ a b, encode_injective.eq_iff

theorem nat_lt : primrec_rel ((<) : ℕ → ℕ → Prop) :=
(nat_le.comp snd fst).not.of_eq $ λ p, by simp

theorem option_guard {p : α → β → Prop}
  [∀ a b, decidable (p a b)] (hp : primrec_rel p)
  {f : α → β} (hf : primrec f) :
  primrec (λ a, option.guard (p a) (f a)) :=
ite (hp.comp primrec.id hf) (option_some_iff.2 hf) (const none)

theorem option_orelse :
  primrec₂ ((<|>) : option α → option α → option α) :=
(option_cases fst snd (fst.comp fst).to₂).of_eq $
λ ⟨o₁, o₂⟩, by cases o₁; cases o₂; refl

protected theorem decode2 : primrec (decode2 α) :=
option_bind primrec.decode $
option_guard ((@primrec.eq _ _ nat.decidable_eq).comp
  (encode_iff.2 snd) (fst.comp fst)) snd

theorem list_find_index₁ {p : α → β → Prop}
  [∀ a b, decidable (p a b)] (hp : primrec_rel p) :
  ∀ (l : list β), primrec (λ a, l.find_index (p a))
| [] := const 0
| (a::l) := ite (hp.comp primrec.id (const a)) (const 0)
  (succ.comp (list_find_index₁ l))

theorem list_index_of₁ [decidable_eq α] (l : list α) :
  primrec (λ a, l.index_of a) := list_find_index₁ primrec.eq l

theorem dom_fintype [fintype α] (f : α → σ) : primrec f :=
let ⟨l, nd, m⟩ := fintype.exists_univ_list α in
option_some_iff.1 $ begin
  haveI := decidable_eq_of_encodable α,
  refine ((list_nth₁ (l.map f)).comp (list_index_of₁ l)).of_eq (λ a, _),
  rw [list.nth_map, list.nth_le_nth (list.index_of_lt_length.2 (m _)),
      list.index_of_nth_le]; refl
end

theorem nat_bodd_div2 : primrec nat.bodd_div2 :=
(nat_elim' primrec.id (const (ff, 0))
  (((cond fst
      (pair (const ff) (succ.comp snd))
      (pair (const tt) snd)).comp snd).comp snd).to₂).of_eq $
λ n, begin
  simp [-nat.bodd_div2_eq],
  induction n with n IH, {refl},
  simp [-nat.bodd_div2_eq, nat.bodd_div2, *],
  rcases nat.bodd_div2 n with ⟨_|_, m⟩; simp [nat.bodd_div2]
end

theorem nat_bodd : primrec nat.bodd := fst.comp nat_bodd_div2
theorem nat_div2 : primrec nat.div2 := snd.comp nat_bodd_div2

theorem nat_bit0 : primrec (@bit0 ℕ _) :=
nat_add.comp primrec.id primrec.id

theorem nat_bit1 : primrec (@bit1 ℕ _ _) :=
nat_add.comp nat_bit0 (const 1)

theorem nat_bit : primrec₂ nat.bit :=
(cond primrec.fst
  (nat_bit1.comp primrec.snd)
  (nat_bit0.comp primrec.snd)).of_eq $
λ n, by cases n.1; refl

theorem nat_div_mod : primrec₂ (λ n k : ℕ, (n / k, n % k)) :=
let f (a : ℕ × ℕ) : ℕ × ℕ := a.1.elim (0, 0) (λ _ IH,
  if nat.succ IH.2 = a.2
  then (nat.succ IH.1, 0)
  else (IH.1, nat.succ IH.2)) in
have hf : primrec f, from
nat_elim' fst (const (0, 0)) $
  ((ite ((@primrec.eq ℕ _ _).comp (succ.comp $ snd.comp snd) fst)
      (pair (succ.comp $ fst.comp snd) (const 0))
      (pair (fst.comp snd) (succ.comp $ snd.comp snd)))
    .comp (pair (snd.comp fst) (snd.comp snd))).to₂,
suffices ∀ k n, (n / k, n % k) = f (n, k),
from hf.of_eq $ λ ⟨m, n⟩, by simp [this],
λ k n, begin
  have : (f (n, k)).2 + k * (f (n, k)).1 = n
    ∧ (0 < k → (f (n, k)).2 < k)
    ∧ (k = 0 → (f (n, k)).1 = 0),
  { induction n with n IH, {exact ⟨rfl, id, λ _, rfl⟩},
    rw [λ n:ℕ, show f (n.succ, k) =
      _root_.ite ((f (n, k)).2.succ = k)
      (nat.succ (f (n, k)).1, 0)
      ((f (n, k)).1, (f (n, k)).2.succ), from rfl],
    by_cases h : (f (n, k)).2.succ = k; simp [h],
    { have := congr_arg nat.succ IH.1,
      refine ⟨_, λ k0, nat.no_confusion (h.trans k0)⟩,
      rwa [← nat.succ_add, h, add_comm, ← nat.mul_succ] at this },
    { exact ⟨by rw [nat.succ_add, IH.1],
        λ k0, lt_of_le_of_ne (IH.2.1 k0) h, IH.2.2⟩ } },
  revert this, cases f (n, k) with D M,
  simp, intros h₁ h₂ h₃,
  cases nat.eq_zero_or_pos k,
  { simp [h, h₃ h] at h₁ ⊢, simp [h₁] },
  { exact (nat.div_mod_unique h).2 ⟨h₁, h₂ h⟩ }
end

