Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 21708License: APACHE
oleanfile 3.4.2, commit cbd2b6686ddb �o��c init data nat sqrt � S-export_decl option none none some some export_decl bool ff ff tt tt export_decl has_andthen andthen andthen export_decl has_pow pow pow export_decl has_append append append export_decl decidable is_true is_true is_false is_false to_bool to_bool export_decl has_pure pure pure export_decl has_bind bind bind export_decl has_monad_lift_t monad_lift !monad_lift export_decl monad_functor_t monad_map $monad_map export_decl monad_run run 'run export_decl list mmap *mmap mmap' *mmap' mfilter *mfilter mfoldl *mfoldl export_decl native nat_map 3rb_map mk export_decl name_map native rb_map mk export_decl expr_map native rb_map mk export_decl tactic interaction_monad failed fail export_decl tactic_result interaction_monad result export_decl tactic Ftransparency reducible Greducible semireducible Gsemireducible export_decl tactic mk_simp_attr Lmk_simp_attr export_decl monad_except throw Othrow catch Ocatch export_decl monad_except_adapter adapt_except Tadapt_except export_decl monad_state_adapter adapt_state Wadapt_state export_decl monad_reader read Zread export_decl monad_reader_adapter adapt_reader ]adapt_reader export_decl is_lawful_functor map_const_eq `map_const_eq id_map `id_map comp_map `comp_map export_decl is_lawful_applicative seq_left_eq gseq_left_eq seq_right_eq gseq_right_eq pure_seq_eq_map gpure_seq_eq_map map_pure gmap_pure seq_pure gseq_pure seq_assoc gseq_assoc export_decl is_lawful_monad bind_pure_comp_eq_map tbind_pure_comp_eq_map bind_map_eq_seq tbind_map_eq_seq pure_bind tpure_bind bind_assoc tbind_assoc export_decl traversable traverse }traverse decl nat mkpair a nat b � � ite has_lt lt nat has_lt �decidable_lt has_add add nat has_add has_mul mul �has_mul � PInfo �VMR �VMC � � � nat decidable_lt nat mul nat add � � �doc �Pairing function for the natural numbers. decl �equations _eqn_1 � � eq � % � � eq refl ,� PInfo �ATTR _refl_lemma � � � EqnL �SEqnL �decl �unpair n prod � s �sqrt has_sub sub �has_sub A 8prod mk A K ? A � PInfo �VMR �VMC � � nat sqrt � � nat sub � � � � � � doc �Unpairing function for the natural numbers. decl �equations _eqn_1 � ( 8 � T � 1 8 X� PInfo �ATTR �� � � EqnL �SEqnL �decl �mkpair_unpair n ) * �fst X �snd X � s ;id ) * a W f m l ) * a @ : u u x u 8 K x u K u ? x u f � dite C F ) * a S f S h Ceq mpr ) * a ? � 8 K � K ? � f � � ) ! � � l ( � �a � e_1 ) a � e_2 �congr � ) ) � congr_arg � � � � ) � �eq trans � true decidable_of_decidable_of_iff � � �iff_true_intro � � � � � � � � � � � � � * � � � � e_1 � � � e_2 � � * � * � � � � � * � � �c 8 � 8e_1 V � 8 � a � � � 8 � � 8 � � �if_simp_congr 8 � � � � � � � � \ � \ �if_true 8 � � � � � 8 � 8e_1 � � f � � � @ � � � , � � � � � � � � 2 � � � � add_semigroup to_has_add add_comm_semigroup to_add_semigroup nat add_comm_semigroup �c has_add a � e_2 �a � e_3 � � � � q � � � � � � � q � � �add_comm � g � � 2 � � � � ; � � � � � 2 �nat add_sub_cancel' � �sqrt_le � � not C � ) � � � � � � �iff refl � � � � � � ! � � l � � � � � � � � � � � � � # � � � � + � � � � � # � � & false � � � �iff_false_intro � 8 � � � � . � � � � � � � � � � 6 � 8if_false 8 � � � � � � � J � � � � O � � T � � � � � � � � � � � � � � � � � � � � � � � � � � d �add_semigroup � � � � " � � � � � 2 �add_assoc � � � � � � � � � ) � � � l � � � � 5 � � � � � � � � � � � � � � � � � � preorder to_has_lt partial_order to_preorder ordered_comm_monoid to_partial_order ordered_cancel_comm_monoid to_ordered_comm_monoid ordered_semiring to_ordered_cancel_comm_monoid nat ordered_semiring �not_lt_of_ge � M �nat sub_le_left_of_le_add � � X � � �has_le le �has_le � ! � \ � d � � l � � f � keq rec � � _a � � c � � � � � � u 1 � � f � jeq symm � j � s � &