CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad

The integers, with addition, multiplication, and subtraction.
-/
import data.nat.basic data.list.basic algebra.char_zero algebra.order_functions
open nat


namespace int

instance : inhabited ℤ := ⟨int.zero⟩

@[simp] lemma default_eq_zero : default ℤ = 0 := rfl

meta instance : has_to_format ℤ := ⟨λ z, int.rec_on z (λ k, ↑k) (λ k, "-("++↑k++"+1)")⟩
meta instance : has_reflect ℤ := by tactic.mk_has_reflect_instance

attribute [simp] int.coe_nat_add int.coe_nat_mul int.coe_nat_zero int.coe_nat_one int.coe_nat_succ
attribute [simp] int.of_nat_eq_coe

@[simp] theorem add_def {a b : ℤ} : int.add a b = a + b := rfl
@[simp] theorem mul_def {a b : ℤ} : int.mul a b = a * b := rfl

@[simp] theorem coe_nat_mul_neg_succ (m n : ℕ) : (m : ℤ) * -[1+ n] = -(m * succ n) := rfl
@[simp] theorem neg_succ_mul_coe_nat (m n : ℕ) : -[1+ m] * n = -(succ m * n) := rfl
@[simp] theorem neg_succ_mul_neg_succ (m n : ℕ) : -[1+ m] * -[1+ n] = succ m * succ n := rfl

@[simp, elim_cast] theorem coe_nat_le {m n : ℕ} : (↑m : ℤ) ≤ ↑n ↔ m ≤ n := coe_nat_le_coe_nat_iff m n
@[simp, elim_cast] theorem coe_nat_lt {m n : ℕ} : (↑m : ℤ) < ↑n ↔ m < n := coe_nat_lt_coe_nat_iff m n
@[simp, elim_cast] theorem coe_nat_inj' {m n : ℕ} : (↑m : ℤ) = ↑n ↔ m = n := int.coe_nat_eq_coe_nat_iff m n

@[simp] theorem coe_nat_pos {n : ℕ} : (0 : ℤ) < n ↔ 0 < n :=
by rw [← int.coe_nat_zero, coe_nat_lt]

@[simp] theorem coe_nat_eq_zero {n : ℕ} : (n : ℤ) = 0 ↔ n = 0 :=
by rw [← int.coe_nat_zero, coe_nat_inj']

@[simp] theorem coe_nat_ne_zero {n : ℕ} : (n : ℤ) ≠ 0 ↔ n ≠ 0 :=
not_congr coe_nat_eq_zero

lemma coe_nat_nonneg (n : ℕ) : 0 ≤ (n : ℤ) := coe_nat_le.2 (nat.zero_le _)

lemma coe_nat_ne_zero_iff_pos {n : ℕ} : (n : ℤ) ≠ 0 ↔ 0 < n :=
⟨λ h, nat.pos_of_ne_zero (coe_nat_ne_zero.1 h),
λ h, (ne_of_lt (coe_nat_lt.2 h)).symm⟩

lemma coe_nat_succ_pos (n : ℕ) : 0 < (n.succ : ℤ) := int.coe_nat_pos.2 (succ_pos n)

@[simp, elim_cast] theorem coe_nat_abs (n : ℕ) : abs (n : ℤ) = n :=
abs_of_nonneg (coe_nat_nonneg n)

/- succ and pred -/

/-- Immediate successor of an integer: `succ n = n + 1` -/
def succ (a : ℤ) := a + 1

/-- Immediate predecessor of an integer: `pred n = n - 1` -/
def pred (a : ℤ) := a - 1

theorem nat_succ_eq_int_succ (n : ℕ) : (nat.succ n : ℤ) = int.succ n := rfl

theorem pred_succ (a : ℤ) : pred (succ a) = a := add_sub_cancel _ _

theorem succ_pred (a : ℤ) : succ (pred a) = a := sub_add_cancel _ _

theorem neg_succ (a : ℤ) : -succ a = pred (-a) := neg_add _ _

theorem succ_neg_succ (a : ℤ) : succ (-succ a) = -a :=
by rw [neg_succ, succ_pred]

theorem neg_pred (a : ℤ) : -pred a = succ (-a) :=
by rw [eq_neg_of_eq_neg (neg_succ (-a)).symm, neg_neg]

theorem pred_neg_pred (a : ℤ) : pred (-pred a) = -a :=
by rw [neg_pred, pred_succ]

theorem pred_nat_succ (n : ℕ) : pred (nat.succ n) = n := pred_succ n

theorem neg_nat_succ (n : ℕ) : -(nat.succ n : ℤ) = pred (-n) := neg_succ n

theorem succ_neg_nat_succ (n : ℕ) : succ (-nat.succ n) = -n := succ_neg_succ n

theorem lt_succ_self (a : ℤ) : a < succ a :=
lt_add_of_pos_right _ zero_lt_one

theorem pred_self_lt (a : ℤ) : pred a < a :=
sub_lt_self _ zero_lt_one

theorem add_one_le_iff {a b : ℤ} : a + 1 ≤ b ↔ a < b := iff.rfl

theorem lt_add_one_iff {a b : ℤ} : a < b + 1 ↔ a ≤ b :=
@add_le_add_iff_right _ _ a b 1

theorem sub_one_lt_iff {a b : ℤ} : a - 1 < b ↔ a ≤ b :=
sub_lt_iff_lt_add.trans lt_add_one_iff

theorem le_sub_one_iff {a b : ℤ} : a ≤ b - 1 ↔ a < b :=
le_sub_iff_add_le

@[elab_as_eliminator] protected lemma induction_on {p : ℤ → Prop}
  (i : ℤ) (hz : p 0) (hp : ∀i : ℕ, p i → p (i + 1)) (hn : ∀i : ℕ, p (-i) → p (-i - 1)) : p i :=
begin
  induction i,
  { induction i,
    { exact hz },
    { exact hp _ i_ih } },
  { have : ∀n:ℕ, p (- n),
    { intro n, induction n,
      { simp [hz] },
      { have := hn _ n_ih, simpa } },
    exact this (i + 1) }
end

protected def induction_on' {C : ℤ → Sort*} (z : ℤ) (b : ℤ) :
  C b → (∀ k, b ≤ k → C k → C (k + 1)) → (∀ k ≤ b, C k → C (k - 1)) → C z :=
λ H0 Hs Hp,
begin
  rw ←sub_add_cancel z b,
  induction (z - b),
  { induction a with n ih, { rwa [of_nat_zero, zero_add] },
    rw [of_nat_succ, add_assoc, add_comm 1 b, ←add_assoc],
    exact Hs _ (le_add_of_nonneg_left (of_nat_nonneg _)) ih },
  { induction a with n ih,
    { rw [neg_succ_of_nat_eq, ←of_nat_eq_coe, of_nat_zero, zero_add, neg_add_eq_sub],
      exact Hp _ (le_refl _) H0 },
    { rw [neg_succ_of_nat_coe', nat.succ_eq_add_one, ←neg_succ_of_nat_coe, sub_add_eq_add_sub],
      exact Hp _ (le_of_lt (add_lt_of_neg_of_le (neg_succ_lt_zero _) (le_refl _))) ih } }
end

/- nat abs -/

attribute [simp] nat_abs nat_abs_of_nat nat_abs_zero nat_abs_one

theorem nat_abs_add_le (a b : ℤ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
begin
  have : ∀ (a b : ℕ), nat_abs (sub_nat_nat a (nat.succ b)) ≤ nat.succ (a + b),
  { refine (λ a b : ℕ, sub_nat_nat_elim a b.succ
      (λ m n i, n = b.succ → nat_abs i ≤ (m + b).succ) _ _ rfl);
    intros i n e,
    { subst e, rw [add_comm _ i, add_assoc],
      exact nat.le_add_right i (b.succ + b).succ },
    { apply succ_le_succ,
      rw [← succ_inj e, ← add_assoc, add_comm],
      apply nat.le_add_right } },
  cases a; cases b with b b; simp [nat_abs, nat.succ_add];
  try {refl}; [skip, rw add_comm a b]; apply this
end

theorem nat_abs_neg_of_nat (n : ℕ) : nat_abs (neg_of_nat n) = n :=
by cases n; refl

theorem nat_abs_mul (a b : ℤ) : nat_abs (a * b) = (nat_abs a) * (nat_abs b) :=
by cases a; cases b; simp only [(*), int.mul, nat_abs_neg_of_nat, eq_self_iff_true, int.nat_abs]

@[simp] lemma nat_abs_mul_self' (a : ℤ) : (nat_abs a * nat_abs a : ℤ) = a * a :=
by rw [← int.coe_nat_mul, nat_abs_mul_self]

theorem neg_succ_of_nat_eq' (m : ℕ) : -[1+ m] = -m - 1 :=
by simp [neg_succ_of_nat_eq]

lemma nat_abs_ne_zero_of_ne_zero {z : ℤ} (hz : z ≠ 0) : z.nat_abs ≠ 0 :=
λ h, hz $ int.eq_zero_of_nat_abs_eq_zero h

@[simp] lemma nat_abs_eq_zero {a : ℤ} : a.nat_abs = 0 ↔ a = 0 :=
⟨int.eq_zero_of_nat_abs_eq_zero, λ h, h.symm ▸ rfl⟩

/- /  -/

@[simp] theorem of_nat_div (m n : ℕ) : of_nat (m / n) = (of_nat m) / (of_nat n) := rfl

@[simp, move_cast] theorem coe_nat_div (m n : ℕ) : ((m / n : ℕ) : ℤ) = m / n := rfl

theorem neg_succ_of_nat_div (m : ℕ) {b : ℤ} (H : 0 < b) :
  -[1+m] / b = -(m / b + 1) :=
match b, eq_succ_of_zero_lt H with ._, ⟨n, rfl⟩ := rfl end

