Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Mario Carneiro -/ import data.list.basic data.pnat.basic data.array.lemmas logic.basic algebra.group data.list.defs data.nat.basic data.option.basic data.bool data.prod import tactic.finish data.sigma.basic universes u v w /-- `bucket_array α β` is the underlying data type for `hash_map α β`, an array of linked lists of key-value pairs. -/ def bucket_array (α : Type u) (β : α → Type v) (n : ℕ+) := array n.1 (list Σ a, β a) /-- Make a hash_map index from a `nat` hash value and a (positive) buffer size -/ def hash_map.mk_idx (n : ℕ+) (i : nat) : fin n.1 := ⟨i % n.1, nat.mod_lt _ n.2⟩ namespace bucket_array section parameters {α : Type u} {β : α → Type v} (hash_fn : α → nat) variables {n : ℕ+} (data : bucket_array α β n) instance : inhabited (bucket_array α β n) := ⟨mk_array _ []⟩ /-- Read the bucket corresponding to an element -/ def read (a : α) : list Σ a, β a := let bidx := hash_map.mk_idx n (hash_fn a) in data.read bidx /-- Write the bucket corresponding to an element -/ def write (a : α) (l : list Σ a, β a) : bucket_array α β n := let bidx := hash_map.mk_idx n (hash_fn a) in data.write bidx l /-- Modify (read, apply `f`, and write) the bucket corresponding to an element -/ def modify (a : α) (f : list (Σ a, β a) → list (Σ a, β a)) : bucket_array α β n := let bidx := hash_map.mk_idx n (hash_fn a) in array.write data bidx (f (array.read data bidx)) /-- The list of all key-value pairs in the bucket list -/ def as_list : list Σ a, β a := data.to_list.join theorem mem_as_list {a : Σ a, β a} : a ∈ data.as_list ↔ ∃i, a ∈ array.read data i := have (∃ (l : list (Σ (a : α), β a)) (i : fin (n.val)), a ∈ l ∧ array.read data i = l) ↔ ∃ (i : fin (n.val)), a ∈ array.read data i, by rw exists_swap; exact exists_congr (λ i, by simp), by simp [as_list]; simpa [array.mem.def, and_comm] /-- Fold a function `f` over the key-value pairs in the bucket list -/ def foldl {δ : Type w} (d : δ) (f : δ → Π a, β a → δ) : δ := data.foldl d (λ b d, b.foldl (λ r a, f r a.1 a.2) d) theorem foldl_eq {δ : Type w} (d : δ) (f : δ → Π a, β a → δ) : data.foldl d f = data.as_list.foldl (λ r a, f r a.1 a.2) d := by rw [foldl, as_list, list.foldl_join, ← array.to_list_foldl] end end bucket_array namespace hash_map section parameters {α : Type u} {β : α → Type v} (hash_fn : α → nat) /-- Insert the pair `⟨a, b⟩` into the correct location in the bucket array (without checking for duplication) -/ def reinsert_aux {n} (data : bucket_array α β n) (a : α) (b : β a) : bucket_array α β n := data.modify hash_fn a (λl, ⟨a, b⟩ :: l) parameter [decidable_eq α] /-- Search a bucket for a key `a` and return the value -/ def find_aux (a : α) : list (Σ a, β a) → option (β a) | [] := none | (⟨a',b⟩::t) := if h : a' = a then some (eq.rec_on h b) else find_aux t theorem find_aux_iff {a : α} {b : β a} : Π {l : list Σ a, β a}, (l.map sigma.fst).nodup → (find_aux a l = some b ↔ sigma.mk a b ∈ l) | [] nd := ⟨λn, by injection n, false.elim⟩ | (⟨a',b'⟩::t) nd := begin by_cases a' = a, { clear find_aux_iff, subst h, suffices : b' = b ↔ b' = b ∨ sigma.mk a' b ∈ t, {simpa [find_aux, eq_comm]}, refine (or_iff_left_of_imp (λ m, _)).symm, have : a' ∉ t.map sigma.fst, from list.not_mem_of_nodup_cons nd, exact this.elim (list.mem_map_of_mem sigma.fst m) }, { have : sigma.mk a b ≠ ⟨a', b'⟩, { intro e, injection e with e, exact h e.symm }, simp at nd, simp [find_aux, h, ne.symm h, find_aux_iff, nd] } end /-- Returns `tt` if the bucket `l` contains the key `a` -/ def contains_aux (a : α) (l : list Σ a, β a) : bool := (find_aux a l).is_some theorem contains_aux_iff {a : α} {l : list Σ a, β a} (nd : (l.map sigma.fst).nodup) : contains_aux a l ↔ a ∈ l.map sigma.fst := begin unfold contains_aux, cases h : find_aux a l with b; simp, { assume (b : β a) (m : sigma.mk a b ∈ l), rw (find_aux_iff nd).2 m at h, contradiction }, { show ∃ (b : β a), sigma.mk a b ∈ l, exact ⟨_, (find_aux_iff nd).1 h⟩ }, end /-- Modify a bucket to replace a value in the list. Leaves the list unchanged if the key is not found. -/ def replace_aux (a : α) (b : β a) : list (Σ a, β a) → list (Σ a, β a) | [] := [] | (⟨a', b'⟩::t) := if a' = a then ⟨a, b⟩::t else ⟨a', b'⟩ :: replace_aux t /-- Modify a bucket to remove a key, if it exists. -/ def erase_aux (a : α) : list (Σ a, β a) → list (Σ a, β a) | [] := [] | (⟨a', b'⟩::t) := if a' = a then t else ⟨a', b'⟩ :: erase_aux t /-- The predicate `valid bkts sz` means that `bkts` satisfies the `hash_map` invariants: There are exactly `sz` elements in it, every pair is in the bucket determined by its key and the hash function, and no key appears multiple times in the list. -/ structure valid {n} (bkts : bucket_array α β n) (sz : nat) : Prop := (len : bkts.as_list.length = sz) (idx : ∀ {i} {a : Σ a, β a}, a ∈ array.read bkts i → mk_idx n (hash_fn a.1) = i) (nodup : ∀i, ((array.read bkts i).map sigma.fst).nodup) theorem valid.idx_enum {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz) {i l} (he : (i, l) ∈ bkts.to_list.enum) {a} {b : β a} (hl : sigma.mk a b ∈ l) : ∃ h, mk_idx n (hash_fn a) = ⟨i, h⟩ := (array.mem_to_list_enum.mp he).imp (λ h e, by subst e; exact v.idx hl) theorem valid.idx_enum_1 {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz) {i l} (he : (i, l) ∈ bkts.to_list.enum) {a} {b : β a} (hl : sigma.mk a b ∈ l) : (mk_idx n (hash_fn a)).1 = i := let ⟨h, e⟩ := v.idx_enum _ he hl in by rw e; refl theorem valid.as_list_nodup {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz) : (bkts.as_list.map sigma.fst).nodup := begin suffices : (bkts.to_list.map (list.map sigma.fst)).pairwise list.disjoint, { simp [bucket_array.as_list, list.nodup_join, this], change ∀ l s, array.mem s bkts → list.map sigma.fst s = l → l.nodup, introv m e, subst e, cases m with i e, subst e, apply v.nodup }, rw [← list.enum_map_snd bkts.to_list, list.pairwise_map, list.pairwise_map], have : (bkts.to_list.enum.map prod.fst).nodup := by simp [list.nodup_range], refine list.pairwise.imp_of_mem _ ((list.pairwise_map _).1 this), rw prod.forall, intros i l₁, rw prod.forall, intros j l₂ me₁ me₂ ij, simp [list.disjoint], intros a b ml₁ b' ml₂, apply ij, rwa [← v.idx_enum_1 _ me₁ ml₁, ← v.idx_enum_1 _ me₂ ml₂] end theorem mk_as_list (n : ℕ+) : bucket_array.as_list (mk_array n.1 [] : bucket_array α β n) = [] := list.eq_nil_iff_forall_not_mem.mpr $ λ x m, let ⟨i, h⟩ := (bucket_array.mem_as_list _).1 m in h theorem mk_valid (n : ℕ+) : @valid n (mk_array n.1 []) 0 := ⟨by simp [mk_as_list], λ i a h, by cases h, λ i, list.nodup_nil⟩ theorem valid.find_aux_iff {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz) {a : α} {b : β a} : find_aux a (bkts.read hash_fn a) = some b ↔ sigma.mk a b ∈ bkts.as_list := (find_aux_iff (v.nodup _)).trans $ by rw bkts.mem_as_list; exact ⟨λ h, ⟨_, h⟩, λ ⟨i, h⟩, (v.idx h).symm ▸ h⟩ theorem valid.contains_aux_iff {n} {bkts : bucket_array α β n} {sz : nat} (v : valid bkts sz) (a : α) : contains_aux a (bkts.read hash_fn a) ↔ a ∈ bkts.as_list.map sigma.fst := by simp [contains_aux, option.is_some_iff_exists, v.find_aux_iff hash_fn] section parameters {n : ℕ+} {bkts : bucket_array α β n} {bidx : fin n.1} {f : list (Σ a, β a) → list (Σ a, β a)} (u v1 v2 w : list Σ a, β a) local notation `L` := array.read bkts bidx private def bkts' : bucket_array α β n := array.write bkts bidx (f L) variables (hl : L = u ++ v1 ++ w) (hfl : f L = u ++ v2 ++ w) include hl hfl theorem append_of_modify : ∃ u' w', bkts.as_list = u' ++ v1 ++ w' ∧ bkts'.as_list = u' ++ v2 ++ w' := begin unfold bucket_array.as_list, have h : bidx.1 < bkts.to_list.length, {simp [bidx.2]}, refine ⟨(bkts.to_list.take bidx.1).join ++ u, w ++ (bkts.to_list.drop (bidx.1+1)).join, _, _⟩, { conv { to_lhs, rw [← list.take_append_drop bidx.1 bkts.to_list, list.drop_eq_nth_le_cons h], simp [hl] }, simp }, { conv { to_lhs, rw [bkts', array.write_to_list, list.update_nth_eq_take_cons_drop _ h], simp [hfl] }, simp } end variables (hvnd : (v2.map sigma.fst).nodup) (hal : ∀ (a : Σ a, β a), a ∈ v2 → mk_idx n (hash_fn a.1) = bidx) (djuv : (u.map sigma.fst).disjoint (v2.map sigma.fst)) (djwv : (w.map sigma.fst).disjoint (v2.map sigma.fst)) include hvnd hal djuv djwv theorem valid.modify {sz : ℕ} (v : valid bkts sz) : sz + v2.length ≥ v1.length ∧ valid bkts' (sz + v2.length - v1.length) := begin rcases append_of_modify u v1 v2 w hl hfl with ⟨u', w', e₁, e₂⟩, rw [← v.len, e₁], suffices : valid bkts' (u' ++ v2 ++ w').length, { simpa [ge, nat.le_add_right, nat.add_sub_cancel_left] }, refine ⟨congr_arg _ e₂, λ i a, _, λ i, _⟩, { by_cases bidx = i, { subst i, rw [bkts', array.read_write, hfl], have := @valid.idx _ _ _ v bidx a, simp only [hl, list.mem_append, or_imp_distrib, forall_and_distrib] at this ⊢, exact ⟨⟨this.1.1, hal _⟩, this.2⟩ }, { rw [bkts', array.read_write_of_ne _ _ h], apply v.idx } }, { by_cases bidx = i, { subst i, rw [bkts', array.read_write, hfl], have := @valid.nodup _ _ _ v bidx, simp [hl, list.nodup_append] at this, simp [list.nodup_append, this, hvnd, djuv, djwv.symm] }, { rw [bkts', array.read_write_of_ne _ _ h], apply v.nodup } } end end theorem valid.replace_aux (a : α) (b : β a) : Π (l : list (Σ a, β a)), a ∈ l.map sigma.fst → ∃ (u w : list Σ a, β a) b', l = u ++ [⟨a, b'⟩] ++ w ∧ replace_aux a b l = u ++ [⟨a, b⟩] ++ w | [] := false.elim | (⟨a', b'⟩::t) := begin by_cases e : a' = a, { subst a', suffices : ∃ (u w : list Σ a, β a) (b'' : β a), (sigma.mk a b') :: t = u ++ ⟨a, b''⟩ :: w ∧ replace_aux a b (⟨a, b'⟩ :: t) = u ++ ⟨a, b⟩ :: w, {simpa}, refine ⟨[], t, b', _⟩, simp [replace_aux] }, { suffices : ∀ (x : β a) (_ : sigma.mk a x ∈ t), ∃ u w (b'' : β a), (sigma.mk a' b') :: t = u ++ ⟨a, b''⟩ :: w ∧ (sigma.mk a' b') :: (replace_aux a b t) = u ++ ⟨a, b⟩ :: w, { simpa [replace_aux, ne.symm e, e] }, intros x m, have IH : ∀ (x : β a) (_ : sigma.mk a x ∈ t), ∃ u w (b'' : β a), t = u ++ ⟨a, b''⟩ :: w ∧ replace_aux a b t = u ++ ⟨a, b⟩ :: w, { simpa using valid.replace_aux t }, rcases IH x m with ⟨u, w, b'', hl, hfl⟩, exact ⟨⟨a', b'⟩ :: u, w, b'', by simp [hl, hfl.symm, ne.symm e]⟩ } end theorem valid.replace {n : ℕ+} {bkts : bucket_array α β n} {sz : ℕ} (a : α) (b : β a) (Hc : contains_aux a (bkts.read hash_fn a)) (v : valid bkts sz) : valid (bkts.modify hash_fn a (replace_aux a b)) sz := begin have nd := v.nodup (mk_idx n (hash_fn a)), rcases hash_map.valid.replace_aux a b (array.read bkts (mk_idx n (hash_fn a))) ((contains_aux_iff nd).1 Hc) with ⟨u, w, b', hl, hfl⟩, simp [hl, list.nodup_append] at nd, refine (v.modify hash_fn u [⟨a, b'⟩] [⟨a, b⟩] w hl hfl (list.nodup_singleton _) (λa' e, by simp at e; rw e) (λa' e1 e2, _) (λa' e1 e2, _)).2; { revert e1, simp [-sigma.exists] at e2, subst a', simp [nd] } end theorem valid.insert {n : ℕ+} {bkts : bucket_array α β n} {sz : ℕ} (a : α) (b : β a) (Hnc : ¬ contains_aux a (bkts.read hash_fn a)) (v : valid bkts sz) : valid (reinsert_aux bkts a b) (sz+1) := begin have nd := v.nodup (mk_idx n (hash_fn a)), refine (v.modify hash_fn [] [] [⟨a, b⟩] (bkts.read hash_fn a) rfl rfl (list.nodup_singleton _) (λa' e, by simp at e; rw e) (λa', false.elim) (λa' e1 e2, _)).2, simp [-sigma.exists] at e2, subst a', exact Hnc ((contains_aux_iff nd).2 e1) end theorem valid.erase_aux (a : α) : Π (l : list (Σ a, β a)), a ∈ l.map sigma.fst → ∃ (u w : list Σ a, β a) b, l = u ++ [⟨a, b⟩] ++ w ∧ erase_aux a l = u ++ [] ++ w | [] := false.elim | (⟨a', b'⟩::t) := begin by_cases e : a' = a, { subst a', simpa [erase_aux, and_comm] using show ∃ u w (x : β a), t = u ++ w ∧ (sigma.mk a b') :: t = u ++ ⟨a, x⟩ :: w, from ⟨[], t, b', by simp⟩ }, { simp [erase_aux, e, ne.symm e], suffices : ∀ (b : β a) (_ : sigma.mk a b ∈ t), ∃ u w (x : β a), (sigma.mk a' b') :: t = u ++ ⟨a, x⟩ :: w ∧ (sigma.mk a' b') :: (erase_aux a t) = u ++ w, { simpa [replace_aux, ne.symm e, e] }, intros b m, have IH : ∀ (x : β a) (_ : sigma.mk a x ∈ t), ∃ u w (x : β a), t = u ++ ⟨a, x⟩ :: w ∧ erase_aux a t = u ++ w, { simpa using valid.erase_aux t }, rcases IH b m with ⟨u, w, b'', hl, hfl⟩, exact ⟨⟨a', b'⟩ :: u, w, b'', by simp [hl, hfl.symm]⟩ } end theorem valid.erase {n} {bkts : bucket_array α β n} {sz} (a : α) (Hc : contains_aux a (bkts.read hash_fn a)) (v : valid bkts sz) : valid (bkts.modify hash_fn a (erase_aux a)) (sz-1) := begin have nd := v.nodup (mk_idx n (hash_fn a)), rcases hash_map.valid.erase_aux a (array.read bkts (mk_idx n (hash_fn a))) ((contains_aux_iff nd).1 Hc) with ⟨u, w, b, hl, hfl⟩, refine (v.modify hash_fn u [⟨a, b⟩] [] w hl hfl list.nodup_nil _ _ _).2; { intros, simp at *; contradiction } end end end hash_map /-- A hash map data structure, representing a finite key-value map with key type `α` and value type `β` (which may depend on `α`). -/ structure