theorem nat_div : primrec₂ ((/) : ℕ → ℕ → ℕ) := fst.comp₂ nat_div_mod
theorem nat_mod : primrec₂ ((%) : ℕ → ℕ → ℕ) := snd.comp₂ nat_div_mod

end primrec

section
variables {α : Type*} {β : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable σ]

variable (H : nat.primrec (λ n, encodable.encode (decode (list β) n)))
include H
open primrec

private def prim : primcodable (list β) := ⟨H⟩

private lemma list_cases'
  {f : α → list β} {g : α → σ} {h : α → β × list β → σ}
  (hf : by haveI := prim H; exact primrec f) (hg : primrec g)
  (hh : by haveI := prim H; exact primrec₂ h) :
  @primrec _ σ _ _ (λ a, list.cases_on (f a) (g a) (λ b l, h a (b, l))) :=
by letI := prim H; exact
have @primrec _ (option σ) _ _ (λ a,
  (decode (option (β × list β)) (encode (f a))).map
  (λ o, option.cases_on o (g a) (h a))), from
((@map_decode_iff _ (option (β × list β)) _ _ _ _ _).2 $
    to₂ $ option_cases snd (hg.comp fst)
  (hh.comp₂ (fst.comp₂ primrec₂.left) primrec₂.right))
    .comp primrec.id (encode_iff.2 hf),
option_some_iff.1 $ this.of_eq $
λ a, by cases f a with b l; simp [encodek]; refl

private lemma list_foldl'
  {f : α → list β} {g : α → σ} {h : α → σ × β → σ}
  (hf : by haveI := prim H; exact primrec f) (hg : primrec g)
  (hh : by haveI := prim H; exact primrec₂ h) :
  primrec (λ a, (f a).foldl (λ s b, h a (s, b)) (g a)) :=
by letI := prim H; exact
let G (a : α) (IH : σ × list β) : σ × list β :=
  list.cases_on IH.2 IH (λ b l, (h a (IH.1, b), l)) in
let F (a : α) (n : ℕ) := nat.iterate (G a) n (g a, f a) in
have primrec (λ a, (F a (encode (f a))).1), from
fst.comp $ nat_iterate (encode_iff.2 hf) (pair hg hf) $
  list_cases' H (snd.comp snd) snd $ to₂ $ pair
    (hh.comp (fst.comp fst) $
      pair ((fst.comp snd).comp fst) (fst.comp snd))
    (snd.comp snd),
this.of_eq $ λ a, begin
  have : ∀ n, F a n =
    ((list.take n (f a)).foldl (λ s b, h a (s, b)) (g a),
      list.drop n (f a)),
  { intro, simp [F],
    generalize : f a = l, generalize : g a = x,
    induction n with n IH generalizing l x, {refl},
    simp, cases l with b l; simp [IH] },
  rw [this, list.take_all_of_le (length_le_encode _)]
end

private lemma list_cons' : by haveI := prim H; exact primrec₂ (@list.cons β) :=
by letI := prim H; exact
encode_iff.1 (succ.comp $
primrec₂.mkpair.comp (encode_iff.2 fst) (encode_iff.2 snd))

private lemma list_reverse' : by haveI := prim H; exact
  primrec (@list.reverse β) :=
by letI := prim H; exact
(list_foldl' H primrec.id (const []) $ to₂ $
   ((list_cons' H).comp snd fst).comp snd).of_eq
(suffices ∀ l r, list.foldl (λ (s : list β) (b : β), b :: s) r l = list.reverse_core l r,
from λ l, this l [],
λ l, by induction l; simp [*, list.reverse_core])