@[simp] protected theorem div_neg : ∀ (a b : ℤ), a / -b = -(a / b)
| (m : ℕ) 0       := show of_nat (m / 0) = -(m / 0 : ℕ), by rw nat.div_zero; refl
| (m : ℕ) (n+1:ℕ) := rfl
| 0       -[1+ n] := rfl
| (m+1:ℕ) -[1+ n] := (neg_neg _).symm
| -[1+ m] 0       := rfl
| -[1+ m] (n+1:ℕ) := rfl
| -[1+ m] -[1+ n] := rfl


theorem div_of_neg_of_pos {a b : ℤ} (Ha : a < 0) (Hb : 0 < b) : a / b = -((-a - 1) / b + 1) :=
match a, b, eq_neg_succ_of_lt_zero Ha, eq_succ_of_zero_lt Hb with
| ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩ :=
  by change (- -[1+ m] : ℤ) with (m+1 : ℤ); rw add_sub_cancel; refl
end

protected theorem div_nonneg {a b : ℤ} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a / b :=
match a, b, eq_coe_of_zero_le Ha, eq_coe_of_zero_le Hb with
| ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩ := coe_zero_le _
end

protected theorem div_nonpos {a b : ℤ} (Ha : 0 ≤ a) (Hb : b ≤ 0) : a / b ≤ 0 :=
nonpos_of_neg_nonneg $ by rw [← int.div_neg]; exact int.div_nonneg Ha (neg_nonneg_of_nonpos Hb)

theorem div_neg' {a b : ℤ} (Ha : a < 0) (Hb : 0 < b) : a / b < 0 :=
match a, b, eq_neg_succ_of_lt_zero Ha, eq_succ_of_zero_lt Hb with
| ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩ := neg_succ_lt_zero _
end

@[simp] protected theorem zero_div : ∀ (b : ℤ), 0 / b = 0
| 0       := rfl
| (n+1:ℕ) := rfl
| -[1+ n] := rfl

@[simp] protected theorem div_zero : ∀ (a : ℤ), a / 0 = 0
| 0       := rfl
| (n+1:ℕ) := rfl
| -[1+ n] := rfl

@[simp] protected theorem div_one : ∀ (a : ℤ), a / 1 = a
| 0       := rfl
| (n+1:ℕ) := congr_arg of_nat (nat.div_one _)
| -[1+ n] := congr_arg neg_succ_of_nat (nat.div_one _)

theorem div_eq_zero_of_lt {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < b) : a / b = 0 :=
match a, b, eq_coe_of_zero_le H1, eq_succ_of_zero_lt (lt_of_le_of_lt H1 H2), H2  with
| ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩, H2 :=
  congr_arg of_nat $ nat.div_eq_of_lt $ lt_of_coe_nat_lt_coe_nat H2
end

theorem div_eq_zero_of_lt_abs {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < abs b) : a / b = 0 :=
match b, abs b, abs_eq_nat_abs b, H2 with
| (n : ℕ), ._, rfl, H2 := div_eq_zero_of_lt H1 H2
| -[1+ n], ._, rfl, H2 := neg_inj $ by rw [← int.div_neg]; exact div_eq_zero_of_lt H1 H2
end

protected theorem add_mul_div_right (a b : ℤ) {c : ℤ} (H : c ≠ 0) :
  (a + b * c) / c = a / c + b :=
have ∀ {k n : ℕ} {a : ℤ}, (a + n * k.succ) / k.succ = a / k.succ + n, from
λ k n a, match a with
| (m : ℕ) := congr_arg of_nat $ nat.add_mul_div_right _ _ k.succ_pos
| -[1+ m] := show ((n * k.succ:ℕ) - m.succ : ℤ) / k.succ =
                  n - (m / k.succ + 1 : ℕ), begin
  cases lt_or_ge m (n*k.succ) with h h,
  { rw [← int.coe_nat_sub h,
        ← int.coe_nat_sub ((nat.div_lt_iff_lt_mul _ _ k.succ_pos).2 h)],
    apply congr_arg of_nat,
    rw [mul_comm, nat.mul_sub_div], rwa mul_comm },
  { change (↑(n * nat.succ k) - (m + 1) : ℤ) / ↑(nat.succ k) =
           ↑n - ((m / nat.succ k : ℕ) + 1),
    rw [← sub_sub, ← sub_sub, ← neg_sub (m:ℤ), ← neg_sub _ (n:ℤ),
        ← int.coe_nat_sub h,
        ← int.coe_nat_sub ((nat.le_div_iff_mul_le _ _ k.succ_pos).2 h),
        ← neg_succ_of_nat_coe', ← neg_succ_of_nat_coe'],
    { apply congr_arg neg_succ_of_nat,
      rw [mul_comm, nat.sub_mul_div], rwa mul_comm } }
  end
end,
have ∀ {a b c : ℤ}, 0 < c → (a + b * c) / c = a / c + b, from
λ a b c H, match c, eq_succ_of_zero_lt H, b with
| ._, ⟨k, rfl⟩, (n : ℕ) := this
| ._, ⟨k, rfl⟩, -[1+ n] :=
  show (a - n.succ * k.succ) / k.succ = (a / k.succ) - n.succ, from
  eq_sub_of_add_eq $ by rw [← this, sub_add_cancel]
end,
match lt_trichotomy c 0 with
| or.inl hlt          := neg_inj $ by rw [← int.div_neg, neg_add, ← int.div_neg, ← neg_mul_neg];
                         apply this (neg_pos_of_neg hlt)
| or.inr (or.inl heq) := absurd heq H
| or.inr (or.inr hgt) := this hgt
end

protected theorem add_mul_div_left (a : ℤ) {b : ℤ} (c : ℤ) (H : b ≠ 0) :
    (a + b * c) / b = a / b + c :=
by rw [mul_comm, int.add_mul_div_right _ _ H]

@[simp] protected theorem mul_div_cancel (a : ℤ) {b : ℤ} (H : b ≠ 0) : a * b / b = a :=
by have := int.add_mul_div_right 0 a H;
   rwa [zero_add, int.zero_div, zero_add] at this

@[simp] protected theorem mul_div_cancel_left {a : ℤ} (b : ℤ) (H : a ≠ 0) : a * b / a = b :=
by rw [mul_comm, int.mul_div_cancel _ H]

@[simp] protected theorem div_self {a : ℤ} (H : a ≠ 0) : a / a = 1 :=
by have := int.mul_div_cancel 1 H; rwa one_mul at this

/- mod -/

theorem of_nat_mod (m n : nat) : (m % n : ℤ) = of_nat (m % n) := rfl

@[simp] theorem coe_nat_mod (m n : ℕ) : (↑(m % n) : ℤ) = ↑m % ↑n := rfl

theorem neg_succ_of_nat_mod (m : ℕ) {b : ℤ} (bpos : 0 < b) :
  -[1+m] % b = b - 1 - m % b :=
by rw [sub_sub, add_comm]; exact
match b, eq_succ_of_zero_lt bpos with ._, ⟨n, rfl⟩ := rfl end

@[simp] theorem mod_neg : ∀ (a b : ℤ), a % -b = a % b
| (m : ℕ) n := @congr_arg ℕ ℤ _ _ (λ i, ↑(m % i)) (nat_abs_neg _)
| -[1+ m] n := @congr_arg ℕ ℤ _ _ (λ i, sub_nat_nat i (nat.succ (m % i))) (nat_abs_neg _)

@[simp] theorem mod_abs (a b : ℤ) : a % (abs b) = a % b :=
abs_by_cases (λ i, a % i = a % b) rfl (mod_neg _ _)

@[simp] theorem zero_mod (b : ℤ) : 0 % b = 0 :=
congr_arg of_nat $ nat.zero_mod _

@[simp] theorem mod_zero : ∀ (a : ℤ), a % 0 = a
| (m : ℕ) := congr_arg of_nat $ nat.mod_zero _
| -[1+ m] := congr_arg neg_succ_of_nat $ nat.mod_zero _

@[simp] theorem mod_one : ∀ (a : ℤ), a % 1 = 0
| (m : ℕ) := congr_arg of_nat $ nat.mod_one _
| -[1+ m] := show (1 - (m % 1).succ : ℤ) = 0, by rw nat.mod_one; refl

theorem mod_eq_of_lt {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < b) : a % b = a :=
match a, b, eq_coe_of_zero_le H1, eq_coe_of_zero_le (le_trans H1 (le_of_lt H2)), H2 with
| ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩, H2 :=
  congr_arg of_nat $ nat.mod_eq_of_lt (lt_of_coe_nat_lt_coe_nat H2)
end

theorem mod_nonneg : ∀ (a : ℤ) {b : ℤ}, b ≠ 0 → 0 ≤ a % b
| (m : ℕ) n H := coe_zero_le _
| -[1+ m] n H :=
  sub_nonneg_of_le $ coe_nat_le_coe_nat_of_le $ nat.mod_lt _ (nat_abs_pos_of_ne_zero H)

theorem mod_lt_of_pos (a : ℤ) {b : ℤ} (H : 0 < b) : a % b < b :=
match a, b, eq_succ_of_zero_lt H with
| (m : ℕ), ._, ⟨n, rfl⟩ := coe_nat_lt_coe_nat_of_lt (nat.mod_lt _ (nat.succ_pos _))
| -[1+ m], ._, ⟨n, rfl⟩ := sub_lt_self _ (coe_nat_lt_coe_nat_of_lt $ nat.succ_pos _)
end

