CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Kenny Lau

Equivalences between finite numbers.
-/
import data.fin data.equiv.basic

variables {m n : ℕ}

def fin_zero_equiv : fin 0 ≃ empty :=
⟨fin_zero_elim, empty.elim, assume a, fin_zero_elim a, assume a, empty.elim a⟩

def fin_one_equiv : fin 1 ≃ punit :=
⟨λ_, (), λ_, 0, fin.cases rfl (λa, fin_zero_elim a), assume ⟨⟩, rfl⟩

def fin_two_equiv : fin 2 ≃ bool :=
⟨@fin.cases 1 (λ_, bool) ff (λ_, tt),
  λb, cond b 1 0,
  begin
    refine fin.cases _ _, refl,
    refine fin.cases _ _, refl,
    exact λi, fin_zero_elim i
  end,
  assume b, match b with tt := rfl | ff := rfl end⟩

def sum_fin_sum_equiv : fin m ⊕ fin n ≃ fin (m + n) :=
{ to_fun := λ x, sum.rec_on x
    (λ y, ⟨y.1, nat.lt_of_lt_of_le y.2 $ nat.le_add_right m n⟩)
    (λ y, ⟨m + y.1, nat.add_lt_add_left y.2 m⟩),
  inv_fun := λ x, if H : x.1 < m
    then sum.inl ⟨x.1, H⟩
    else sum.inr ⟨x.1 - m, nat.lt_of_add_lt_add_left $
      show m + (x.1 - m) < m + n,
      from (nat.add_sub_of_le $ le_of_not_gt H).symm ▸ x.2⟩,
  left_inv := λ x, begin
    cases x with y y,
    { simp [y.2, fin.ext_iff] },
    { have H : ¬m + y.val < m := not_lt_of_ge (nat.le_add_right _ _),
      simp [H, nat.add_sub_cancel_left, fin.ext_iff] }
  end,
  right_inv := λ x, begin
    by_cases H : x.1 < m,
    { dsimp, rw [dif_pos H], simp },
    { dsimp, rw [dif_neg H], simp [fin.ext_iff, nat.add_sub_of_le (le_of_not_gt H)] }
  end }

def fin_prod_fin_equiv : fin m × fin n ≃ fin (m * n) :=
{ to_fun := λ x, ⟨x.2.1 + n * x.1.1,
    calc x.2.1 + n * x.1.1 + 1
        = x.1.1 * n + x.2.1 + 1 : by ac_refl
    ... ≤ x.1.1 * n + n : nat.add_le_add_left x.2.2 _
    ... = (x.1.1 + 1) * n : eq.symm $ nat.succ_mul _ _
    ... ≤ m * n : nat.mul_le_mul_right _ x.1.2⟩,
  inv_fun := λ x,
    have H : 0 < n, from nat.pos_of_ne_zero $ λ H, nat.not_lt_zero x.1 $ by subst H; from x.2,
    (⟨x.1 / n, (nat.div_lt_iff_lt_mul _ _ H).2 x.2⟩,
     ⟨x.1 % n, nat.mod_lt _ H⟩),
  left_inv := λ ⟨x, y⟩,
    have H : 0 < n, from nat.pos_of_ne_zero $ λ H, nat.not_lt_zero y.1 $ H ▸ y.2,
    prod.ext
      (fin.eq_of_veq $ calc
              (y.1 + n * x.1) / n
            = y.1 / n + x.1 : nat.add_mul_div_left _ _ H
        ... = 0 + x.1 : by rw nat.div_eq_of_lt y.2
        ... = x.1 : nat.zero_add x.1)
      (fin.eq_of_veq $ calc
              (y.1 + n * x.1) % n
            = y.1 % n : nat.add_mul_mod_self_left _ _ _
        ... = y.1 : nat.mod_eq_of_lt y.2),
  right_inv := λ x, fin.eq_of_veq $ nat.mod_add_div _ _ }

instance subsingleton_fin_zero : subsingleton (fin 0) :=
fin_zero_equiv.subsingleton

instance subsingleton_fin_one : subsingleton (fin 1) :=
fin_one_equiv.subsingleton