end

namespace primcodable
variables {α : Type*} {β : Type*}
variables [primcodable α] [primcodable β]
open primrec

instance sum : primcodable (α ⊕ β) :=
⟨primrec.nat_iff.1 $
(encode_iff.2 (cond nat_bodd
  (((@primrec.decode β _).comp nat_div2).option_map $ to₂ $
     nat_bit.comp (const tt) (primrec.encode.comp snd))
  (((@primrec.decode α _).comp nat_div2).option_map $ to₂ $
     nat_bit.comp (const ff) (primrec.encode.comp snd)))).of_eq $
λ n, show _ = encode (decode_sum n), begin
  simp [decode_sum],
  cases nat.bodd n; simp [decode_sum],
  { cases decode α n.div2; refl },
  { cases decode β n.div2; refl }
end⟩

instance list : primcodable (list α) := ⟨
by letI H := primcodable.prim (list ℕ); exact
have primrec₂ (λ (a : α) (o : option (list ℕ)),
  o.map (list.cons (encode a))), from
option_map snd $
  (list_cons' H).comp ((@primrec.encode α _).comp (fst.comp fst)) snd,
have primrec (λ n, (of_nat (list ℕ) n).reverse.foldl
  (λ o m, (decode α m).bind (λ a, o.map (list.cons (encode a))))
   (some [])), from
list_foldl' H
  ((list_reverse' H).comp (primrec.of_nat (list ℕ)))
  (const (some []))
  (primrec.comp₂ (bind_decode_iff.2 $ primrec₂.swap this) primrec₂.right),
nat_iff.1 $ (encode_iff.2 this).of_eq $ λ n, begin
  rw list.foldl_reverse,
  apply nat.case_strong_induction_on n, {refl},
  intros n IH, simp,
  cases decode α n.unpair.1 with a, {refl},
  simp,
  suffices : ∀ (o : option (list ℕ)) p (_ : encode o = encode p),
    encode (option.map (list.cons (encode a)) o) =
    encode (option.map (list.cons a) p),
  from this _ _ (IH _ (nat.unpair_le_right n)),
  intros o p IH,
  cases o; cases p; injection IH with h,
  exact congr_arg (λ k, (nat.mkpair (encode a) k).succ.succ) h
end⟩

end primcodable

namespace primrec
variables {α : Type*} {β : Type*} {γ : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable γ] [primcodable σ]

theorem sum_inl : primrec (@sum.inl α β) :=
encode_iff.1 $ nat_bit0.comp primrec.encode

theorem sum_inr : primrec (@sum.inr α β) :=
encode_iff.1 $ nat_bit1.comp primrec.encode

theorem sum_cases
  {f : α → β ⊕ γ} {g : α → β → σ} {h : α → γ → σ}
  (hf : primrec f) (hg : primrec₂ g) (hh : primrec₂ h) :
  @primrec _ σ _ _ (λ a, sum.cases_on (f a) (g a) (h a)) :=
option_some_iff.1 $
(cond (nat_bodd.comp $ encode_iff.2 hf)
  (option_map (primrec.decode.comp $ nat_div2.comp $ encode_iff.2 hf) hh)
  (option_map (primrec.decode.comp $ nat_div2.comp $ encode_iff.2 hf) hg)).of_eq $
λ a, by cases f a with b c;
  simp [nat.div2_bit, nat.bodd_bit, encodek]; refl

theorem list_cons : primrec₂ (@list.cons α) :=
list_cons' (primcodable.prim _)

theorem list_cases
  {f : α → list β} {g : α → σ} {h : α → β × list β → σ} :
  primrec f → primrec g → primrec₂ h →
  @primrec _ σ _ _ (λ a, list.cases_on (f a) (g a) (λ b l, h a (b, l))) :=
list_cases' (primcodable.prim _)

theorem list_foldl
  {f : α → list β} {g : α → σ} {h : α → σ × β → σ} :
  primrec f → primrec g → primrec₂ h →
  primrec (λ a, (f a).foldl (λ s b, h a (s, b)) (g a)) :=
list_foldl' (primcodable.prim _)

theorem list_reverse : primrec (@list.reverse α) :=
list_reverse' (primcodable.prim _)

theorem list_foldr
  {f : α → list β} {g : α → σ} {h : α → β × σ → σ}
  (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
  primrec (λ a, (f a).foldr (λ b s, h a (b, s)) (g a)) :=
(list_foldl (list_reverse.comp hf) hg $ to₂ $
  hh.comp fst $ (pair snd fst).comp snd).of_eq $
λ a, by simp [list.foldl_reverse]

