Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Kenny Lau
Equivalences between finite numbers.
-/
import data.fin data.equiv.basic
variables {m n : ℕ}
def fin_zero_equiv : fin 0 ≃ empty :=
⟨fin_zero_elim, empty.elim, assume a, fin_zero_elim a, assume a, empty.elim a⟩
def fin_one_equiv : fin 1 ≃ punit :=
⟨λ_, (), λ_, 0, fin.cases rfl (λa, fin_zero_elim a), assume ⟨⟩, rfl⟩
def fin_two_equiv : fin 2 ≃ bool :=
⟨@fin.cases 1 (λ_, bool) ff (λ_, tt),
λb, cond b 1 0,
begin
refine fin.cases _ _, refl,
refine fin.cases _ _, refl,
exact λi, fin_zero_elim i
end,
assume b, match b with tt := rfl | ff := rfl end⟩
def sum_fin_sum_equiv : fin m ⊕ fin n ≃ fin (m + n) :=
{ to_fun := λ x, sum.rec_on x
(λ y, ⟨y.1, nat.lt_of_lt_of_le y.2 $ nat.le_add_right m n⟩)
(λ y, ⟨m + y.1, nat.add_lt_add_left y.2 m⟩),
inv_fun := λ x, if H : x.1 < m
then sum.inl ⟨x.1, H⟩
else sum.inr ⟨x.1 - m, nat.lt_of_add_lt_add_left $
show m + (x.1 - m) < m + n,
from (nat.add_sub_of_le $ le_of_not_gt H).symm ▸ x.2⟩,
left_inv := λ x, begin
cases x with y y,
{ simp [y.2, fin.ext_iff] },
{ have H : ¬m + y.val < m := not_lt_of_ge (nat.le_add_right _ _),
simp [H, nat.add_sub_cancel_left, fin.ext_iff] }
end,
right_inv := λ x, begin
by_cases H : x.1 < m,
{ dsimp, rw [dif_pos H], simp },
{ dsimp, rw [dif_neg H], simp [fin.ext_iff, nat.add_sub_of_le (le_of_not_gt H)] }
end }
def fin_prod_fin_equiv : fin m × fin n ≃ fin (m * n) :=
{ to_fun := λ x, ⟨x.2.1 + n * x.1.1,
calc x.2.1 + n * x.1.1 + 1
= x.1.1 * n + x.2.1 + 1 : by ac_refl
... ≤ x.1.1 * n + n : nat.add_le_add_left x.2.2 _
... = (x.1.1 + 1) * n : eq.symm $ nat.succ_mul _ _
... ≤ m * n : nat.mul_le_mul_right _ x.1.2⟩,
inv_fun := λ x,
have H : 0 < n, from nat.pos_of_ne_zero $ λ H, nat.not_lt_zero x.1 $ by subst H; from x.2,
(⟨x.1 / n, (nat.div_lt_iff_lt_mul _ _ H).2 x.2⟩,
⟨x.1 % n, nat.mod_lt _ H⟩),
left_inv := λ ⟨x, y⟩,
have H : 0 < n, from nat.pos_of_ne_zero $ λ H, nat.not_lt_zero y.1 $ H ▸ y.2,
prod.ext
(fin.eq_of_veq $ calc
(y.1 + n * x.1) / n
= y.1 / n + x.1 : nat.add_mul_div_left _ _ H
... = 0 + x.1 : by rw nat.div_eq_of_lt y.2
... = x.1 : nat.zero_add x.1)
(fin.eq_of_veq $ calc
(y.1 + n * x.1) % n
= y.1 % n : nat.add_mul_mod_self_left _ _ _
... = y.1 : nat.mod_eq_of_lt y.2),
right_inv := λ x, fin.eq_of_veq $ nat.mod_add_div _ _ }
instance subsingleton_fin_zero : subsingleton (fin 0) :=
fin_zero_equiv.subsingleton
instance subsingleton_fin_one : subsingleton (fin 1) :=
fin_one_equiv.subsingleton