CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2018 Ellen Arlt. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ellen Arlt, Blair Shi, Sean Leather, Mario Carneiro, Johan Commelin

Matrices
-/
import algebra.module algebra.pi_instances
import data.fintype

universes u v w

def matrix (m n : Type u) [fintype m] [fintype n] (α : Type v) : Type (max u v) :=
m → n → α

namespace matrix
variables {l m n o : Type u} [fintype l] [fintype m] [fintype n] [fintype o]
variables {α : Type v}

section ext
variables {M N : matrix m n α}

theorem ext_iff : (∀ i j, M i j = N i j) ↔ M = N :=
⟨λ h, funext $ λ i, funext $ h i, λ h, by simp [h]⟩

@[ext] theorem ext : (∀ i j, M i j = N i j) → M = N :=
ext_iff.mp

end ext

def transpose (M : matrix m n α) : matrix n m α
| x y := M y x

localized "postfix `ᵀ`:1500 := matrix.transpose" in matrix

def col (w : m → α) : matrix m punit α
| x y := w x

def row (v : n → α) : matrix punit n α
| x y := v y

instance [inhabited α] : inhabited (matrix m n α) := pi.inhabited _
instance [has_add α] : has_add (matrix m n α) := pi.has_add
instance [add_semigroup α] : add_semigroup (matrix m n α) := pi.add_semigroup
instance [add_comm_semigroup α] : add_comm_semigroup (matrix m n α) := pi.add_comm_semigroup
instance [has_zero α] : has_zero (matrix m n α) := pi.has_zero
instance [add_monoid α] : add_monoid (matrix m n α) := pi.add_monoid
instance [add_comm_monoid α] : add_comm_monoid (matrix m n α) := pi.add_comm_monoid
instance [has_neg α] : has_neg (matrix m n α) := pi.has_neg
instance [add_group α] : add_group (matrix m n α) := pi.add_group
instance [add_comm_group α] : add_comm_group (matrix m n α) := pi.add_comm_group

@[simp] theorem zero_val [has_zero α] (i j) : (0 : matrix m n α) i j = 0 := rfl
@[simp] theorem neg_val [has_neg α] (M : matrix m n α) (i j) : (- M) i j = - M i j := rfl
@[simp] theorem add_val [has_add α] (M N : matrix m n α) (i j) : (M + N) i j = M i j + N i j := rfl

section diagonal
variables [decidable_eq n]

def diagonal [has_zero α] (d : n → α) : matrix n n α := λ i j, if i = j then d i else 0

@[simp] theorem diagonal_val_eq [has_zero α] {d : n → α} (i : n) : (diagonal d) i i = d i :=
by simp [diagonal]

@[simp] theorem diagonal_val_ne [has_zero α] {d : n → α} {i j : n} (h : i ≠ j) :
  (diagonal d) i j = 0 := by simp [diagonal, h]

theorem diagonal_val_ne' [has_zero α] {d : n → α} {i j : n} (h : j ≠ i) :
  (diagonal d) i j = 0 := diagonal_val_ne h.symm

@[simp] theorem diagonal_zero [has_zero α] : (diagonal (λ _, 0) : matrix n n α) = 0 :=
by simp [diagonal]; refl

section one
variables [has_zero α] [has_one α]

instance : has_one (matrix n n α) := ⟨diagonal (λ _, 1)⟩

@[simp] theorem diagonal_one : (diagonal (λ _, 1) : matrix n n α) = 1 := rfl

theorem one_val {i j} : (1 : matrix n n α) i j = if i = j then 1 else 0 := rfl

@[simp] theorem one_val_eq (i) : (1 : matrix n n α) i i = 1 := diagonal_val_eq i

@[simp] theorem one_val_ne {i j} : i ≠ j → (1 : matrix n n α) i j = 0 :=
diagonal_val_ne

theorem one_val_ne' {i j} : j ≠ i → (1 : matrix n n α) i j = 0 :=
diagonal_val_ne'

end one
end diagonal

@[simp] theorem diagonal_add [decidable_eq n] [add_monoid α] (d₁ d₂ : n → α) :
  diagonal d₁ + diagonal d₂ = diagonal (λ i, d₁ i + d₂ i) :=
by ext i j; by_cases i = j; simp [h]