theorem list_head' : primrec (@list.head' α) :=
(list_cases primrec.id (const none)
  (option_some_iff.2 $ (fst.comp snd)).to₂).of_eq $
λ l, by cases l; refl

theorem list_head [inhabited α] : primrec (@list.head α _) :=
(option_iget.comp list_head').of_eq $
λ l, l.head_eq_head'.symm

theorem list_tail : primrec (@list.tail α) :=
(list_cases primrec.id (const []) (snd.comp snd).to₂).of_eq $
λ l, by cases l; refl

theorem list_rec
  {f : α → list β} {g : α → σ} {h : α → β × list β × σ → σ}
  (hf : primrec f) (hg : primrec g) (hh : primrec₂ h) :
  @primrec _ σ _ _ (λ a,
    list.rec_on (f a) (g a) (λ b l IH, h a (b, l, IH))) :=
let F (a : α) := (f a).foldr
  (λ (b : β) (s : list β × σ), (b :: s.1, h a (b, s))) ([], g a) in
have primrec F, from
list_foldr hf (pair (const []) hg) $ to₂ $
  pair ((list_cons.comp fst (fst.comp snd)).comp snd) hh,
(snd.comp this).of_eq $ λ a, begin
  suffices : F a = (f a,
    list.rec_on (f a) (g a) (λ b l IH, h a (b, l, IH))), {rw this},
  simp [F], induction f a with b l IH; simp *
end

theorem list_nth : primrec₂ (@list.nth α) :=
let F (l : list α) (n : ℕ) :=
l.foldl (λ (s : ℕ ⊕ α) (a : α),
  sum.cases_on s
    (@nat.cases (ℕ ⊕ α) (sum.inr a) sum.inl) sum.inr)
  (sum.inl n) in
have hF : primrec₂ F, from
list_foldl fst (sum_inl.comp snd) ((sum_cases fst
  (nat_cases snd
    (sum_inr.comp $ snd.comp fst)
    (sum_inl.comp snd).to₂).to₂
  (sum_inr.comp snd).to₂).comp snd).to₂,
have @primrec _ (option α) _ _ (λ p : list α × ℕ,
  sum.cases_on (F p.1 p.2) (λ _, none) some), from
sum_cases hF (const none).to₂ (option_some.comp snd).to₂,
this.to₂.of_eq $ λ l n, begin
  dsimp, symmetry,
  induction l with a l IH generalizing n, {refl},
  cases n with n,
  { rw [(_ : F (a :: l) 0 = sum.inr a)], {refl},
    clear IH, dsimp [F],
    induction l with b l IH; simp * },
  { apply IH }
end

theorem list_inth [inhabited α] : primrec₂ (@list.inth α _) :=
option_iget.comp₂ list_nth

theorem list_append : primrec₂ ((++) : list α → list α → list α) :=
(list_foldr fst snd $ to₂ $ comp (@list_cons α _) snd).to₂.of_eq $
λ l₁ l₂, by induction l₁; simp *

theorem list_concat : primrec₂ (λ l (a:α), l ++ [a]) :=
list_append.comp fst (list_cons.comp snd (const []))

theorem list_map
  {f : α → list β} {g : α → β → σ}
  (hf : primrec f) (hg : primrec₂ g) :
  primrec (λ a, (f a).map (g a)) :=
(list_foldr hf (const []) $ to₂ $ list_cons.comp
  (hg.comp fst (fst.comp snd)) (snd.comp snd)).of_eq $
λ a, by induction f a; simp *

theorem list_range : primrec list.range :=
(nat_elim' primrec.id (const [])
  ((list_concat.comp snd fst).comp snd).to₂).of_eq $
λ n, by simp; induction n; simp [*, list.range_concat]; refl

theorem list_join : primrec (@list.join α) :=
(list_foldr primrec.id (const []) $ to₂ $
  comp (@list_append α _) snd).of_eq $
λ l, by dsimp; induction l; simp *

theorem list_length : primrec (@list.length α) :=
(list_foldr (@primrec.id (list α) _) (const 0) $ to₂ $
  (succ.comp $ snd.comp snd).to₂).of_eq $
λ l, by dsimp; induction l; simp [*, -add_comm]

theorem list_find_index {f : α → list β} {p : α → β → Prop}
  [∀ a b, decidable (p a b)]
  (hf : primrec f) (hp : primrec_rel p) :
  primrec (λ a, (f a).find_index (p a)) :=
(list_foldr hf (const 0) $ to₂ $
  ite (hp.comp fst $ fst.comp snd) (const 0)
    (succ.comp $ snd.comp snd)).of_eq $
λ a, eq.symm $ by dsimp; induction f a with b l;
  [refl, { simp [*, list.find_index], congr }]

