Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura, Mario Carneiro
Type class for encodable Types.
Note that every encodable Type is countable.
-/
import data.equiv.nat order.order_iso
open option list nat function
/-- An encodable type is a "constructively countable" type. This is where
we have an explicit injection `encode : α → nat` and a partial inverse
`decode : nat → option α`. This makes the range of `encode` decidable,
although it is not decidable if `α` is finite or not. -/
class encodable (α : Type*) :=
(encode : α → nat) (decode : nat → option α) (encodek : ∀ a, decode (encode a) = some a)
namespace encodable
variables {α : Type*} {β : Type*}
universe u
open encodable
theorem encode_injective [encodable α] : function.injective (@encode α _)
| x y e := option.some.inj $ by rw [← encodek, e, encodek]
/- This is not set as an instance because this is usually not the best way
to infer decidability. -/
def decidable_eq_of_encodable (α) [encodable α] : decidable_eq α
| a b := decidable_of_iff _ encode_injective.eq_iff
def of_left_injection [encodable α]
(f : β → α) (finv : α → option β) (linv : ∀ b, finv (f b) = some b) : encodable β :=
⟨λ b, encode (f b),
λ n, (decode α n).bind finv,
λ b, by simp [encodable.encodek, linv]⟩
def of_left_inverse [encodable α]
(f : β → α) (finv : α → β) (linv : ∀ b, finv (f b) = b) : encodable β :=
of_left_injection f (some ∘ finv) (λ b, congr_arg some (linv b))
/-- If `α` is encodable and `β ≃ α`, then so is `β` -/
def of_equiv (α) [encodable α] (e : β ≃ α) : encodable β :=
of_left_inverse e e.symm e.left_inv
@[simp] theorem encode_of_equiv {α β} [encodable α] (e : β ≃ α) (b : β) :
@encode _ (of_equiv _ e) b = encode (e b) := rfl
@[simp] theorem decode_of_equiv {α β} [encodable α] (e : β ≃ α) (n : ℕ) :
@decode _ (of_equiv _ e) n = (decode α n).map e.symm := rfl
instance nat : encodable nat :=
⟨id, some, λ a, rfl⟩
@[simp] theorem encode_nat (n : ℕ) : encode n = n := rfl
@[simp] theorem decode_nat (n : ℕ) : decode ℕ n = some n := rfl
instance empty : encodable empty :=
⟨λ a, a.rec _, λ n, none, λ a, a.rec _⟩
instance unit : encodable punit :=
⟨λ_, zero, λn, nat.cases_on n (some punit.star) (λ _, none), λ⟨⟩, by simp⟩
@[simp] theorem encode_star : encode punit.star = 0 := rfl
@[simp] theorem decode_unit_zero : decode punit 0 = some punit.star := rfl
@[simp] theorem decode_unit_succ (n) : decode punit (succ n) = none := rfl
instance option {α : Type*} [h : encodable α] : encodable (option α) :=
⟨λ o, option.cases_on o nat.zero (λ a, succ (encode a)),
λ n, nat.cases_on n (some none) (λ m, (decode α m).map some),
λ o, by cases o; dsimp; simp [encodek, nat.succ_ne_zero]⟩
@[simp] theorem encode_none [encodable α] : encode (@none α) = 0 := rfl
@[simp] theorem encode_some [encodable α] (a : α) :
encode (some a) = succ (encode a) := rfl
@[simp] theorem decode_option_zero [encodable α] : decode (option α) 0 = some none := rfl
@[simp] theorem decode_option_succ [encodable α] (n) :
decode (option α) (succ n) = (decode α n).map some := rfl
def decode2 (α) [encodable α] (n : ℕ) : option α :=
(decode α n).bind (option.guard (λ a, encode a = n))
theorem mem_decode2' [encodable α] {n : ℕ} {a : α} :
a ∈ decode2 α n ↔ a ∈ decode α n ∧ encode a = n :=
by simp [decode2]; exact