protected def mul [has_mul α] [add_comm_monoid α] (M : matrix l m α) (N : matrix m n α) :
  matrix l n α :=
λ i k, finset.univ.sum (λ j, M i j * N j k)

localized "infixl ` ⬝ `:75 := matrix.mul" in matrix

theorem mul_val [has_mul α] [add_comm_monoid α] {M : matrix l m α} {N : matrix m n α} {i k} :
  (M ⬝ N) i k = finset.univ.sum (λ j, M i j * N j k) := rfl

local attribute [simp] mul_val

instance [has_mul α] [add_comm_monoid α] : has_mul (matrix n n α) := ⟨matrix.mul⟩

@[simp] theorem mul_eq_mul [has_mul α] [add_comm_monoid α] (M N : matrix n n α) :
  M * N = M ⬝ N := rfl

theorem mul_val' [has_mul α] [add_comm_monoid α] {M N : matrix n n α} {i k} :
  (M * N) i k = finset.univ.sum (λ j, M i j * N j k) := rfl

section semigroup
variables [semiring α]

protected theorem mul_assoc (L : matrix l m α) (M : matrix m n α) (N : matrix n o α) :
  (L ⬝ M) ⬝ N = L ⬝ (M ⬝ N) :=
by classical; funext i k;
   simp [finset.mul_sum, finset.sum_mul, mul_assoc];
   rw finset.sum_comm

instance : semigroup (matrix n n α) :=
{ mul_assoc := matrix.mul_assoc, ..matrix.has_mul }

end semigroup

@[simp] theorem diagonal_neg [decidable_eq n] [add_group α] (d : n → α) :
  -diagonal d = diagonal (λ i, -d i) :=
by ext i j; by_cases i = j; simp [h]

section semiring
variables [semiring α]

@[simp] protected theorem mul_zero (M : matrix m n α) : M ⬝ (0 : matrix n o α) = 0 :=
by ext i j; simp

@[simp] protected theorem zero_mul (M : matrix m n α) : (0 : matrix l m α) ⬝ M = 0 :=
by ext i j; simp

protected theorem mul_add (L : matrix m n α) (M N : matrix n o α) : L ⬝ (M + N) = L ⬝ M + L ⬝ N :=
by ext i j; simp [finset.sum_add_distrib, mul_add]

protected theorem add_mul (L M : matrix l m α) (N : matrix m n α) : (L + M) ⬝ N = L ⬝ N + M ⬝ N :=
by ext i j; simp [finset.sum_add_distrib, add_mul]

@[simp] theorem diagonal_mul [decidable_eq m]
  (d : m → α) (M : matrix m n α) (i j) : (diagonal d).mul M i j = d i * M i j :=
by simp; rw finset.sum_eq_single i; simp [diagonal_val_ne'] {contextual := tt}

@[simp] theorem mul_diagonal [decidable_eq n]
  (d : n → α) (M : matrix m n α) (i j) : (M ⬝ diagonal d) i j = M i j * d j :=
by simp; rw finset.sum_eq_single j; simp {contextual := tt}

@[simp] protected theorem one_mul [decidable_eq m] (M : matrix m n α) : (1 : matrix m m α) ⬝ M = M :=
by ext i j; rw [← diagonal_one, diagonal_mul, one_mul]

@[simp] protected theorem mul_one [decidable_eq n] (M : matrix m n α) : M ⬝ (1 : matrix n n α) = M :=
by ext i j; rw [← diagonal_one, mul_diagonal, mul_one]

instance [decidable_eq n] : monoid (matrix n n α) :=
{ one_mul := matrix.one_mul,
  mul_one := matrix.mul_one,
  ..matrix.has_one, ..matrix.semigroup }

instance [decidable_eq n] : semiring (matrix n n α) :=
{ mul_zero := matrix.mul_zero,
  zero_mul := matrix.zero_mul,
  left_distrib := matrix.mul_add,
  right_distrib := matrix.add_mul,
  ..matrix.add_comm_monoid,
  ..matrix.monoid }