theorem list_index_of [decidable_eq α] : primrec₂ (@list.index_of α _) :=
to₂ $ list_find_index snd $ primrec.eq.comp₂ (fst.comp fst).to₂ snd.to₂

theorem nat_strong_rec
  (f : α → ℕ → σ) {g : α → list σ → option σ} (hg : primrec₂ g)
  (H : ∀ a n, g a ((list.range n).map (f a)) = some (f a n)) : primrec₂ f :=
suffices primrec₂ (λ a n, (list.range n).map (f a)), from
  primrec₂.option_some_iff.1 $
  (list_nth.comp (this.comp fst (succ.comp snd)) snd).to₂.of_eq $
  λ a n, by simp [list.nth_range (nat.lt_succ_self n)]; refl,
primrec₂.option_some_iff.1 $
(nat_elim (const (some [])) (to₂ $
  option_bind (snd.comp snd) $ to₂ $
  option_map
    (hg.comp (fst.comp fst) snd)
    (to₂ $ list_concat.comp (snd.comp fst) snd))).of_eq $
λ a n, begin
  simp, induction n with n IH, {refl},
  simp [IH, H, list.range_concat]
end

end primrec

namespace primcodable
variables {α : Type*} {β : Type*}
variables [primcodable α] [primcodable β]
open primrec

def subtype {p : α → Prop} [decidable_pred p]
  (hp : primrec_pred p) : primcodable (subtype p) :=
⟨have primrec (λ n, (decode α n).bind (λ a, option.guard p a)),
 from option_bind primrec.decode (option_guard (hp.comp snd) snd),
 nat_iff.1 $ (encode_iff.2 this).of_eq $ λ n,
 show _ = encode ((decode α n).bind (λ a, _)), begin
   cases decode α n with a, {refl},
   dsimp [option.guard],
   by_cases h : p a; simp [h]; refl
 end⟩

instance fin {n} : primcodable (fin n) :=
@of_equiv _ _
  (subtype $ nat_lt.comp primrec.id (const n))
  (equiv.fin_equiv_subtype _)

instance vector {n} : primcodable (vector α n) :=
subtype ((@primrec.eq _ _ nat.decidable_eq).comp list_length (const _))

instance fin_arrow {n} : primcodable (fin n → α) :=
of_equiv _ (equiv.vector_equiv_fin _ _).symm

instance array {n} : primcodable (array n α) :=
of_equiv _ (equiv.array_equiv_fin _ _)

end primcodable

namespace primrec
variables {α : Type*} {β : Type*} {γ : Type*} {σ : Type*}
variables [primcodable α] [primcodable β] [primcodable γ] [primcodable σ]

theorem subtype_val {p : α → Prop} [decidable_pred p]
  {hp : primrec_pred p} :
  by haveI := primcodable.subtype hp; exact
  primrec (@subtype.val α p) :=
begin
  letI := primcodable.subtype hp,
  refine (primcodable.prim (subtype p)).of_eq (λ n, _),
  rcases decode (subtype p) n with _|⟨a,h⟩; refl
end

theorem subtype_val_iff {p : β → Prop} [decidable_pred p]
  {hp : primrec_pred p} {f : α → subtype p} :
  by haveI := primcodable.subtype hp; exact
  primrec (λ a, (f a).1) ↔ primrec f :=
begin
  letI := primcodable.subtype hp,
  refine ⟨λ h, _, λ hf, subtype_val.comp hf⟩,
  refine nat.primrec.of_eq h (λ n, _),
  cases decode α n with a, {refl},
  simp, cases f a; refl
end

theorem fin_val_iff {n} {f : α → fin n} :
  primrec (λ a, (f a).1) ↔ primrec f :=
begin
  let : primcodable {a//id a<n}, swap,
  exactI (iff.trans (by refl) subtype_val_iff).trans (of_equiv_iff _)
end

theorem fin_val {n} : primrec (@fin.val n) := fin_val_iff.2 primrec.id

theorem fin_succ {n} : primrec (@fin.succ n) :=
fin_val_iff.1 $ by simp [succ.comp fin_val]

theorem vector_to_list {n} : primrec (@vector.to_list α n) := subtype_val

theorem vector_to_list_iff {n} {f : α → vector β n} :
  primrec (λ a, (f a).to_list) ↔ primrec f := subtype_val_iff