⟨λ ⟨_, h₁, rfl, h₂⟩, ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨_, h₁, rfl, h₂⟩⟩
theorem mem_decode2 [encodable α] {n : ℕ} {a : α} :
a ∈ decode2 α n ↔ encode a = n :=
mem_decode2'.trans (and_iff_right_of_imp $ λ e, e ▸ encodek _)
theorem decode2_is_partial_inv [encodable α] : is_partial_inv encode (decode2 α) :=
λ a n, mem_decode2
theorem decode2_inj [encodable α] {n : ℕ} {a₁ a₂ : α}
(h₁ : a₁ ∈ decode2 α n) (h₂ : a₂ ∈ decode2 α n) : a₁ = a₂ :=
encode_injective $ (mem_decode2.1 h₁).trans (mem_decode2.1 h₂).symm
theorem encodek2 [encodable α] (a : α) : decode2 α (encode a) = some a :=
mem_decode2.2 rfl
def decidable_range_encode (α : Type*) [encodable α] : decidable_pred (set.range (@encode α _)) :=
λ x, decidable_of_iff (option.is_some (decode2 α x))
⟨λ h, ⟨option.get h, by rw [← decode2_is_partial_inv (option.get h), option.some_get]⟩,
λ ⟨n, hn⟩, by rw [← hn, encodek2]; exact rfl⟩
def equiv_range_encode (α : Type*) [encodable α] : α ≃ set.range (@encode α _) :=
{ to_fun := λ a : α, ⟨encode a, set.mem_range_self _⟩,
inv_fun := λ n, option.get (show is_some (decode2 α n.1),
by cases n.2 with x hx; rw [← hx, encodek2]; exact rfl),
left_inv := λ a, by dsimp;
rw [← option.some_inj, option.some_get, encodek2],
right_inv := λ ⟨n, x, hx⟩, begin
apply subtype.eq,
dsimp,
conv {to_rhs, rw ← hx},
rw [encode_injective.eq_iff, ← option.some_inj, option.some_get, ← hx, encodek2],
end }
section sum
variables [encodable α] [encodable β]
def encode_sum : α ⊕ β → nat
| (sum.inl a) := bit0 $ encode a
| (sum.inr b) := bit1 $ encode b
def decode_sum (n : nat) : option (α ⊕ β) :=
match bodd_div2 n with
| (ff, m) := (decode α m).map sum.inl
| (tt, m) := (decode β m).map sum.inr
end
instance sum : encodable (α ⊕ β) :=
⟨encode_sum, decode_sum, λ s,
by cases s; simp [encode_sum, decode_sum, encodek]; refl⟩
@[simp] theorem encode_inl (a : α) :
@encode (α ⊕ β) _ (sum.inl a) = bit0 (encode a) := rfl
@[simp] theorem encode_inr (b : β) :
@encode (α ⊕ β) _ (sum.inr b) = bit1 (encode b) := rfl
@[simp] theorem decode_sum_val (n : ℕ) :
decode (α ⊕ β) n = decode_sum n := rfl
end sum
instance bool : encodable bool :=
of_equiv (unit ⊕ unit) equiv.bool_equiv_punit_sum_punit
@[simp] theorem encode_tt : encode tt = 1 := rfl
@[simp] theorem encode_ff : encode ff = 0 := rfl
@[simp] theorem decode_zero : decode bool 0 = some ff := rfl
@[simp] theorem decode_one : decode bool 1 = some tt := rfl
theorem decode_ge_two (n) (h : 2 ≤ n) : decode bool n = none :=
begin
suffices : decode_sum n = none,
{ change (decode_sum n).map _ = none, rw this, refl },
have : 1 ≤ div2 n,
{ rw [div2_val, nat.le_div_iff_mul_le],
exacts [h, dec_trivial] },
cases exists_eq_succ_of_ne_zero (ne_of_gt this) with m e,
simp [decode_sum]; cases bodd n; simp [decode_sum]; rw e; refl
end
section sigma
variables {γ : α → Type*} [encodable α] [∀ a, encodable (γ a)]
def encode_sigma : sigma γ → ℕ
| ⟨a, b⟩ := mkpair (encode a) (encode b)
def decode_sigma (n : ℕ) : option (sigma γ) :=
let (n₁, n₂) := unpair n in
(decode α n₁).bind $ λ a, (decode (γ a) n₂).map $ sigma.mk a
instance sigma : encodable (sigma γ) :=
⟨encode_sigma, decode_sigma, λ ⟨a, b⟩,
by simp [encode_sigma, decode_sigma, unpair_mkpair, encodek]⟩
@[simp] theorem decode_sigma_val (n : ℕ) : decode (sigma γ) n =