@[simp] theorem diagonal_mul_diagonal' [decidable_eq n] (d₁ d₂ : n → α) :
  (diagonal d₁) ⬝ (diagonal d₂) = diagonal (λ i, d₁ i * d₂ i) :=
by ext i j; by_cases i = j; simp [h]

theorem diagonal_mul_diagonal [decidable_eq n] (d₁ d₂ : n → α) :
  diagonal d₁ * diagonal d₂ = diagonal (λ i, d₁ i * d₂ i) :=
diagonal_mul_diagonal' _ _

lemma is_add_monoid_hom_mul_left (M : matrix l m α) :
  is_add_monoid_hom (λ x : matrix m n α, M ⬝ x) :=
{ to_is_add_hom := ⟨matrix.mul_add _⟩, map_zero := matrix.mul_zero _ }

lemma is_add_monoid_hom_mul_right (M : matrix m n α) :
  is_add_monoid_hom (λ x : matrix l m α, x ⬝ M) :=
{ to_is_add_hom := ⟨λ _ _, matrix.add_mul _ _ _⟩, map_zero := matrix.zero_mul _ }

protected lemma sum_mul {β : Type*} (s : finset β) (f : β → matrix l m α)
  (M : matrix m n α) : s.sum f ⬝ M = s.sum (λ a, f a ⬝ M) :=
(@finset.sum_hom _ _ _ _ _ s f (λ x, x ⬝ M)
/- This line does not type-check without `id` and `: _`. Lean did not recognize that two different
  `add_monoid` instances were def-eq -/
  (id (@is_add_monoid_hom_mul_right l _ _ _ _ _ _ _ M) : _)).symm

protected lemma mul_sum {β : Type*} (s : finset β) (f : β → matrix m n α)
  (M : matrix l m α) :  M ⬝ s.sum f = s.sum (λ a, M ⬝ f a) :=
(@finset.sum_hom _ _ _ _ _ s f (λ x, M ⬝ x)
/- This line does not type-check without `id` and `: _`. Lean did not recognize that two different
  `add_monoid` instances were def-eq -/
  (id (@is_add_monoid_hom_mul_left _ _ n _ _ _ _ _ M) : _)).symm

end semiring

section ring
variables [ring α]

@[simp] theorem neg_mul (M : matrix m n α) (N : matrix n o α) :
  (-M) ⬝ N = -(M ⬝ N) := by ext; simp [matrix.mul]

@[simp] theorem mul_neg (M : matrix m n α) (N : matrix n o α) :
  M ⬝ (-N) = -(M ⬝ N) := by ext; simp [matrix.mul]

end ring

instance [decidable_eq n] [ring α] : ring (matrix n n α) :=
{ ..matrix.add_comm_group, ..matrix.semiring }

instance [semiring α] : has_scalar α (matrix m n α) := pi.has_scalar
instance {β : Type w} [ring α] [add_comm_group β] [module α β] :
  module α (matrix m n β) := pi.module _

@[simp] lemma smul_val [semiring α] (a : α) (A : matrix m n α) (i : m) (j : n) : (a • A) i j = a * A i j := rfl

section comm_ring
variables [comm_ring α]

@[simp] lemma mul_smul (M : matrix m n α) (a : α) (N : matrix n l α) : M ⬝ (a • N) = a • M ⬝ N :=
begin
  ext i j,
  unfold matrix.mul has_scalar.smul,
  rw finset.mul_sum,
  congr,
  ext,
  ac_refl
end

@[simp] lemma smul_mul (M : matrix m n α) (a : α) (N : matrix n l α) : (a • M) ⬝ N = a • M ⬝ N :=
begin
  ext i j,
  unfold matrix.mul has_scalar.smul,
  rw finset.mul_sum,
  congr,
  ext,
  ac_refl
end

end comm_ring

section semiring
variables [semiring α]

def vec_mul_vec (w : m → α) (v : n → α) : matrix m n α
| x y := w x * v y

def mul_vec (M : matrix m n α) (v : n → α) : m → α
| x := finset.univ.sum (λy:n, M x y * v y)

def vec_mul (v : m → α) (M : matrix m n α) : n → α
| y := finset.univ.sum (λx:m, v x * M x y)

instance mul_vec.is_add_monoid_hom_left (v : n → α) :
  is_add_monoid_hom (λM:matrix m n α, mul_vec M v) :=
{ map_zero := by ext; simp [mul_vec]; refl,
  map_add :=
  begin
    intros x y,
    ext m,
    rw pi.add_apply (mul_vec x v) (mul_vec y v) m,
    simp [mul_vec, finset.sum_add_distrib, right_distrib]
  end }