theorem vector_cons {n} : primrec₂ (@vector.cons α n) :=
vector_to_list_iff.1 $ by simp; exact
list_cons.comp fst (vector_to_list_iff.2 snd)

theorem vector_length {n} : primrec (@vector.length α n) := const _

theorem vector_head {n} : primrec (@vector.head α n) :=
option_some_iff.1 $
(list_head'.comp vector_to_list).of_eq $ λ ⟨a::l, h⟩, rfl

theorem vector_tail {n} : primrec (@vector.tail α n) :=
vector_to_list_iff.1 $ (list_tail.comp vector_to_list).of_eq $
λ ⟨l, h⟩, by cases l; refl

theorem vector_nth {n} : primrec₂ (@vector.nth α n) :=
option_some_iff.1 $
(list_nth.comp (vector_to_list.comp fst) (fin_val.comp snd)).of_eq $
λ a, by simp [vector.nth_eq_nth_le]; rw [← list.nth_le_nth]

theorem list_of_fn : ∀ {n} {f : fin n → α → σ},
  (∀ i, primrec (f i)) → primrec (λ a, list.of_fn (λ i, f i a))
| 0     f hf := const []
| (n+1) f hf := by simp [list.of_fn_succ]; exact
  list_cons.comp (hf 0) (list_of_fn (λ i, hf i.succ))

theorem vector_of_fn {n} {f : fin n → α → σ}
  (hf : ∀ i, primrec (f i)) : primrec (λ a, vector.of_fn (λ i, f i a)) :=
vector_to_list_iff.1 $ by simp [list_of_fn hf]

theorem vector_nth' {n} : primrec (@vector.nth α n) := of_equiv_symm

theorem vector_of_fn' {n} : primrec (@vector.of_fn α n) := of_equiv

theorem fin_app {n} : primrec₂ (@id (fin n → σ)) :=
(vector_nth.comp (vector_of_fn'.comp fst) snd).of_eq $
λ ⟨v, i⟩, by simp

theorem fin_curry₁ {n} {f : fin n → α → σ} : primrec₂ f ↔ ∀ i, primrec (f i) :=
⟨λ h i, h.comp (const i) primrec.id,
 λ h, (vector_nth.comp ((vector_of_fn h).comp snd) fst).of_eq $ λ a, by simp⟩

theorem fin_curry {n} {f : α → fin n → σ} : primrec f ↔ primrec₂ f :=
⟨λ h, fin_app.comp (h.comp fst) snd,
 λ h, (vector_nth'.comp (vector_of_fn (λ i,
    show primrec (λ a, f a i), from
    h.comp primrec.id (const i)))).of_eq $
  λ a, by funext i; simp⟩

end primrec

namespace nat
open vector

/-- An alternative inductive definition of `primrec` which
  does not use the pairing function on ℕ, and so has to
  work with n-ary functions on ℕ instead of unary functions.
  We prove that this is equivalent to the regular notion
  in `to_prim` and `of_prim`. -/
inductive primrec' : ∀ {n}, (vector ℕ n → ℕ) → Prop
| zero : @primrec' 0 (λ _, 0)
| succ : @primrec' 1 (λ v, succ v.head)
| nth {n} (i : fin n) : primrec' (λ v, v.nth i)
| comp {m n f} (g : fin n → vector ℕ m → ℕ) :
  primrec' f → (∀ i, primrec' (g i)) →
  primrec' (λ a, f (of_fn (λ i, g i a)))
| prec {n f g} : @primrec' n f → @primrec' (n+2) g →
  primrec' (λ v : vector ℕ (n+1),
    v.head.elim (f v.tail) (λ y IH, g (y :: IH :: v.tail)))

end nat

namespace nat.primrec'
open vector primrec nat (primrec') nat.primrec'
hide ite

theorem to_prim {n f} (pf : @primrec' n f) : primrec f :=
begin
  induction pf,
  case nat.primrec'.zero { exact const 0 },
  case nat.primrec'.succ { exact primrec.succ.comp vector_head },
  case nat.primrec'.nth : n i {
    exact vector_nth.comp primrec.id (const i) },
  case nat.primrec'.comp : m n f g _ _ hf hg {
    exact hf.comp (vector_of_fn (λ i, hg i)) },
  case nat.primrec'.prec : n f g _ _ hf hg {
    exact nat_elim' vector_head (hf.comp vector_tail) (hg.comp $
      vector_cons.comp (fst.comp snd) $
      vector_cons.comp (snd.comp snd) $
      (@vector_tail _ _ (n+1)).comp fst).to₂ },
end