theorem mod_lt (a : ℤ) {b : ℤ} (H : b ≠ 0) : a % b < abs b :=
by rw [← mod_abs]; exact mod_lt_of_pos _ (abs_pos_of_ne_zero H)

theorem mod_add_div_aux (m n : ℕ) : (n - (m % n + 1) - (n * (m / n) + n) : ℤ) = -[1+ m] :=
begin
  rw [← sub_sub, neg_succ_of_nat_coe, sub_sub (n:ℤ)],
  apply eq_neg_of_eq_neg,
  rw [neg_sub, sub_sub_self, add_right_comm],
  exact @congr_arg ℕ ℤ _ _ (λi, (i + 1 : ℤ)) (nat.mod_add_div _ _).symm
end

theorem mod_add_div : ∀ (a b : ℤ), a % b + b * (a / b) = a
| (m : ℕ) 0       := congr_arg of_nat (nat.mod_add_div _ _)
| (m : ℕ) (n+1:ℕ) := congr_arg of_nat (nat.mod_add_div _ _)
| 0       -[1+ n] := rfl
| (m+1:ℕ) -[1+ n] := show (_ + -(n+1) * -((m + 1) / (n + 1) : ℕ) : ℤ) = _,
  by rw [neg_mul_neg]; exact congr_arg of_nat (nat.mod_add_div _ _)
| -[1+ m] 0       := by rw [mod_zero, int.div_zero]; refl
| -[1+ m] (n+1:ℕ) := mod_add_div_aux m n.succ
| -[1+ m] -[1+ n] := mod_add_div_aux m n.succ

theorem mod_def (a b : ℤ) : a % b = a - b * (a / b) :=
eq_sub_of_add_eq (mod_add_div _ _)

@[simp] theorem add_mul_mod_self {a b c : ℤ} : (a + b * c) % c = a % c :=
if cz : c = 0 then by rw [cz, mul_zero, add_zero] else
by rw [mod_def, mod_def, int.add_mul_div_right _ _ cz,
       mul_add, mul_comm, add_sub_add_right_eq_sub]

@[simp] theorem add_mul_mod_self_left (a b c : ℤ) : (a + b * c) % b = a % b :=
by rw [mul_comm, add_mul_mod_self]

@[simp] theorem add_mod_self {a b : ℤ} : (a + b) % b = a % b :=
by have := add_mul_mod_self_left a b 1; rwa mul_one at this

@[simp] theorem add_mod_self_left {a b : ℤ} : (a + b) % a = b % a :=
by rw [add_comm, add_mod_self]

@[simp] theorem mod_add_mod (m n k : ℤ) : (m % n + k) % n = (m + k) % n :=
by have := (add_mul_mod_self_left (m % n + k) n (m / n)).symm;
   rwa [add_right_comm, mod_add_div] at this

@[simp] theorem add_mod_mod (m n k : ℤ) : (m + n % k) % k = (m + n) % k :=
by rw [add_comm, mod_add_mod, add_comm]

theorem add_mod_eq_add_mod_right {m n k : ℤ} (i : ℤ) (H : m % n = k % n) :
  (m + i) % n = (k + i) % n :=
by rw [← mod_add_mod, ← mod_add_mod k, H]

theorem add_mod_eq_add_mod_left {m n k : ℤ} (i : ℤ) (H : m % n = k % n) :
  (i + m) % n = (i + k) % n :=
by rw [add_comm, add_mod_eq_add_mod_right _ H, add_comm]

theorem mod_add_cancel_right {m n k : ℤ} (i) : (m + i) % n = (k + i) % n ↔
  m % n = k % n :=
⟨λ H, by have := add_mod_eq_add_mod_right (-i) H;
      rwa [add_neg_cancel_right, add_neg_cancel_right] at this,
 add_mod_eq_add_mod_right _⟩

theorem mod_add_cancel_left {m n k i : ℤ} :
  (i + m) % n = (i + k) % n ↔ m % n = k % n :=
by rw [add_comm, add_comm i, mod_add_cancel_right]

theorem mod_sub_cancel_right {m n k : ℤ} (i) : (m - i) % n = (k - i) % n ↔
  m % n = k % n :=
mod_add_cancel_right _

theorem mod_eq_mod_iff_mod_sub_eq_zero {m n k : ℤ} : m % n = k % n ↔ (m - k) % n = 0 :=
(mod_sub_cancel_right k).symm.trans $ by simp

@[simp] theorem mul_mod_left (a b : ℤ) : (a * b) % b = 0 :=
by rw [← zero_add (a * b), add_mul_mod_self, zero_mod]

@[simp] theorem mul_mod_right (a b : ℤ) : (a * b) % a = 0 :=
by rw [mul_comm, mul_mod_left]

@[simp] theorem mod_self {a : ℤ} : a % a = 0 :=
by have := mul_mod_left 1 a; rwa one_mul at this

@[simp] theorem mod_mod (a b : ℤ) : a % b % b = a % b :=
by conv {to_rhs, rw [← mod_add_div a b, add_mul_mod_self_left]}

@[simp] theorem mod_mod_of_dvd (n : int) {m k : int} (h : m ∣ k) : n % k % m = n % m :=
begin
  conv { to_rhs, rw ←mod_add_div n k },
  rcases h with ⟨t, rfl⟩, rw [mul_assoc, add_mul_mod_self_left]
end

/- properties of / and % -/

@[simp] theorem mul_div_mul_of_pos {a : ℤ} (b c : ℤ) (H : 0 < a) : a * b / (a * c) = b / c :=
suffices ∀ (m k : ℕ) (b : ℤ), (m.succ * b / (m.succ * k) : ℤ) = b / k, from
match a, eq_succ_of_zero_lt H, c, eq_coe_or_neg c with
| ._, ⟨m, rfl⟩, ._, ⟨k, or.inl rfl⟩ := this _ _ _
| ._, ⟨m, rfl⟩, ._, ⟨k, or.inr rfl⟩ :=
  by rw [← neg_mul_eq_mul_neg, int.div_neg, int.div_neg];
     apply congr_arg has_neg.neg; apply this
end,
λ m k b, match b, k with
| (n : ℕ), k   := congr_arg of_nat (nat.mul_div_mul _ _ m.succ_pos)
| -[1+ n], 0   := by rw [int.coe_nat_zero, mul_zero, int.div_zero, int.div_zero]
| -[1+ n], k+1 := congr_arg neg_succ_of_nat $
  show (m.succ * n + m) / (m.succ * k.succ) = n / k.succ, begin
    apply nat.div_eq_of_lt_le,
    { refine le_trans _ (nat.le_add_right _ _),
      rw [← nat.mul_div_mul _ _ m.succ_pos],
      apply nat.div_mul_le_self },
    { change m.succ * n.succ ≤ _,
      rw [mul_left_comm],
      apply nat.mul_le_mul_left,
      apply (nat.div_lt_iff_lt_mul _ _ k.succ_pos).1,
      apply nat.lt_succ_self }
  end
end

@[simp] theorem mul_div_mul_of_pos_left (a : ℤ) {b : ℤ} (c : ℤ) (H : 0 < b) :
  a * b / (c * b) = a / c :=
by rw [mul_comm, mul_comm c, mul_div_mul_of_pos _ _ H]

@[simp] theorem mul_mod_mul_of_pos {a : ℤ} (b c : ℤ) (H : 0 < a) : a * b % (a * c) = a * (b % c) :=
by rw [mod_def, mod_def, mul_div_mul_of_pos _ _ H, mul_sub_left_distrib, mul_assoc]

theorem lt_div_add_one_mul_self (a : ℤ) {b : ℤ} (H : 0 < b) : a < (a / b + 1) * b :=
by rw [add_mul, one_mul, mul_comm]; apply lt_add_of_sub_left_lt;
   rw [← mod_def]; apply mod_lt_of_pos _ H

theorem abs_div_le_abs : ∀ (a b : ℤ), abs (a / b) ≤ abs a :=
suffices ∀ (a : ℤ) (n : ℕ), abs (a / n) ≤ abs a, from
λ a b, match b, eq_coe_or_neg b with
| ._, ⟨n, or.inl rfl⟩ := this _ _
| ._, ⟨n, or.inr rfl⟩ := by rw [int.div_neg, abs_neg]; apply this
end,
λ a n, by rw [abs_eq_nat_abs, abs_eq_nat_abs]; exact
coe_nat_le_coe_nat_of_le (match a, n with
| (m : ℕ), n := nat.div_le_self _ _
| -[1+ m], 0 := nat.zero_le _
| -[1+ m], n+1 := nat.succ_le_succ (nat.div_le_self _ _)
end)

theorem div_le_self {a : ℤ} (b : ℤ) (Ha : 0 ≤ a) : a / b ≤ a :=
by have := le_trans (le_abs_self _) (abs_div_le_abs a b);
   rwa [abs_of_nonneg Ha] at this

theorem mul_div_cancel_of_mod_eq_zero {a b : ℤ} (H : a % b = 0) : b * (a / b) = a :=
by have := mod_add_div a b; rwa [H, zero_add] at this

theorem div_mul_cancel_of_mod_eq_zero {a b : ℤ} (H : a % b = 0) : a / b * b = a :=
by rw [mul_comm, mul_div_cancel_of_mod_eq_zero H]

lemma mod_two_eq_zero_or_one (n : ℤ) : n % 2 = 0 ∨ n % 2 = 1 :=
have h : n % 2 < 2 := abs_of_nonneg (show 0 ≤ (2 : ℤ), from dec_trivial) ▸ int.mod_lt _ dec_trivial,
have h₁ : 0 ≤ n % 2 := int.mod_nonneg _ dec_trivial,
match (n % 2), h, h₁ with
| (0 : ℕ) := λ _ _, or.inl rfl
| (1 : ℕ) := λ _ _, or.inr rfl
| (k + 2 : ℕ) := λ h _, absurd h dec_trivial
| -[1+ a] := λ _ h₁, absurd h₁ dec_trivial
end