hash_map (α : Type u) [decidable_eq α] (β : α → Type v) := (hash_fn : α → nat) (size : ℕ) (nbuckets : ℕ+) (buckets : bucket_array α β nbuckets) (is_valid : hash_map.valid hash_fn buckets size) /-- Construct an empty hash map with buffer size `nbuckets` (default 8). -/ def mk_hash_map {α : Type u} [decidable_eq α] {β : α → Type v} (hash_fn : α → nat) (nbuckets := 8) : hash_map α β := let n := if nbuckets = 0 then 8 else nbuckets in let nz : n > 0 := by abstract { cases nbuckets; simp [if_pos, nat.succ_ne_zero] } in { hash_fn := hash_fn, size := 0, nbuckets := ⟨n, nz⟩, buckets := mk_array n [], is_valid := hash_map.mk_valid _ _ } namespace hash_map variables {α : Type u} {β : α → Type v} [decidable_eq α] /-- Return the value corresponding to a key, or `none` if not found -/ def find (m : hash_map α β) (a : α) : option (β a) := find_aux a (m.buckets.read m.hash_fn a) /-- Return `tt` if the key exists in the map -/ def contains (m : hash_map α β) (a : α) : bool := (m.find a).is_some instance : has_mem α (hash_map α β) := ⟨λa m, m.contains a⟩ /-- Fold a function over the key-value pairs in the map -/ def fold {δ : Type w} (m : hash_map α β) (d : δ) (f : δ → Π a, β a → δ) : δ := m.buckets.foldl d f /-- The list of key-value pairs in the map -/ def entries (m : hash_map α β) : list Σ a, β a := m.buckets.as_list /-- The list of keys in the map -/ def keys (m : hash_map α β) : list α := m.entries.map sigma.fst theorem find_iff (m : hash_map α β) (a : α) (b : β a) : m.find a = some b ↔ sigma.mk a b ∈ m.entries := m.is_valid.find_aux_iff _ theorem contains_iff (m : hash_map α β) (a : α) : m.contains a ↔ a ∈ m.keys := m.is_valid.contains_aux_iff _ _ theorem entries_empty (hash_fn : α → nat) (n) : (@mk_hash_map α _ β hash_fn n).entries = [] := by dsimp [entries, mk_hash_map]; rw mk_as_list theorem keys_empty (hash_fn : α → nat) (n) : (@mk_hash_map α _ β hash_fn n).keys = [] := by dsimp [keys]; rw entries_empty; refl theorem find_empty (hash_fn : α → nat) (n a) : (@mk_hash_map α _ β hash_fn n).find a = none := by induction h : (@mk_hash_map α _ β hash_fn n).find a; [refl, { have := (find_iff _ _ _).1 h, rw entries_empty at this, contradiction }] theorem not_contains_empty (hash_fn : α → nat) (n a) : ¬ (@mk_hash_map α _ β hash_fn n).contains a := by apply bool_iff_false.2; dsimp [contains]; rw [find_empty]; refl theorem insert_lemma (hash_fn : α → nat) {n n'} {bkts : bucket_array α β n} {sz} (v : valid hash_fn bkts sz) : valid hash_fn (bkts.foldl (mk_array _ [] : bucket_array α β n') (reinsert_aux hash_fn)) sz := begin suffices : ∀ (l : list Σ a, β a) (t : bucket_array α β n') sz, valid hash_fn t sz → ((l ++ t.as_list).map sigma.fst).nodup → valid hash_fn (l.foldl (λr (a : Σ a, β a), reinsert_aux hash_fn r a.1 a.2) t) (sz + l.length), { have p := this bkts.as_list _ _ (mk_valid _ _), rw [mk_as_list, list.append_nil, zero_add, v.len] at p, rw bucket_array.foldl_eq, exact p (v.as_list_nodup _) }, intro l, induction l with c l IH; intros t sz v nd, {exact v}, rw show sz + (c :: l).length = sz + 1 + l.length, by simp, rcases (show (l.map sigma.fst).nodup ∧ ((bucket_array.as_list t).map sigma.fst).nodup ∧ c.fst ∉ l.map