theorem of_eq {n} {f g : vector ℕ n → ℕ}
  (hf : primrec' f) (H : ∀ i, f i = g i) : primrec' g :=
(funext H : f = g) ▸ hf

theorem const {n} : ∀ m, @primrec' n (λ v, m)
| 0     := zero.comp fin.elim0 (λ i, i.elim0)
| (m+1) := succ.comp _ (λ i, const m)

theorem head {n : ℕ} : @primrec' n.succ head :=
(nth 0).of_eq $ λ v, by simp [nth_zero]

theorem tail {n f} (hf : @primrec' n f) : @primrec' n.succ (λ v, f v.tail) :=
(hf.comp _ (λ i, @nth _ i.succ)).of_eq $
λ v, by rw [← of_fn_nth v.tail]; congr; funext i; simp

def vec {n m} (f : vector ℕ n → vector ℕ m) :=
∀ i, primrec' (λ v, (f v).nth i)

protected theorem nil {n} : @vec n 0 (λ _, nil) := λ i, i.elim0

protected theorem cons {n m f g}
  (hf : @primrec' n f) (hg : @vec n m g) :
  vec (λ v, f v :: g v) :=
λ i, fin.cases (by simp *) (λ i, by simp [hg i]) i

theorem idv {n} : @vec n n id := nth

theorem comp' {n m f g}
  (hf : @primrec' m f) (hg : @vec n m g) :
  primrec' (λ v, f (g v)) :=
(hf.comp _ hg).of_eq $ λ v, by simp

theorem comp₁ (f : ℕ → ℕ) (hf : @primrec' 1 (λ v, f v.head))
  {n g} (hg : @primrec' n g) : primrec' (λ v, f (g v)) :=
hf.comp _ (λ i, hg)

theorem comp₂ (f : ℕ → ℕ → ℕ)
  (hf : @primrec' 2 (λ v, f v.head v.tail.head))
  {n g h} (hg : @primrec' n g) (hh : @primrec' n h) :
  primrec' (λ v, f (g v) (h v)) :=
by simpa using hf.comp' (hg.cons $ hh.cons primrec'.nil)

theorem prec' {n f g h}
  (hf : @primrec' n f) (hg : @primrec' n g) (hh : @primrec' (n+2) h) :
  @primrec' n (λ v, (f v).elim (g v)
    (λ (y IH : ℕ), h (y :: IH :: v))) :=
by simpa using comp' (prec hg hh) (hf.cons idv)

theorem pred : @primrec' 1 (λ v, v.head.pred) :=
(prec' head (const 0) head).of_eq $
λ v, by simp; cases v.head; refl

theorem add : @primrec' 2 (λ v, v.head + v.tail.head) :=
(prec head (succ.comp₁ _ (tail head))).of_eq $
λ v, by simp; induction v.head; simp [*, nat.succ_add]

theorem sub : @primrec' 2 (λ v, v.head - v.tail.head) :=
begin
  suffices, simpa using comp₂ (λ a b, b - a) this (tail head) head,
  refine (prec head (pred.comp₁ _ (tail head))).of_eq (λ v, _),
  simp, induction v.head; simp [*, nat.sub_succ]
end

theorem mul : @primrec' 2 (λ v, v.head * v.tail.head) :=
(prec (const 0) (tail (add.comp₂ _ (tail head) (head)))).of_eq $
λ v, by simp; induction v.head; simp [*, nat.succ_mul]; rw add_comm

theorem if_lt {n a b f g}
  (ha : @primrec' n a) (hb : @primrec' n b)
  (hf : @primrec' n f) (hg : @primrec' n g) :
  @primrec' n (λ v, if a v < b v then f v else g v) :=
(prec' (sub.comp₂ _ hb ha) hg (tail $ tail hf)).of_eq $
λ v, begin
  cases e : b v - a v,
  { simp [not_lt.2 (nat.le_of_sub_eq_zero e)] },
  { simp [nat.lt_of_sub_eq_succ e] }
end

theorem mkpair : @primrec' 2 (λ v, v.head.mkpair v.tail.head) :=
if_lt head (tail head)
  (add.comp₂ _ (tail $ mul.comp₂ _ head head) head)
  (add.comp₂ _ (add.comp₂ _
    (mul.comp₂ _ head head) head) (tail head))

protected theorem encode : ∀ {n}, @primrec' n encode
| 0     := (const 0).of_eq (λ v, by rw v.eq_nil; refl)
| (n+1) := (succ.comp₁ _ (mkpair.comp₂ _ head (tail encode)))
  .of_eq $ λ ⟨a::l, e⟩, rfl