/- dvd -/

@[elim_cast] theorem coe_nat_dvd {m n : ℕ} : (↑m : ℤ) ∣ ↑n ↔ m ∣ n :=
⟨λ ⟨a, ae⟩, m.eq_zero_or_pos.elim
  (λm0, by simp [m0] at ae; simp [ae, m0])
  (λm0l, by {
    cases eq_coe_of_zero_le (@nonneg_of_mul_nonneg_left ℤ _ m a
      (by simp [ae.symm]) (by simpa using m0l)) with k e,
    subst a, exact ⟨k, int.coe_nat_inj ae⟩ }),
 λ ⟨k, e⟩, dvd.intro k $ by rw [e, int.coe_nat_mul]⟩

theorem coe_nat_dvd_left {n : ℕ} {z : ℤ} : (↑n : ℤ) ∣ z ↔ n ∣ z.nat_abs :=
by rcases nat_abs_eq z with eq | eq; rw eq; simp [coe_nat_dvd]

theorem coe_nat_dvd_right {n : ℕ} {z : ℤ} : z ∣ (↑n : ℤ) ↔ z.nat_abs ∣ n :=
by rcases nat_abs_eq z with eq | eq; rw eq; simp [coe_nat_dvd]

theorem dvd_antisymm {a b : ℤ} (H1 : 0 ≤ a) (H2 : 0 ≤ b) : a ∣ b → b ∣ a → a = b :=
begin
  rw [← abs_of_nonneg H1, ← abs_of_nonneg H2, abs_eq_nat_abs, abs_eq_nat_abs],
  rw [coe_nat_dvd, coe_nat_dvd, coe_nat_inj'],
  apply nat.dvd_antisymm
end

theorem dvd_of_mod_eq_zero {a b : ℤ} (H : b % a = 0) : a ∣ b :=
⟨b / a, (mul_div_cancel_of_mod_eq_zero H).symm⟩

theorem mod_eq_zero_of_dvd : ∀ {a b : ℤ}, a ∣ b → b % a = 0
| a ._ ⟨c, rfl⟩ := mul_mod_right _ _

theorem dvd_iff_mod_eq_zero (a b : ℤ) : a ∣ b ↔ b % a = 0 :=
⟨mod_eq_zero_of_dvd, dvd_of_mod_eq_zero⟩

theorem nat_abs_dvd {a b : ℤ} : (a.nat_abs : ℤ) ∣ b ↔ a ∣ b :=
(nat_abs_eq a).elim (λ e, by rw ← e) (λ e, by rw [← neg_dvd_iff_dvd, ← e])

theorem dvd_nat_abs {a b : ℤ} : a ∣ b.nat_abs ↔ a ∣ b :=
(nat_abs_eq b).elim (λ e, by rw ← e) (λ e, by rw [← dvd_neg_iff_dvd, ← e])

instance decidable_dvd : @decidable_rel ℤ (∣) :=
assume a n, decidable_of_decidable_of_iff (by apply_instance) (dvd_iff_mod_eq_zero _ _).symm

protected theorem div_mul_cancel {a b : ℤ} (H : b ∣ a) : a / b * b = a :=
div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H)

protected theorem mul_div_cancel' {a b : ℤ} (H : a ∣ b) : a * (b / a) = b :=
by rw [mul_comm, int.div_mul_cancel H]

protected theorem mul_div_assoc (a : ℤ) : ∀ {b c : ℤ}, c ∣ b → (a * b) / c = a * (b / c)
| ._ c ⟨d, rfl⟩ := if cz : c = 0 then by simp [cz] else
  by rw [mul_left_comm, int.mul_div_cancel_left _ cz, int.mul_div_cancel_left _ cz]

theorem div_dvd_div : ∀ {a b c : ℤ} (H1 : a ∣ b) (H2 : b ∣ c), b / a ∣ c / a
| a ._ ._ ⟨b, rfl⟩ ⟨c, rfl⟩ := if az : a = 0 then by simp [az] else
  by rw [int.mul_div_cancel_left _ az, mul_assoc, int.mul_div_cancel_left _ az];
     apply dvd_mul_right

protected theorem eq_mul_of_div_eq_right {a b c : ℤ} (H1 : b ∣ a) (H2 : a / b = c) :
  a = b * c :=
by rw [← H2, int.mul_div_cancel' H1]

protected theorem div_eq_of_eq_mul_right {a b c : ℤ} (H1 : b ≠ 0) (H2 : a = b * c) :
  a / b = c :=
by rw [H2, int.mul_div_cancel_left _ H1]

protected theorem div_eq_iff_eq_mul_right {a b c : ℤ} (H : b ≠ 0) (H' : b ∣ a) :
  a / b = c ↔ a = b * c :=
⟨int.eq_mul_of_div_eq_right H', int.div_eq_of_eq_mul_right H⟩

protected theorem div_eq_iff_eq_mul_left {a b c : ℤ} (H : b ≠ 0) (H' : b ∣ a) :
  a / b = c ↔ a = c * b :=
by rw mul_comm; exact int.div_eq_iff_eq_mul_right H H'

protected theorem eq_mul_of_div_eq_left {a b c : ℤ} (H1 : b ∣ a) (H2 : a / b = c) :
  a = c * b :=
by rw [mul_comm, int.eq_mul_of_div_eq_right H1 H2]

protected theorem div_eq_of_eq_mul_left {a b c : ℤ} (H1 : b ≠ 0) (H2 : a = c * b) :
  a / b = c :=
int.div_eq_of_eq_mul_right H1 (by rw [mul_comm, H2])

theorem neg_div_of_dvd : ∀ {a b : ℤ} (H : b ∣ a), -a / b = -(a / b)
| ._ b ⟨c, rfl⟩ := if bz : b = 0 then by simp [bz] else
  by rw [neg_mul_eq_mul_neg, int.mul_div_cancel_left _ bz, int.mul_div_cancel_left _ bz]

lemma add_div_of_dvd {a b c : ℤ} :
  c ∣ a → c ∣ b → (a + b) / c = a / c + b / c :=
begin
  intros h1 h2,
  by_cases h3 : c = 0,
  { rw [h3, zero_dvd_iff] at *,
    rw [h1, h2, h3], refl },
  { apply eq_of_mul_eq_mul_right h3,
    rw add_mul, repeat {rw [int.div_mul_cancel]};
    try {apply dvd_add}; assumption }
end

theorem div_sign : ∀ a b, a / sign b = a * sign b
| a (n+1:ℕ) := by unfold sign; simp
| a 0       := by simp [sign]
| a -[1+ n] := by simp [sign]

@[simp] theorem sign_mul : ∀ a b, sign (a * b) = sign a * sign b
| a       0       := by simp
| 0       b       := by simp
| (m+1:ℕ) (n+1:ℕ) := rfl
| (m+1:ℕ) -[1+ n] := rfl
| -[1+ m] (n+1:ℕ) := rfl
| -[1+ m] -[1+ n] := rfl

protected theorem sign_eq_div_abs (a : ℤ) : sign a = a / (abs a) :=
if az : a = 0 then by simp [az] else
(int.div_eq_of_eq_mul_left (mt eq_zero_of_abs_eq_zero az)
  (sign_mul_abs _).symm).symm

theorem mul_sign : ∀ (i : ℤ), i * sign i = nat_abs i
| (n+1:ℕ) := mul_one _
| 0       := mul_zero _
| -[1+ n] := mul_neg_one _

theorem le_of_dvd {a b : ℤ} (bpos : 0 < b) (H : a ∣ b) : a ≤ b :=
match a, b, eq_succ_of_zero_lt bpos, H with
| (m : ℕ), ._, ⟨n, rfl⟩, H := coe_nat_le_coe_nat_of_le $
  nat.le_of_dvd n.succ_pos $ coe_nat_dvd.1 H
| -[1+ m], ._, ⟨n, rfl⟩, _ :=
  le_trans (le_of_lt $ neg_succ_lt_zero _) (coe_zero_le _)
end

theorem eq_one_of_dvd_one {a : ℤ} (H : 0 ≤ a) (H' : a ∣ 1) : a = 1 :=
match a, eq_coe_of_zero_le H, H' with
| ._, ⟨n, rfl⟩, H' := congr_arg coe $
  nat.eq_one_of_dvd_one $ coe_nat_dvd.1 H'
end

theorem eq_one_of_mul_eq_one_right {a b : ℤ} (H : 0 ≤ a) (H' : a * b = 1) : a = 1 :=
eq_one_of_dvd_one H ⟨b, H'.symm⟩

theorem eq_one_of_mul_eq_one_left {a b : ℤ} (H : 0 ≤ b) (H' : a * b = 1) : b = 1 :=
eq_one_of_mul_eq_one_right H (by rw [mul_comm, H'])

lemma of_nat_dvd_of_dvd_nat_abs {a : ℕ} : ∀ {z : ℤ} (haz : a ∣ z.nat_abs), ↑a ∣ z
| (int.of_nat _) haz := int.coe_nat_dvd.2 haz
| -[1+k] haz :=
  begin
    change ↑a ∣ -(k+1 : ℤ),
    apply dvd_neg_of_dvd,
    apply int.coe_nat_dvd.2,
    exact haz
  end

lemma dvd_nat_abs_of_of_nat_dvd {a : ℕ} : ∀ {z : ℤ} (haz : ↑a ∣ z), a ∣ z.nat_abs
| (int.of_nat _) haz := int.coe_nat_dvd.1 (int.dvd_nat_abs.2 haz)
| -[1+k] haz :=
  have haz' : (↑a:ℤ) ∣ (↑(k+1):ℤ), from dvd_of_dvd_neg haz,
  int.coe_nat_dvd.1 haz'

lemma pow_dvd_of_le_of_pow_dvd {p m n : ℕ} {k : ℤ} (hmn : m ≤ n) (hdiv : ↑(p ^ n) ∣ k) :
      ↑(p ^ m) ∣ k :=
begin
  induction k,
    { apply int.coe_nat_dvd.2,
      apply pow_dvd_of_le_of_pow_dvd hmn,
      apply int.coe_nat_dvd.1 hdiv },
    { change -[1+k] with -(↑(k+1) : ℤ),
      apply dvd_neg_of_dvd,
      apply int.coe_nat_dvd.2,
      apply pow_dvd_of_le_of_pow_dvd hmn,
      apply int.coe_nat_dvd.1,
      apply dvd_of_dvd_neg,
      exact hdiv }
end

lemma dvd_of_pow_dvd {p k : ℕ} {m : ℤ} (hk : 1 ≤ k) (hpk : ↑(p^k) ∣ m) : ↑p ∣ m :=
by rw ←nat.pow_one p; exact pow_dvd_of_le_of_pow_dvd hk hpk