sigma.fst ∧ c.fst ∉ (bucket_array.as_list t).map sigma.fst ∧ (l.map sigma.fst).disjoint ((bucket_array.as_list t).map sigma.fst), by simpa [list.nodup_append, not_or_distrib, and_comm, and.left_comm] using nd) with ⟨nd1, nd2, nm1, nm2, dj⟩, have v' := v.insert _ _ c.2 (λHc, nm2 $ (v.contains_aux_iff _ c.1).1 Hc), apply IH _ _ v', suffices : ∀ ⦃a : α⦄ (b : β a), sigma.mk a b ∈ l → ∀ (b' : β a), sigma.mk a b' ∈ (reinsert_aux hash_fn t c.1 c.2).as_list → false, { simpa [list.nodup_append, nd1, v'.as_list_nodup _, list.disjoint] }, intros a b m1 b' m2, rcases (reinsert_aux hash_fn t c.1 c.2).mem_as_list.1 m2 with ⟨i, im⟩, have : sigma.mk a b' ∉ array.read t i, { intro m3, have : a ∈ list.map sigma.fst t.as_list := list.mem_map_of_mem sigma.fst (t.mem_as_list.2 ⟨_, m3⟩), exact dj (list.mem_map_of_mem sigma.fst m1) this }, by_cases h : mk_idx n' (hash_fn c.1) = i, { subst h, have e : sigma.mk a b' = ⟨c.1, c.2⟩, { simpa [reinsert_aux, bucket_array.modify, array.read_write, this] using im }, injection e with e, subst a, exact nm1.elim (@list.mem_map_of_mem _ _ sigma.fst _ _ m1) }, { apply this, simpa [reinsert_aux, bucket_array.modify, array.read_write_of_ne _ _ h] using im } end /-- Insert a key-value pair into the map. (Modifies `m` in-place when applicable) -/ def insert : Π (m : hash_map α β) (a : α) (b : β a), hash_map α β | ⟨hash_fn, size, n, buckets, v⟩ a b := let bkt := buckets.read hash_fn a in if hc : contains_aux a bkt then { hash_fn := hash_fn, size := size, nbuckets := n, buckets := buckets.modify hash_fn a (replace_aux a b), is_valid := v.replace _ a b hc } else let size' := size + 1, buckets' := buckets.modify hash_fn a (λl, ⟨a, b⟩::l), valid' := v.insert _ a b hc in if size' ≤ n.1 then { hash_fn := hash_fn, size := size', nbuckets := n, buckets := buckets', is_valid := valid' } else let n' : ℕ+ := ⟨n.1 * 2, mul_pos n.2 dec_trivial⟩, buckets'' : bucket_array α β n' := buckets'.foldl (mk_array _ []) (reinsert_aux hash_fn) in { hash_fn := hash_fn, size := size', nbuckets := n', buckets := buckets'', is_valid := insert_lemma _ valid' } theorem mem_insert : Π (m : hash_map α β) (a b a' b'), (sigma.mk a' b' : sigma β) ∈ (m.insert a b).entries ↔ if a = a' then b == b' else sigma.mk a' b' ∈ m.entries | ⟨hash_fn, size, n, bkts, v⟩ a b a' b' := begin let bkt := bkts.read hash_fn a, have nd : (bkt.map sigma.fst).nodup := v.nodup (mk_idx n (hash_fn a)), have lem : Π (bkts' : bucket_array α β n) (v1 u w) (hl : bucket_array.as_list bkts = u ++ v1 ++ w) (hfl : bucket_array.as_list bkts' = u ++ [⟨a, b⟩] ++ w) (veq : (v1 = [] ∧ ¬ contains_aux a bkt) ∨ ∃b'', v1 = [⟨a, b''⟩]), sigma.mk a' b' ∈ bkts'.as_list ↔ if a = a' then b == b' else sigma.mk a' b' ∈ bkts.as_list, { intros bkts' v1 u w hl hfl veq, rw [hl, hfl], by_cases h : a = a', { subst a', suffices : b = b' ∨ sigma.mk a b' ∈ u ∨ sigma.mk a b' ∈ w ↔ b = b', { simpa [eq_comm, or.left_comm] }, refine or_iff_left_of_imp (not.elim $ not_or_distrib.2 _), rcases veq with ⟨rfl, Hnc⟩ | ⟨b'', rfl⟩, { have na := (not_iff_not_of_iff $ v.contains_aux_iff _ _).1 Hnc, simp [hl, not_or_distrib] at na, simp [na] }, { have nd' := v.as_list_nodup _, simp [hl, list.nodup_append] at