(decode α n.unpair.1).bind (λ a, (decode (γ a) n.unpair.2).map $ sigma.mk a) :=
show decode_sigma._match_1 _ = _, by cases n.unpair; refl
@[simp] theorem encode_sigma_val (a b) : @encode (sigma γ) _ ⟨a, b⟩ =
mkpair (encode a) (encode b) := rfl
end sigma
section prod
variables [encodable α] [encodable β]
instance prod : encodable (α × β) :=
of_equiv _ (equiv.sigma_equiv_prod α β).symm
@[simp] theorem decode_prod_val (n : ℕ) : decode (α × β) n =
(decode α n.unpair.1).bind (λ a, (decode β n.unpair.2).map $ prod.mk a) :=
show (decode (sigma (λ _, β)) n).map (equiv.sigma_equiv_prod α β) = _,
by simp; cases decode α n.unpair.1; simp;
cases decode β n.unpair.2; refl
@[simp] theorem encode_prod_val (a b) : @encode (α × β) _ (a, b) =
mkpair (encode a) (encode b) := rfl
end prod
section subtype
open subtype decidable
variable {P : α → Prop}
variable [encA : encodable α]
variable [decP : decidable_pred P]
include encA
def encode_subtype : {a : α // P a} → nat
| ⟨v, h⟩ := encode v
include decP
def decode_subtype (v : nat) : option {a : α // P a} :=
(decode α v).bind $ λ a,
if h : P a then some ⟨a, h⟩ else none
instance subtype : encodable {a : α // P a} :=
⟨encode_subtype, decode_subtype,
λ ⟨v, h⟩, by simp [encode_subtype, decode_subtype, encodek, h]⟩
end subtype
instance fin (n) : encodable (fin n) :=
of_equiv _ (equiv.fin_equiv_subtype _)
instance int : encodable ℤ :=
of_equiv _ equiv.int_equiv_nat
instance ulift [encodable α] : encodable (ulift α) :=
of_equiv _ equiv.ulift
instance plift [encodable α] : encodable (plift α) :=
of_equiv _ equiv.plift
noncomputable def of_inj [encodable β] (f : α → β) (hf : injective f) : encodable α :=
of_left_injection f (partial_inv f) (λ x, (partial_inv_of_injective hf _ _).2 rfl)
end encodable
/-
Choice function for encodable types and decidable predicates.
We provide the following API
choose {α : Type*} {p : α → Prop} [c : encodable α] [d : decidable_pred p] : (∃ x, p x) → α :=
choose_spec {α : Type*} {p : α → Prop} [c : encodable α] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
-/
namespace encodable
section find_a
variables {α : Type*} (p : α → Prop) [encodable α] [decidable_pred p]
private def good : option α → Prop
| (some a) := p a
| none := false
private def decidable_good : decidable_pred (good p)
| n := by cases n; unfold good; apply_instance
local attribute [instance] decidable_good
open encodable
variable {p}
def choose_x (h : ∃ x, p x) : {a:α // p a} :=
have ∃ n, good p (decode α n), from
let ⟨w, pw⟩ := h in ⟨encode w, by simp [good, encodek, pw]⟩,
match _, nat.find_spec this : ∀ o, good p o → {a // p a} with
| some a, h := ⟨a, h⟩
end
def choose (h : ∃ x, p x) : α := (choose_x h).1
lemma choose_spec (h : ∃ x, p x) : p (choose h) := (choose_x h).2
end find_a
theorem axiom_of_choice {α : Type*} {β : α → Type*} {R : Π x, β x → Prop}
[Π a, encodable (β a)] [∀ x y, decidable (R x y)]
(H : ∀x, ∃y, R x y) : ∃f:Πa, β a, ∀x, R x (f x) :=
⟨λ x, choose (H x), λ x, choose_spec (H x)⟩
theorem skolem {α : Type*} {β : α → Type*} {P : Π x, β x → Prop}
[c : Π a, encodable (β a)] [d : ∀ x y, decidable (P x y)] :
(∀x, ∃y, P x y) ↔ ∃f : Π a, β a, (∀x, P x (f x)) :=
⟨axiom_of_choice, λ ⟨f, H⟩ x, ⟨_, H x⟩⟩
/-
There is a total ordering on the elements of an encodable type, induced by the map to ℕ.