/- / and ordering -/

protected theorem div_mul_le (a : ℤ) {b : ℤ} (H : b ≠ 0) : a / b * b ≤ a :=
le_of_sub_nonneg $ by rw [mul_comm, ← mod_def]; apply mod_nonneg _ H

protected theorem div_le_of_le_mul {a b c : ℤ} (H : 0 < c) (H' : a ≤ b * c) : a / c ≤ b :=
le_of_mul_le_mul_right (le_trans (int.div_mul_le _ (ne_of_gt H)) H') H

protected theorem mul_lt_of_lt_div {a b c : ℤ} (H : 0 < c) (H3 : a < b / c) : a * c < b :=
lt_of_not_ge $ mt (int.div_le_of_le_mul H) (not_le_of_gt H3)

protected theorem mul_le_of_le_div {a b c : ℤ} (H1 : 0 < c) (H2 : a ≤ b / c) : a * c ≤ b :=
le_trans (mul_le_mul_of_nonneg_right H2 (le_of_lt H1)) (int.div_mul_le _ (ne_of_gt H1))

protected theorem le_div_of_mul_le {a b c : ℤ} (H1 : 0 < c) (H2 : a * c ≤ b) : a ≤ b / c :=
le_of_lt_add_one $ lt_of_mul_lt_mul_right
  (lt_of_le_of_lt H2 (lt_div_add_one_mul_self _ H1)) (le_of_lt H1)

protected theorem le_div_iff_mul_le {a b c : ℤ} (H : 0 < c) : a ≤ b / c ↔ a * c ≤ b :=
⟨int.mul_le_of_le_div H, int.le_div_of_mul_le H⟩

protected theorem div_le_div {a b c : ℤ} (H : 0 < c) (H' : a ≤ b) : a / c ≤ b / c :=
int.le_div_of_mul_le H (le_trans (int.div_mul_le _ (ne_of_gt H)) H')

protected theorem div_lt_of_lt_mul {a b c : ℤ} (H : 0 < c) (H' : a < b * c) : a / c < b :=
lt_of_not_ge $ mt (int.mul_le_of_le_div H) (not_le_of_gt H')

protected theorem lt_mul_of_div_lt {a b c : ℤ} (H1 : 0 < c) (H2 : a / c < b) : a < b * c :=
lt_of_not_ge $ mt (int.le_div_of_mul_le H1) (not_le_of_gt H2)

protected theorem div_lt_iff_lt_mul {a b c : ℤ} (H : 0 < c) : a / c < b ↔ a < b * c :=
⟨int.lt_mul_of_div_lt H, int.div_lt_of_lt_mul H⟩

protected theorem le_mul_of_div_le {a b c : ℤ} (H1 : 0 ≤ b) (H2 : b ∣ a) (H3 : a / b ≤ c) :
  a ≤ c * b :=
by rw [← int.div_mul_cancel H2]; exact mul_le_mul_of_nonneg_right H3 H1

protected theorem lt_div_of_mul_lt {a b c : ℤ} (H1 : 0 ≤ b) (H2 : b ∣ c) (H3 : a * b < c) :
  a < c / b :=
lt_of_not_ge $ mt (int.le_mul_of_div_le H1 H2) (not_le_of_gt H3)

protected theorem lt_div_iff_mul_lt {a b : ℤ} (c : ℤ) (H : 0 < c) (H' : c ∣ b) :
  a < b / c ↔ a * c < b :=
⟨int.mul_lt_of_lt_div H, int.lt_div_of_mul_lt (le_of_lt H) H'⟩

theorem div_pos_of_pos_of_dvd {a b : ℤ} (H1 : 0 < a) (H2 : 0 ≤ b) (H3 : b ∣ a) : 0 < a / b :=
int.lt_div_of_mul_lt H2 H3 (by rwa zero_mul)

theorem div_eq_div_of_mul_eq_mul {a b c d : ℤ} (H1 : b ∣ a) (H2 : d ∣ c) (H3 : b ≠ 0)
    (H4 : d ≠ 0) (H5 : a * d = b * c) :
  a / b = c / d :=
int.div_eq_of_eq_mul_right H3 $
by rw [← int.mul_div_assoc _ H2]; exact
(int.div_eq_of_eq_mul_left H4 H5.symm).symm

theorem eq_mul_div_of_mul_eq_mul_of_dvd_left {a b c d : ℤ} (hb : b ≠ 0) (hd : d ≠ 0) (hbc : b ∣ c)
      (h : b * a = c * d) : a = c / b * d :=
begin
  cases hbc with k hk,
  subst hk,
  rw int.mul_div_cancel_left, rw mul_assoc at h,
  apply _root_.eq_of_mul_eq_mul_left _ h,
  repeat {assumption}
end

theorem of_nat_add_neg_succ_of_nat_of_lt {m n : ℕ}
  (h : m < n.succ) : of_nat m + -[1+n] = -[1+ n - m] :=
begin
 change sub_nat_nat _ _ = _,
 have h' : n.succ - m = (n - m).succ,
 apply succ_sub,
 apply le_of_lt_succ h,
 simp [*, sub_nat_nat]
end

theorem of_nat_add_neg_succ_of_nat_of_ge {m n : ℕ}
  (h : n.succ ≤ m) : of_nat m + -[1+n] = of_nat (m - n.succ) :=
begin
 change sub_nat_nat _ _ = _,
 have h' : n.succ - m = 0,
 apply sub_eq_zero_of_le h,
 simp [*, sub_nat_nat]
end

@[simp] theorem neg_add_neg (m n : ℕ) : -[1+m] + -[1+n] = -[1+nat.succ(m+n)] := rfl

/- to_nat -/

theorem to_nat_eq_max : ∀ (a : ℤ), (to_nat a : ℤ) = max a 0
| (n : ℕ) := (max_eq_left (coe_zero_le n)).symm
| -[1+ n] := (max_eq_right (le_of_lt (neg_succ_lt_zero n))).symm

@[simp] theorem to_nat_of_nonneg {a : ℤ} (h : 0 ≤ a) : (to_nat a : ℤ) = a :=
by rw [to_nat_eq_max, max_eq_left h]

@[simp] lemma to_nat_sub_of_le (a b : ℤ) (h : b ≤ a) : (to_nat (a + -b) : ℤ) = a + - b :=
int.to_nat_of_nonneg (sub_nonneg_of_le h)

@[simp] theorem to_nat_coe_nat (n : ℕ) : to_nat ↑n = n := rfl

theorem le_to_nat (a : ℤ) : a ≤ to_nat a :=
by rw [to_nat_eq_max]; apply le_max_left

@[simp] theorem to_nat_le {a : ℤ} {n : ℕ} : to_nat a ≤ n ↔ a ≤ n :=
by rw [(coe_nat_le_coe_nat_iff _ _).symm, to_nat_eq_max, max_le_iff];
   exact and_iff_left (coe_zero_le _)

@[simp] theorem lt_to_nat {n : ℕ} {a : ℤ} : n < to_nat a ↔ (n : ℤ) < a :=
le_iff_le_iff_lt_iff_lt.1 to_nat_le

theorem to_nat_le_to_nat {a b : ℤ} (h : a ≤ b) : to_nat a ≤ to_nat b :=
by rw to_nat_le; exact le_trans h (le_to_nat b)

theorem to_nat_lt_to_nat {a b : ℤ} (hb : 0 < b) : to_nat a < to_nat b ↔ a < b :=
⟨λ h, begin cases a, exact lt_to_nat.1 h, exact lt_trans (neg_succ_of_nat_lt_zero a) hb, end,
 λ h, begin rw lt_to_nat, cases a, exact h, exact hb end⟩

theorem lt_of_to_nat_lt {a b : ℤ} (h : to_nat a < to_nat b) : a < b :=
(to_nat_lt_to_nat $ lt_to_nat.1 $ lt_of_le_of_lt (nat.zero_le _) h).1 h

def to_nat' : ℤ → option ℕ
| (n : ℕ) := some n
| -[1+ n] := none

theorem mem_to_nat' : ∀ (a : ℤ) (n : ℕ), n ∈ to_nat' a ↔ a = n
| (m : ℕ) n := option.some_inj.trans coe_nat_inj'.symm
| -[1+ m] n := by split; intro h; cases h