theorem sqrt : @primrec' 1 (λ v, v.head.sqrt) :=
begin
  suffices H : ∀ n : ℕ, n.sqrt = n.elim 0 (λ x y,
    if x.succ < y.succ*y.succ then y else y.succ),
  { simp [H],
    have := @prec' 1 _ _ (λ v,
      by have x := v.head; have y := v.tail.head; from
      if x.succ < y.succ*y.succ then y else y.succ) head (const 0) _,
    { convert this, funext, congr, funext x y, congr; simp },
    have x1 := succ.comp₁ _ head,
    have y1 := succ.comp₁ _ (tail head),
    exact if_lt x1 (mul.comp₂ _ y1 y1) (tail head) y1 },
  intro, symmetry,
  induction n with n IH, {refl},
  dsimp, rw IH, split_ifs,
  { exact le_antisymm (nat.sqrt_le_sqrt (nat.le_succ _))
      (nat.lt_succ_iff.1 $ nat.sqrt_lt.2 h) },
  { exact nat.eq_sqrt.2 ⟨not_lt.1 h, nat.sqrt_lt.1 $
      nat.lt_succ_iff.2 $ nat.sqrt_succ_le_succ_sqrt _⟩ },
end

theorem unpair₁ {n f} (hf : @primrec' n f) :
  @primrec' n (λ v, (f v).unpair.1) :=
begin
  have s := sqrt.comp₁ _ hf,
  have fss := sub.comp₂ _ hf (mul.comp₂ _ s s),
  refine (if_lt fss s fss s).of_eq (λ v, _),
  simp [nat.unpair], split_ifs; refl
end

theorem unpair₂ {n f} (hf : @primrec' n f) :
  @primrec' n (λ v, (f v).unpair.2) :=
begin
  have s := sqrt.comp₁ _ hf,
  have fss := sub.comp₂ _ hf (mul.comp₂ _ s s),
  refine (if_lt fss s s (sub.comp₂ _ fss s)).of_eq (λ v, _),
  simp [nat.unpair], split_ifs; refl
end

theorem of_prim : ∀ {n f}, primrec f → @primrec' n f :=
suffices ∀ f, nat.primrec f → @primrec' 1 (λ v, f v.head), from
λ n f hf, (pred.comp₁ _ $ (this _ hf).comp₁
  (λ m, encodable.encode $ (decode (vector ℕ n) m).map f)
    primrec'.encode).of_eq (λ i, by simp [encodek]),
λ f hf, begin
  induction hf,
  case nat.primrec.zero { exact const 0 },
  case nat.primrec.succ { exact succ },
  case nat.primrec.left { exact unpair₁ head },
  case nat.primrec.right { exact unpair₂ head },
  case nat.primrec.pair : f g _ _ hf hg {
    exact mkpair.comp₂ _ hf hg },
  case nat.primrec.comp : f g _ _ hf hg {
    exact hf.comp₁ _ hg },
  case nat.primrec.prec : f g _ _ hf hg {
    simpa using prec' (unpair₂ head)
      (hf.comp₁ _ (unpair₁ head))
      (hg.comp₁ _ $ mkpair.comp₂ _ (unpair₁ $ tail $ tail head)
        (mkpair.comp₂ _ head (tail head))) },
end

theorem prim_iff {n f} : @primrec' n f ↔ primrec f := ⟨to_prim, of_prim⟩

theorem prim_iff₁ {f : ℕ → ℕ} :
  @primrec' 1 (λ v, f v.head) ↔ primrec f :=
prim_iff.trans ⟨
  λ h, (h.comp $ vector_of_fn $ λ i, primrec.id).of_eq (λ v, by simp),
  λ h, h.comp vector_head⟩

theorem prim_iff₂ {f : ℕ → ℕ → ℕ} :
  @primrec' 2 (λ v, f v.head v.tail.head) ↔ primrec₂ f :=
prim_iff.trans ⟨
  λ h, (h.comp $ vector_cons.comp fst $
    vector_cons.comp snd (primrec.const nil)).of_eq (λ v, by simp),
  λ h, h.comp vector_head (vector_head.comp vector_tail)⟩

theorem vec_iff {m n f} :
  @vec m n f ↔ primrec f :=
⟨λ h, by simpa using vector_of_fn (λ i, to_prim (h i)),
 λ h i, of_prim $ vector_nth.comp h (primrec.const i)⟩

end nat.primrec'

theorem primrec.nat_sqrt : primrec nat.sqrt :=
nat.primrec'.prim_iff₁.1 nat.primrec'.sqrt