-/
/-- The `encode` function, viewed as an embedding. -/
def encode' (α) [encodable α] : α ↪ nat :=
⟨encodable.encode, encodable.encode_injective⟩
instance {α} [encodable α] : is_trans _ (encode' α ⁻¹'o (≤)) :=
(order_embedding.preimage _ _).is_trans
instance {α} [encodable α] : is_antisymm _ (encodable.encode' α ⁻¹'o (≤)) :=
(order_embedding.preimage _ _).is_antisymm
instance {α} [encodable α] : is_total _ (encodable.encode' α ⁻¹'o (≤)) :=
(order_embedding.preimage _ _).is_total
end encodable
namespace directed
open encodable
variables {α : Type*} {β : Type*} [encodable α] [inhabited α]
/-- Given a `directed r` function `f : α → β` defined on an encodable inhabited type,
construct a noncomputable sequence such that `r (f (x n)) (f (x (n + 1)))`
and `r (f a) (f (x (encode a + 1))`. -/
protected noncomputable def sequence {r : β → β → Prop} (f : α → β) (hf : directed r f) : ℕ → α
| 0 := default α
| (n + 1) :=
let p := sequence n in
match decode α n with
| none := classical.some (hf p p)
| (some a) := classical.some (hf p a)
end
lemma sequence_mono_nat {r : β → β → Prop} {f : α → β} (hf : directed r f) (n : ℕ) :
r (f (hf.sequence f n)) (f (hf.sequence f (n+1))) :=
begin
dsimp [directed.sequence],
generalize eq : hf.sequence f n = p,
cases h : decode α n with a,
{ exact (classical.some_spec (hf p p)).1 },
{ exact (classical.some_spec (hf p a)).1 }
end
lemma rel_sequence {r : β → β → Prop} {f : α → β} (hf : directed r f) (a : α) :
r (f a) (f (hf.sequence f (encode a + 1))) :=
begin
simp only [directed.sequence, encodek],
exact (classical.some_spec (hf _ a)).2
end
variables [preorder β] {f : α → β} (hf : directed (≤) f)
lemma sequence_mono : monotone (f ∘ (hf.sequence f)) :=
monotone_of_monotone_nat $ hf.sequence_mono_nat
lemma le_sequence (a : α) : f a ≤ f (hf.sequence f (encode a + 1)) :=
hf.rel_sequence a
end directed
section quotient
open encodable quotient
variables {α : Type*} {s : setoid α} [@decidable_rel α (≈)] [encodable α]
/-- Representative of an equivalence class. This is a computable version of `quot.out` for a setoid
on an encodable type. -/
def quotient.rep (q : quotient s) : α :=
choose (exists_rep q)
theorem quotient.rep_spec (q : quotient s) : ⟦q.rep⟧ = q :=
choose_spec (exists_rep q)
/-- The quotient of an encodable space by a decidable equivalence relation is encodable. -/
def encodable_quotient : encodable (quotient s) :=
⟨λ q, encode q.rep,
λ n, quotient.mk <$> decode α n,
by rintros ⟨l⟩; rw encodek; exact congr_arg some ⟦l⟧.rep_spec⟩
end quotient