/- units -/

@[simp] theorem units_nat_abs (u : units ℤ) : nat_abs u = 1 :=
units.ext_iff.1 $ nat.units_eq_one ⟨nat_abs u, nat_abs ↑u⁻¹,
  by rw [← nat_abs_mul, units.mul_inv]; refl,
  by rw [← nat_abs_mul, units.inv_mul]; refl⟩

theorem units_eq_one_or (u : units ℤ) : u = 1 ∨ u = -1 :=
by simpa [units.ext_iff, units_nat_abs] using nat_abs_eq u

lemma units_inv_eq_self (u : units ℤ) : u⁻¹ = u :=
(units_eq_one_or u).elim (λ h, h.symm ▸ rfl) (λ h, h.symm ▸ rfl)

/- bitwise ops -/

@[simp] lemma bodd_zero : bodd 0 = ff := rfl
@[simp] lemma bodd_one : bodd 1 = tt := rfl
@[simp] lemma bodd_two : bodd 2 = ff := rfl

@[simp] lemma bodd_sub_nat_nat (m n : ℕ) : bodd (sub_nat_nat m n) = bxor m.bodd n.bodd :=
by apply sub_nat_nat_elim m n (λ m n i, bodd i = bxor m.bodd n.bodd); intros;
  simp [bodd, -of_nat_eq_coe]

@[simp] lemma bodd_neg_of_nat (n : ℕ) : bodd (neg_of_nat n) = n.bodd :=
by cases n; simp; refl

@[simp] lemma bodd_neg (n : ℤ) : bodd (-n) = bodd n :=
by cases n; simp [has_neg.neg, int.coe_nat_eq, int.neg, bodd, -of_nat_eq_coe]

@[simp] lemma bodd_add (m n : ℤ) : bodd (m + n) = bxor (bodd m) (bodd n) :=
by cases m with m m; cases n with n n; unfold has_add.add; simp [int.add, bodd, -of_nat_eq_coe]

@[simp] lemma bodd_mul (m n : ℤ) : bodd (m * n) = bodd m && bodd n :=
by cases m with m m; cases n with n n; unfold has_mul.mul; simp [int.mul, bodd, -of_nat_eq_coe]

theorem bodd_add_div2 : ∀ n, cond (bodd n) 1 0 + 2 * div2 n = n
| (n : ℕ) :=
  by rw [show (cond (bodd n) 1 0 : ℤ) = (cond (bodd n) 1 0 : ℕ),
         by cases bodd n; refl]; exact congr_arg of_nat n.bodd_add_div2
| -[1+ n] := begin
    refine eq.trans _ (congr_arg neg_succ_of_nat n.bodd_add_div2),
    dsimp [bodd], cases nat.bodd n; dsimp [cond, bnot, div2, int.mul],
    { change -[1+ 2 * nat.div2 n] = _, rw zero_add },
    { rw [zero_add, add_comm], refl }
  end

theorem div2_val : ∀ n, div2 n = n / 2
| (n : ℕ) := congr_arg of_nat n.div2_val
| -[1+ n] := congr_arg neg_succ_of_nat n.div2_val

lemma bit0_val (n : ℤ) : bit0 n = 2 * n := (two_mul _).symm

lemma bit1_val (n : ℤ) : bit1 n = 2 * n + 1 := congr_arg (+(1:ℤ)) (bit0_val _)

lemma bit_val (b n) : bit b n = 2 * n + cond b 1 0 :=
by { cases b, apply (bit0_val n).trans (add_zero _).symm, apply bit1_val }

lemma bit_decomp (n : ℤ) : bit (bodd n) (div2 n) = n :=
(bit_val _ _).trans $ (add_comm _ _).trans $ bodd_add_div2 _

def {u} bit_cases_on {C : ℤ → Sort u} (n) (h : ∀ b n, C (bit b n)) : C n :=
by rw [← bit_decomp n]; apply h

@[simp] lemma bit_zero : bit ff 0 = 0 := rfl

@[simp] lemma bit_coe_nat (b) (n : ℕ) : bit b n = nat.bit b n :=
by rw [bit_val, nat.bit_val]; cases b; refl

@[simp] lemma bit_neg_succ (b) (n : ℕ) : bit b -[1+ n] = -[1+ nat.bit (bnot b) n] :=
by rw [bit_val, nat.bit_val]; cases b; refl

@[simp] lemma bodd_bit (b n) : bodd (bit b n) = b :=
by rw bit_val; simp; cases b; cases bodd n; refl

@[simp] lemma div2_bit (b n) : div2 (bit b n) = n :=
begin
  rw [bit_val, div2_val, add_comm, int.add_mul_div_left, (_ : (_/2:ℤ) = 0), zero_add],
  cases b, all_goals {exact dec_trivial}
end

@[simp] lemma test_bit_zero (b) : ∀ n, test_bit (bit b n) 0 = b
| (n : ℕ) := by rw [bit_coe_nat]; apply nat.test_bit_zero
| -[1+ n] := by rw [bit_neg_succ]; dsimp [test_bit]; rw [nat.test_bit_zero];
                clear test_bit_zero; cases b; refl

@[simp] lemma test_bit_succ (m b) : ∀ n, test_bit (bit b n) (nat.succ m) = test_bit n m
| (n : ℕ) := by rw [bit_coe_nat]; apply nat.test_bit_succ
| -[1+ n] := by rw [bit_neg_succ]; dsimp [test_bit]; rw [nat.test_bit_succ]

private meta def bitwise_tac : tactic unit := `[
  funext m,
  funext n,
  cases m with m m; cases n with n n; try {refl},
  all_goals {
    apply congr_arg of_nat <|> apply congr_arg neg_succ_of_nat,
    try {dsimp [nat.land, nat.ldiff, nat.lor]},
    try {rw [
      show nat.bitwise (λ a b, a && bnot b) n m =
           nat.bitwise (λ a b, b && bnot a) m n, from
      congr_fun (congr_fun (@nat.bitwise_swap (λ a b, b && bnot a) rfl) n) m]},
    apply congr_arg (λ f, nat.bitwise f m n),
    funext a,
    funext b,
    cases a; cases b; refl
  },
  all_goals {unfold nat.land nat.ldiff nat.lor}
]

theorem bitwise_or   : bitwise bor                  = lor   := by bitwise_tac
theorem bitwise_and  : bitwise band                 = land  := by bitwise_tac
theorem bitwise_diff : bitwise (λ a b, a && bnot b) = ldiff := by bitwise_tac
theorem bitwise_xor  : bitwise bxor                 = lxor  := by bitwise_tac

@[simp] lemma bitwise_bit (f : bool → bool → bool) (a m b n) :
  bitwise f (bit a m) (bit b n) = bit (f a b) (bitwise f m n) :=
begin
  cases m with m m; cases n with n n;
  repeat { rw [← int.coe_nat_eq] <|> rw bit_coe_nat <|> rw bit_neg_succ };
  unfold bitwise nat_bitwise bnot;
  [ induction h : f ff ff,
    induction h : f ff tt,
    induction h : f tt ff,
    induction h : f tt tt ],
  all_goals {
    unfold cond, rw nat.bitwise_bit,
    repeat { rw bit_coe_nat <|> rw bit_neg_succ <|> rw bnot_bnot } },
  all_goals { unfold bnot {fail_if_unchanged := ff}; rw h; refl }
end

@[simp] lemma lor_bit (a m b n) : lor (bit a m) (bit b n) = bit (a || b) (lor m n) :=
by rw [← bitwise_or, bitwise_bit]

@[simp] lemma land_bit (a m b n) : land (bit a m) (bit b n) = bit (a && b) (land m n) :=
by rw [← bitwise_and, bitwise_bit]

@[simp] lemma ldiff_bit (a m b n) : ldiff (bit a m) (bit b n) = bit (a && bnot b) (ldiff m n) :=
by rw [← bitwise_diff, bitwise_bit]

@[simp] lemma lxor_bit (a m b n) : lxor (bit a m) (bit b n) = bit (bxor a b) (lxor m n) :=
by rw [← bitwise_xor, bitwise_bit]

@[simp] lemma lnot_bit (b) : ∀ n, lnot (bit b n) = bit (bnot b) (lnot n)
| (n : ℕ) := by simp [lnot]
| -[1+ n] := by simp [lnot]

@[simp] lemma test_bit_bitwise (f : bool → bool → bool) (m n k) :
  test_bit (bitwise f m n) k = f (test_bit m k) (test_bit n k) :=
begin
  induction k with k IH generalizing m n;
  apply bit_cases_on m; intros a m';
  apply bit_cases_on n; intros b n';
  rw bitwise_bit,
  { simp [test_bit_zero] },
  { simp [test_bit_succ, IH] }
end

@[simp] lemma test_bit_lor (m n k) : test_bit (lor m n) k = test_bit m k || test_bit n k :=
by rw [← bitwise_or, test_bit_bitwise]

@[simp] lemma test_bit_land (m n k) : test_bit (land m n) k = test_bit m k && test_bit n k :=
by rw [← bitwise_and, test_bit_bitwise]

@[simp] lemma test_bit_ldiff (m n k) : test_bit (ldiff m n) k = test_bit m k && bnot (test_bit n k) :=
by rw [← bitwise_diff, test_bit_bitwise]

@[simp] lemma test_bit_lxor (m n k) : test_bit (lxor m n) k = bxor (test_bit m k) (test_bit n k) :=
by rw [← bitwise_xor, test_bit_bitwise]