lemma mul_vec_diagonal [decidable_eq m] (v w : m → α) (x : m) :
  mul_vec (diagonal v) w x = v x * w x :=
begin
  transitivity,
  refine finset.sum_eq_single x _ _,
  { assume b _ ne, simp [diagonal, ne.symm] },
  { simp },
  { rw [diagonal_val_eq] }
end

lemma vec_mul_vec_eq (w : m → α) (v : n → α) :
  vec_mul_vec w v = (col w) ⬝ (row v) :=
by simp [matrix.mul]; refl

end semiring

section transpose

open_locale matrix

/--
  Tell `simp` what the entries are in a transposed matrix.

  Compare with `mul_val`, `diagonal_val_eq`, etc.
-/
@[simp] lemma transpose_val (M : matrix m n α) (i j) : M.transpose j i = M i j := rfl

@[simp] lemma transpose_transpose (M : matrix m n α) :
  Mᵀᵀ = M :=
by ext; refl

@[simp] lemma transpose_zero [has_zero α] : (0 : matrix m n α)ᵀ = 0 :=
by ext i j; refl

@[simp] lemma transpose_one [decidable_eq n] [has_zero α] [has_one α] : (1 : matrix n n α)ᵀ = 1 :=
begin
  ext i j,
  unfold has_one.one transpose,
  by_cases i = j,
  { simp only [h, diagonal_val_eq] },
  { simp only [diagonal_val_ne h, diagonal_val_ne (λ p, h (symm p))] }
end

@[simp] lemma transpose_add [has_add α] (M : matrix m n α) (N : matrix m n α) :
  (M + N)ᵀ = Mᵀ + Nᵀ  :=
by { ext i j, simp }

@[simp] lemma transpose_mul [comm_ring α] (M : matrix m n α) (N : matrix n l α) :
  (M ⬝ N)ᵀ = Nᵀ ⬝ Mᵀ  :=
begin
  ext i j,
  unfold matrix.mul transpose,
  congr,
  ext,
  ac_refl
end

@[simp] lemma transpose_smul [comm_ring α] (c : α)(M : matrix m n α) :
  (c • M)ᵀ = c • Mᵀ := 
by { ext i j, refl }

@[simp] lemma transpose_neg [comm_ring α] (M : matrix m n α) :
  (- M)ᵀ = - Mᵀ  :=
by ext i j; refl

end transpose

def minor (A : matrix m n α) (row : l → m) (col : o → n) : matrix l o α :=
λ i j, A (row i) (col j)

@[reducible]
def sub_left {m l r : nat} (A : matrix (fin m) (fin (l + r)) α) : matrix (fin m) (fin l) α :=
minor A id (fin.cast_add r)

@[reducible]
def sub_right {m l r : nat} (A : matrix (fin m) (fin (l + r)) α) : matrix (fin m) (fin r) α :=
minor A id (fin.nat_add l)

@[reducible]
def sub_up {d u n : nat} (A : matrix (fin (u + d)) (fin n) α) : matrix (fin u) (fin n) α :=
minor A (fin.cast_add d) id

@[reducible]
def sub_down {d u n : nat} (A : matrix (fin (u + d)) (fin n) α) : matrix (fin d) (fin n) α :=
minor A (fin.nat_add u) id

@[reducible]
def sub_up_right {d u l r : nat} (A: matrix (fin (u + d)) (fin (l + r)) α) :
  matrix (fin u) (fin r) α :=
sub_up (sub_right A)

@[reducible]
def sub_down_right {d u l r : nat} (A : matrix (fin (u + d)) (fin (l + r)) α) :
  matrix (fin d) (fin r) α :=
sub_down (sub_right A)

@[reducible]
def sub_up_left {d u l r : nat} (A : matrix (fin (u + d)) (fin (l + r)) α) :
  matrix (fin u) (fin (l)) α :=
sub_up (sub_left A)

@[reducible]
def sub_down_left {d u l r : nat} (A: matrix (fin (u + d)) (fin (l + r)) α) :
  matrix (fin d) (fin (l)) α :=
sub_down (sub_left A)

end matrix