nd', simp [nd'] } }, { suffices : sigma.mk a' b' ∉ v1, {simp [h, ne.symm h, this]}, rcases veq with ⟨rfl, Hnc⟩ | ⟨b'', rfl⟩; simp [ne.symm h] } }, by_cases Hc : (contains_aux a bkt : Prop), { rcases hash_map.valid.replace_aux a b (array.read bkts (mk_idx n (hash_fn a))) ((contains_aux_iff nd).1 Hc) with ⟨u', w', b'', hl', hfl'⟩, rcases (append_of_modify u' [⟨a, b''⟩] [⟨a, b⟩] w' hl' hfl') with ⟨u, w, hl, hfl⟩, simpa [insert, @dif_pos (contains_aux a bkt) _ Hc] using lem _ _ u w hl hfl (or.inr ⟨b'', rfl⟩) }, { let size' := size + 1, let bkts' := bkts.modify hash_fn a (λl, ⟨a, b⟩::l), have mi : sigma.mk a' b' ∈ bkts'.as_list ↔ if a = a' then b == b' else sigma.mk a' b' ∈ bkts.as_list := let ⟨u, w, hl, hfl⟩ := append_of_modify [] [] [⟨a, b⟩] _ rfl rfl in lem bkts' _ u w hl hfl $ or.inl ⟨rfl, Hc⟩, simp [insert, @dif_neg (contains_aux a bkt) _ Hc], by_cases h : size' ≤ n.1, -- TODO(Mario): Why does the by_cases assumption look different than the stated one? { simpa [show size' ≤ n.1, from h] using mi }, { let n' : ℕ+ := ⟨n.1 * 2, mul_pos n.2 dec_trivial⟩, let bkts'' : bucket_array α β n' := bkts'.foldl (mk_array _ []) (reinsert_aux hash_fn), suffices : sigma.mk a' b' ∈ bkts''.as_list ↔ sigma.mk a' b' ∈ bkts'.as_list.reverse, { simpa [show ¬ size' ≤ n.1, from h, mi] }, rw [show bkts'' = bkts'.as_list.foldl _ _, from bkts'.foldl_eq _ _, ← list.foldr_reverse], induction bkts'.as_list.reverse with a l IH, { simp [mk_as_list] }, { cases a with a'' b'', let B := l.foldr (λ (y : sigma β) (x : bucket_array α β n'), reinsert_aux hash_fn x y.1 y.2) (mk_array n'.1 []), rcases append_of_modify [] [] [⟨a'', b''⟩] _ rfl rfl with ⟨u, w, hl, hfl⟩, simp [IH.symm, or.left_comm, show B.as_list = _, from hl, show (reinsert_aux hash_fn B a'' b'').as_list = _, from hfl] } } } end theorem find_insert_eq (m : hash_map α β) (a : α) (b : β a) : (m.insert a b).find a = some b := (find_iff (m.insert a b) a b).2 $ (mem_insert m a b a b).2 $ by rw if_pos rfl theorem find_insert_ne (m : hash_map α β) (a a' : α) (b : β a) (h : a ≠ a') : (m.insert a b).find a' = m.find a' := option.eq_of_eq_some $ λb', let t := mem_insert m a b a' b' in (find_iff _ _ _).trans $ iff.trans (by rwa if_neg h at t) (find_iff _ _ _).symm theorem find_insert (m : hash_map α β) (a' a : α) (b : β a) : (m.insert a b).find a' = if h : a = a' then some (eq.rec_on h b) else m.find a' := if h : a = a' then by rw dif_pos h; exact match a', h with ._, rfl := find_insert_eq m a b end else by rw dif_neg h; exact find_insert_ne m a a' b h /-- Insert a list of key-value pairs into the map. (Modifies `m` in-place when applicable) -/ def insert_all (l : list (Σ a, β a)) (m : hash_map α β) : hash_map α β := l.foldl (λ m ⟨a, b⟩, insert m a b) m /-- Construct a hash map from a list of key-value pairs. -/ def of_list (l : list (Σ a, β a)) (hash_fn) : hash_map α β := insert_all l (mk_hash_map hash_fn (2 * l.length)) /-- Remove a key from the map. (Modifies `m` in-place when applicable) -/ def erase (m : hash_map α β) (a : α) : hash_map α β := match m with ⟨hash_fn, size, n, buckets, v⟩ := if hc : contains_aux a (buckets.read hash_fn a) then { hash_fn := hash_fn, size := size - 1, nbuckets := n, buckets := buckets.modify hash_fn a (erase_aux a), is_valid := v.erase _ a hc } else m end theorem mem_erase : Π (m : hash_map α β) (a a' b'), (sigma.mk a' b' : sigma β) ∈ (m.erase a).entries ↔ a ≠ a' ∧ sigma.mk a' b' ∈ m.entries | ⟨hash_fn, size, n, bkts, v⟩ a a' b' := begin let bkt := bkts.read hash_fn a, by_cases Hc : (contains_aux a bkt : Prop), { let bkts' := bkts.modify hash_fn a (erase_aux a), suffices : sigma.mk a' b' ∈ bkts'.as_list ↔ a ≠ a' ∧ sigma.mk a' b' ∈ bkts.as_list, { simpa [erase, @dif_pos (contains_aux a bkt) _ Hc] }, have nd := v.nodup (mk_idx n (hash_fn a)), rcases valid.erase_aux a bkt ((contains_aux_iff nd).1 Hc) with ⟨u', w', b, hl', hfl'⟩, rcases append_of_modify u' [⟨a, b⟩] [] _ hl' hfl' with ⟨u, w, hl, hfl⟩, suffices : ∀_:sigma.mk a' b' ∈ u ∨ sigma.mk a' b' ∈ w, a ≠ a', { have : sigma.mk a' b' ∈ u ∨ sigma.mk a' b' ∈ w ↔ (¬a = a' ∧ a' = a) ∧ b' == b ∨ ¬a = a' ∧ (sigma.mk a' b' ∈ u ∨ sigma.mk a' b' ∈ w), { simp [eq_comm, not_and_self_iff, and_iff_right_of_imp this] }, simpa [hl, show bkts'.as_list = _, from hfl, and_or_distrib_left, and_comm, and.left_comm, or.left_comm] }, intros m e, subst a', revert m, apply not_or_distrib.2, have nd' := v.as_list_nodup _, simp [hl, list.nodup_append] at nd', simp [nd'] }, { suffices : ∀_:sigma.mk a' b' ∈ bucket_array.as_list bkts, a ≠ a', { simp [erase, @dif_neg (contains_aux a bkt) _ Hc, entries, and_iff_right_of_imp this] }, intros m e, subst a', exact Hc ((v.contains_aux_iff _ _).2 (list.mem_map_of_mem sigma.fst m)) } end theorem find_erase_eq (m : hash_map α β) (a : α) : (m.erase a).find a = none := begin cases h : (m.erase a).find a with b, {refl}, exact absurd rfl ((mem_erase m a a b).1 ((find_iff (m.erase a) a b).1 h)).left end theorem find_erase_ne (m : hash_map α β) (a a' : α) (h : a ≠ a') : (m.erase a).find a' = m.find a' := option.eq_of_eq_some $ λb', (find_iff _ _ _).trans $ (mem_erase m a a' b').trans $ (and_iff_right h).trans (find_iff _ _ _).symm theorem find_erase (m : hash_map α β) (a' a : α) : (m.erase a).find a' = if a = a' then none else m.find a' := if h : a = a' then by subst a'; simp [find_erase_eq m a] else by rw if_neg h; exact find_erase_ne m a a' h section string variables [has_to_string α] [∀ a, has_to_string (β a)] open prod private def key_data_to_string (a : α) (b : β a) (first : bool) : string := (if first then "" else ", ") ++ sformat!"{a} ← {b}" private def to_string (m : hash_map α β) : string := "⟨" ++ (fst (fold m ("", tt) (λ p a b, (fst p ++ key_data_to_string a b (snd p), ff)))) ++ "⟩" instance : has_to_string (hash_map α β) := ⟨to_string⟩ end string section format open format prod variables [has_to_format α] [∀ a, has_to_format (β a)] private meta def format_key_data (a : α) (b : β a) (first : bool) : format := (if first then to_fmt "" else to_fmt "," ++ line) ++ to_fmt a ++ space ++ to_fmt "←" ++ space ++ to_fmt b private meta def to_format (m : hash_map α β) : format := group $ to_fmt "⟨" ++ nest 1 (fst (fold m (to_fmt "", tt) (λ p a b, (fst p ++ format_key_data a b (snd p), ff)))) ++ to_fmt "⟩" meta instance : has_to_format (hash_map α β) := ⟨to_format⟩ end format end hash_map