@[simp] lemma test_bit_lnot : ∀ n k, test_bit (lnot n) k = bnot (test_bit n k)
| (n : ℕ) k := by simp [lnot, test_bit]
| -[1+ n] k := by simp [lnot, test_bit]

lemma shiftl_add : ∀ (m : ℤ) (n : ℕ) (k : ℤ), shiftl m (n + k) = shiftl (shiftl m n) k
| (m : ℕ) n (k:ℕ) := congr_arg of_nat (nat.shiftl_add _ _ _)
| -[1+ m] n (k:ℕ) := congr_arg neg_succ_of_nat (nat.shiftl'_add _ _ _ _)
| (m : ℕ) n -[1+k] := sub_nat_nat_elim n k.succ
    (λ n k i, shiftl ↑m i = nat.shiftr (nat.shiftl m n) k)
    (λ i n, congr_arg coe $
      by rw [← nat.shiftl_sub, nat.add_sub_cancel_left]; apply nat.le_add_right)
    (λ i n, congr_arg coe $
      by rw [add_assoc, nat.shiftr_add, ← nat.shiftl_sub, nat.sub_self]; refl)
| -[1+ m] n -[1+k] := sub_nat_nat_elim n k.succ
    (λ n k i, shiftl -[1+ m] i = -[1+ nat.shiftr (nat.shiftl' tt m n) k])
    (λ i n, congr_arg neg_succ_of_nat $
      by rw [← nat.shiftl'_sub, nat.add_sub_cancel_left]; apply nat.le_add_right)
    (λ i n, congr_arg neg_succ_of_nat $
      by rw [add_assoc, nat.shiftr_add, ← nat.shiftl'_sub, nat.sub_self]; refl)

lemma shiftl_sub (m : ℤ) (n : ℕ) (k : ℤ) : shiftl m (n - k) = shiftr (shiftl m n) k :=
shiftl_add _ _ _

@[simp] lemma shiftl_neg (m n : ℤ) : shiftl m (-n) = shiftr m n := rfl
@[simp] lemma shiftr_neg (m n : ℤ) : shiftr m (-n) = shiftl m n := by rw [← shiftl_neg, neg_neg]

@[simp] lemma shiftl_coe_nat (m n : ℕ) : shiftl m n = nat.shiftl m n := rfl
@[simp] lemma shiftr_coe_nat (m n : ℕ) : shiftr m n = nat.shiftr m n := by cases n; refl

@[simp] lemma shiftl_neg_succ (m n : ℕ) : shiftl -[1+ m] n = -[1+ nat.shiftl' tt m n] := rfl
@[simp] lemma shiftr_neg_succ (m n : ℕ) : shiftr -[1+ m] n = -[1+ nat.shiftr m n] := by cases n; refl

lemma shiftr_add : ∀ (m : ℤ) (n k : ℕ), shiftr m (n + k) = shiftr (shiftr m n) k
| (m : ℕ) n k := by rw [shiftr_coe_nat, shiftr_coe_nat,
                        ← int.coe_nat_add, shiftr_coe_nat, nat.shiftr_add]
| -[1+ m] n k := by rw [shiftr_neg_succ, shiftr_neg_succ,
                        ← int.coe_nat_add, shiftr_neg_succ, nat.shiftr_add]

lemma shiftl_eq_mul_pow : ∀ (m : ℤ) (n : ℕ), shiftl m n = m * ↑(2 ^ n)
| (m : ℕ) n := congr_arg coe (nat.shiftl_eq_mul_pow _ _)
| -[1+ m] n := @congr_arg ℕ ℤ _ _ (λi, -i) (nat.shiftl'_tt_eq_mul_pow _ _)

lemma shiftr_eq_div_pow : ∀ (m : ℤ) (n : ℕ), shiftr m n = m / ↑(2 ^ n)
| (m : ℕ) n := by rw shiftr_coe_nat; exact congr_arg coe (nat.shiftr_eq_div_pow _ _)
| -[1+ m] n := begin
  rw [shiftr_neg_succ, neg_succ_of_nat_div, nat.shiftr_eq_div_pow], refl,
  exact coe_nat_lt_coe_nat_of_lt (nat.pos_pow_of_pos _ dec_trivial)
end

lemma one_shiftl (n : ℕ) : shiftl 1 n = (2 ^ n : ℕ) :=
congr_arg coe (nat.one_shiftl _)

@[simp] lemma zero_shiftl : ∀ n : ℤ, shiftl 0 n = 0
| (n : ℕ) := congr_arg coe (nat.zero_shiftl _)
| -[1+ n] := congr_arg coe (nat.zero_shiftr _)

@[simp] lemma zero_shiftr (n) : shiftr 0 n = 0 := zero_shiftl _

/- Least upper bound property for integers -/

theorem exists_least_of_bdd {P : ℤ → Prop} [HP : decidable_pred P]
    (Hbdd : ∃ b : ℤ, ∀ z : ℤ, P z → b ≤ z)
        (Hinh : ∃ z : ℤ, P z) : ∃ lb : ℤ, P lb ∧ (∀ z : ℤ, P z → lb ≤ z) :=
let ⟨b, Hb⟩ := Hbdd in
have EX : ∃ n : ℕ, P (b + n), from
  let ⟨elt, Helt⟩ := Hinh in
  match elt, le.dest (Hb _ Helt), Helt with
  | ._, ⟨n, rfl⟩, Hn := ⟨n, Hn⟩
  end,
⟨b + (nat.find EX : ℤ), nat.find_spec EX, λ z h,
  match z, le.dest (Hb _ h), h with
  | ._, ⟨n, rfl⟩, h := add_le_add_left
    (int.coe_nat_le.2 $ nat.find_min' _ h) _
  end⟩

theorem exists_greatest_of_bdd {P : ℤ → Prop} [HP : decidable_pred P]
    (Hbdd : ∃ b : ℤ, ∀ z : ℤ, P z → z ≤ b)
        (Hinh : ∃ z : ℤ, P z) : ∃ ub : ℤ, P ub ∧ (∀ z : ℤ, P z → z ≤ ub) :=
have Hbdd' : ∃ (b : ℤ), ∀ (z : ℤ), P (-z) → b ≤ z, from
let ⟨b, Hb⟩ := Hbdd in ⟨-b, λ z h, neg_le.1 (Hb _ h)⟩,
have Hinh' : ∃ z : ℤ, P (-z), from
let ⟨elt, Helt⟩ := Hinh in ⟨-elt, by rw [neg_neg]; exact Helt⟩,
let ⟨lb, Plb, al⟩ := exists_least_of_bdd Hbdd' Hinh' in
⟨-lb, Plb, λ z h, le_neg.1 $ al _ $ by rwa neg_neg⟩

/- cast (injection into groups with one) -/

@[simp] theorem nat_cast_eq_coe_nat : ∀ n,
  @coe ℕ ℤ (@coe_to_lift _ _ (@coe_base _ _ nat.cast_coe)) n =
  @coe ℕ ℤ (@coe_to_lift _ _ (@coe_base _ _ int.has_coe)) n
| 0     := rfl
| (n+1) := congr_arg (+(1:ℤ)) (nat_cast_eq_coe_nat n)

section cast
variables {α : Type*}

section
variables [has_neg α] [has_zero α] [has_one α] [has_add α]

/-- Canonical homomorphism from the integers to any ring(-like) structure `α` -/
protected def cast : ℤ → α
| (n : ℕ) := n
| -[1+ n] := -(n+1)

@[priority 10] instance cast_coe : has_coe ℤ α := ⟨int.cast⟩

@[simp, squash_cast] theorem cast_zero : ((0 : ℤ) : α) = 0 := rfl

@[simp] theorem cast_of_nat (n : ℕ) : (of_nat n : α) = n := rfl
@[simp, squash_cast] theorem cast_coe_nat (n : ℕ) : ((n : ℤ) : α) = n := rfl
@[simp] theorem cast_coe_nat' (n : ℕ) :
  (@coe ℕ ℤ (@coe_to_lift _ _ (@coe_base _ _ nat.cast_coe)) n : α) = n :=
by simp

@[simp, move_cast] theorem cast_neg_succ_of_nat (n : ℕ) : (-[1+ n] : α) = -(n + 1) := rfl

end

@[simp, squash_cast] theorem cast_one [add_monoid α] [has_one α] [has_neg α] : ((1 : ℤ) : α) = 1 := nat.cast_one

@[simp, move_cast] theorem cast_sub_nat_nat [add_group α] [has_one α] (m n) : ((int.sub_nat_nat m n : ℤ) : α) = m - n :=
begin
  unfold sub_nat_nat, cases e : n - m,
  { simp [sub_nat_nat, e, nat.le_of_sub_eq_zero e] },
  { rw [sub_nat_nat, cast_neg_succ_of_nat, ← nat.cast_succ, ← e,
        nat.cast_sub $ _root_.le_of_lt $ nat.lt_of_sub_eq_succ e, neg_sub] },
end

@[simp, move_cast] theorem cast_neg_of_nat [add_group α] [has_one α] : ∀ n, ((neg_of_nat n : ℤ) : α) = -n
| 0     := neg_zero.symm
| (n+1) := rfl

@[simp, move_cast] theorem cast_add [add_group α] [has_one α] : ∀ m n, ((m + n : ℤ) : α) = m + n
| (m : ℕ) (n : ℕ) := nat.cast_add _ _
| (m : ℕ) -[1+ n] := cast_sub_nat_nat _ _
| -[1+ m] (n : ℕ) := (cast_sub_nat_nat _ _).trans $ sub_eq_of_eq_add $
  show (n:α) = -(m+1) + n + (m+1),
  by rw [add_assoc, ← cast_succ, ← nat.cast_add, add_comm,
         nat.cast_add, cast_succ, neg_add_cancel_left]
| -[1+ m] -[1+ n] := show -((m + n + 1 + 1 : ℕ) : α) = -(m + 1) + -(n + 1),
  by rw [← neg_add_rev, ← nat.cast_add_one, ← nat.cast_add_one, ← nat.cast_add];
     apply congr_arg (λ x:ℕ, -(x:α)); simp

@[simp, move_cast] theorem cast_neg [add_group α] [has_one α] : ∀ n, ((-n : ℤ) : α) = -n
| (n : ℕ) := cast_neg_of_nat _
| -[1+ n] := (neg_neg _).symm

@[move_cast] theorem cast_sub [add_group α] [has_one α] (m n) : ((m - n : ℤ) : α) = m - n :=
by simp

@[simp] theorem cast_eq_zero [add_group α] [has_one α] [char_zero α] {n : ℤ} : (n : α) = 0 ↔ n = 0 :=
⟨λ h, begin cases n,
  { exact congr_arg coe (nat.cast_eq_zero.1 h) },
  { rw [cast_neg_succ_of_nat, neg_eq_zero, ← cast_succ, nat.cast_eq_zero] at h,
    contradiction }
end, λ h, by rw [h, cast_zero]⟩

@[simp, elim_cast] theorem cast_inj [add_group α] [has_one α] [char_zero α] {m n : ℤ} : (m : α) = n ↔ m = n :=
by rw [← sub_eq_zero, ← cast_sub, cast_eq_zero, sub_eq_zero]

theorem cast_injective [add_group α] [has_one α] [char_zero α] : function.injective (coe : ℤ → α)
| m n := cast_inj.1

@[simp] theorem cast_ne_zero [add_group α] [has_one α] [char_zero α] {n : ℤ} : (n : α) ≠ 0 ↔ n ≠ 0 :=
not_congr cast_eq_zero

@[simp, move_cast] theorem cast_mul [ring α] : ∀ m n, ((m * n : ℤ) : α) = m * n
| (m : ℕ) (n : ℕ) := nat.cast_mul _ _
| (m : ℕ) -[1+ n] := (cast_neg_of_nat _).trans $
  show (-(m * (n + 1) : ℕ) : α) = m * -(n + 1),
  by rw [nat.cast_mul, nat.cast_add_one, neg_mul_eq_mul_neg]
| -[1+ m] (n : ℕ) := (cast_neg_of_nat _).trans $
  show (-((m + 1) * n : ℕ) : α) = -(m + 1) * n,
  by rw [nat.cast_mul, nat.cast_add_one, neg_mul_eq_neg_mul]
| -[1+ m] -[1+ n] := show (((m + 1) * (n + 1) : ℕ) : α) = -(m + 1) * -(n + 1),
  by rw [nat.cast_mul, nat.cast_add_one, nat.cast_add_one, neg_mul_neg]

instance cast.is_ring_hom [ring α] :
  is_ring_hom (int.cast : ℤ → α) :=
⟨cast_one, cast_mul, cast_add⟩

instance coe.is_ring_hom [ring α] : is_ring_hom (coe : ℤ → α) := cast.is_ring_hom

theorem mul_cast_comm [ring α] (a : α) (n : ℤ) : a * n = n * a :=
by cases n; simp [nat.mul_cast_comm, left_distrib, right_distrib, *]

@[simp, squash_cast, move_cast] theorem coe_nat_bit0 (n : ℕ) : (↑(bit0 n) : ℤ) = bit0 ↑n := by {unfold bit0, simp}

@[simp, squash_cast, move_cast] theorem coe_nat_bit1 (n : ℕ) : (↑(bit1 n) : ℤ) = bit1 ↑n := by {unfold bit1, unfold bit0, simp}

@[simp, squash_cast, move_cast] theorem cast_bit0 [ring α] (n : ℤ) : ((bit0 n : ℤ) : α) = bit0 n := cast_add _ _

@[simp, squash_cast, move_cast] theorem cast_bit1 [ring α] (n : ℤ) : ((bit1 n : ℤ) : α) = bit1 n :=
by rw [bit1, cast_add, cast_one, cast_bit0]; refl

lemma cast_two [ring α] : ((2 : ℤ) : α) = 2 := by simp

theorem cast_nonneg [linear_ordered_ring α] : ∀ {n : ℤ}, (0 : α) ≤ n ↔ 0 ≤ n
| (n : ℕ) := by simp
| -[1+ n] := by simpa [not_le_of_gt (neg_succ_lt_zero n)] using
             show -(n:α) < 1, from lt_of_le_of_lt (by simp) zero_lt_one

@[simp, elim_cast] theorem cast_le [linear_ordered_ring α] {m n : ℤ} : (m : α) ≤ n ↔ m ≤ n :=
by rw [← sub_nonneg, ← cast_sub, cast_nonneg, sub_nonneg]

@[simp, elim_cast] theorem cast_lt [linear_ordered_ring α] {m n : ℤ} : (m : α) < n ↔ m < n :=
by simpa [-cast_le] using not_congr (@cast_le α _ n m)

@[simp] theorem cast_nonpos [linear_ordered_ring α] {n : ℤ} : (n : α) ≤ 0 ↔ n ≤ 0 :=
by rw [← cast_zero, cast_le]

@[simp] theorem cast_pos [linear_ordered_ring α] {n : ℤ} : (0 : α) < n ↔ 0 < n :=
by rw [← cast_zero, cast_lt]

@[simp] theorem cast_lt_zero [linear_ordered_ring α] {n : ℤ} : (n : α) < 0 ↔ n < 0 :=
by rw [← cast_zero, cast_lt]

theorem eq_cast [add_group α] [has_one α] (f : ℤ → α)
  (H1 : f 1 = 1) (Hadd : ∀ x y, f (x + y) = f x + f y) (n : ℤ) : f n = n :=
begin
  have H : ∀ (n : ℕ), f n = n :=
    nat.eq_cast' (λ n, f n) H1 (λ x y, Hadd x y),
  cases n, {apply H},
  apply eq_neg_of_add_eq_zero,
  rw [← nat.cast_zero, ← H 0, int.coe_nat_zero,
      ← show -[1+ n] + (↑n + 1) = 0, from neg_add_self (↑n+1),
      Hadd, show f (n+1) = n+1, from H (n+1)]
end

lemma eq_cast' [ring α] (f : ℤ → α) [is_ring_hom f] : f = int.cast :=
funext $ int.eq_cast f (is_ring_hom.map_one f) (λ _ _, is_ring_hom.map_add f)

@[simp, squash_cast] theorem cast_id (n : ℤ) : ↑n = n :=
(eq_cast id rfl (λ _ _, rfl) n).symm

@[simp, move_cast] theorem cast_min [decidable_linear_ordered_comm_ring α] {a b : ℤ} :
  (↑(min a b) : α) = min a b :=
by by_cases a ≤ b; simp [h, min]

@[simp, move_cast] theorem cast_max [decidable_linear_ordered_comm_ring α] {a b : ℤ} :
  (↑(max a b) : α) = max a b :=
by by_cases a ≤ b; simp [h, max]

@[simp, move_cast] theorem cast_abs [decidable_linear_ordered_comm_ring α] {q : ℤ} :
  ((abs q : ℤ) : α) = abs q :=
by simp [abs]

end cast

section decidable

def range (m n : ℤ) : list ℤ :=
(list.range (to_nat (n-m))).map $ λ r, m+r

theorem mem_range_iff {m n r : ℤ} : r ∈ range m n ↔ m ≤ r ∧ r < n :=
⟨λ H, let ⟨s, h1, h2⟩ := list.mem_map.1 H in h2 ▸
  ⟨le_add_of_nonneg_right trivial,
  add_lt_of_lt_sub_left $ match n-m, h1 with
    | (k:ℕ), h1 := by rwa [list.mem_range, to_nat_coe_nat, ← coe_nat_lt] at h1
    end⟩,
λ ⟨h1, h2⟩, list.mem_map.2 ⟨to_nat (r-m),
  list.mem_range.2 $ by rw [← coe_nat_lt, to_nat_of_nonneg (sub_nonneg_of_le h1),
      to_nat_of_nonneg (sub_nonneg_of_le (le_of_lt (lt_of_le_of_lt h1 h2)))];
    exact sub_lt_sub_right h2 _,
  show m + _ = _, by rw [to_nat_of_nonneg (sub_nonneg_of_le h1), add_sub_cancel'_right]⟩⟩

instance decidable_le_lt (P : int → Prop) [decidable_pred P] (m n : ℤ) : decidable (∀ r, m ≤ r → r < n → P r) :=
decidable_of_iff (∀ r ∈ range m n, P r) $ by simp only [mem_range_iff, and_imp]

instance decidable_le_le (P : int → Prop) [decidable_pred P] (m n : ℤ) : decidable (∀ r, m ≤ r → r ≤ n → P r) :=
decidable_of_iff (∀ r ∈ range m (n+1), P r) $ by simp only [mem_range_iff, and_imp, lt_add_one_iff]

instance decidable_lt_lt (P : int → Prop) [decidable_pred P] (m n : ℤ) : decidable (∀ r, m < r → r < n → P r) :=
int.decidable_le_lt P _ _

instance decidable_lt_le (P : int → Prop) [decidable_pred P] (m n : ℤ) : decidable (∀ r, m < r → r ≤ n → P r) :=
int.decidable_le_le P _ _

end decidable

end int

section ring_hom

variables {α : Type*} {β : Type*} [ring α] [ring β]

lemma is_ring_hom.map_int_cast (f : α → β) [is_ring_hom f] (n : ℤ) : f n = n :=
int.eq_cast (λ n : ℤ, f n) (by simp [is_ring_hom.map_one f])
  (by simp [is_ring_hom.map_add f]) _

lemma ring_hom.map_int_cast (f : α →+* β) (n : ℤ) : f n = n :=
is_ring_hom.map_int_cast _ _

end ring_hom