Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis -/ import data.padics.padic_integers data.polynomial topology.metric_space.cau_seq_filter import analysis.specific_limits topology.algebra.polynomial /-! # Hensel's lemma on ℤ_p This file proves Hensel's lemma on ℤ_p, roughly following Keith Conrad's writeup: <http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/hensel.pdf> Hensel's lemma gives a simple condition for the existence of a root of a polynomial. The proof and motivation are described in the paper [R. Y. Lewis, *A formal proof of Hensel's lemma over the p-adic integers*][lewis2019]. ## References * <http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/hensel.pdf> * [R. Y. Lewis, *A formal proof of Hensel's lemma over the p-adic integers*][lewis2019] * <https://en.wikipedia.org/wiki/Hensel%27s_lemma> ## Tags p-adic, p adic, padic, p-adic integer -/ noncomputable theory open_locale classical topological_space -- We begin with some general lemmas that are used below in the computation. lemma padic_polynomial_dist {p : ℕ} [p.prime] (F : polynomial ℤ_[p]) (x y : ℤ_[p]) : ∥F.eval x - F.eval y∥ ≤ ∥x - y∥ := let ⟨z, hz⟩ := F.eval_sub_factor x y in calc ∥F.eval x - F.eval y∥ = ∥z∥ * ∥x - y∥ : by simp [hz] ... ≤ 1 * ∥x - y∥ : mul_le_mul_of_nonneg_right (padic_norm_z.le_one _) (norm_nonneg _) ... = ∥x - y∥ : by simp open filter metric private lemma comp_tendsto_lim {p : ℕ} [p.prime] {F : polynomial ℤ_[p]} (ncs : cau_seq ℤ_[p] norm) : tendsto (λ i, F.eval (ncs i)) at_top (𝓝 (F.eval ncs.lim)) := (F.continuous_eval.tendsto _).comp ncs.tendsto_limit section parameters {p : ℕ} [nat.prime p] {ncs : cau_seq ℤ_[p] norm} {F : polynomial ℤ_[p]} {a : ℤ_[p]} (ncs_der_val : ∀ n, ∥F.derivative.eval (ncs n)∥ = ∥F.derivative.eval a∥) include ncs_der_val private lemma ncs_tendsto_const : tendsto (λ i, ∥F.derivative.eval (ncs i)∥) at_top (𝓝 ∥F.derivative.eval a∥) := by convert tendsto_const_nhds; ext; rw ncs_der_val private lemma ncs_tendsto_lim : tendsto (λ i, ∥F.derivative.eval (ncs i)∥) at_top (𝓝 (∥F.derivative.eval ncs.lim∥)) := tendsto.comp (continuous_iff_continuous_at.1 continuous_norm _) (comp_tendsto_lim _) private lemma norm_deriv_eq : ∥F.derivative.eval ncs.lim∥ = ∥F.derivative.eval a∥ := tendsto_nhds_unique at_top_ne_bot ncs_tendsto_lim ncs_tendsto_const end section parameters {p : ℕ} [nat.prime p] {ncs : cau_seq ℤ_[p] norm} {F : polynomial ℤ_[p]} (hnorm : tendsto (λ i, ∥F.eval (ncs i)∥) at_top (𝓝 0)) include hnorm private lemma tendsto_zero_of_norm_tendsto_zero : tendsto (λ i, F.eval (ncs i)) at_top (𝓝 0) := tendsto_iff_norm_tendsto_zero.2 (by simpa using hnorm) lemma limit_zero_of_norm_tendsto_zero : F.eval ncs.lim = 0 := tendsto_nhds_unique at_top_ne_bot (comp_tendsto_lim _) tendsto_zero_of_norm_tendsto_zero end section hensel open nat parameters {p : ℕ} [nat.prime p] {F : polynomial ℤ_[p]} {a : ℤ_[p]} (hnorm : ∥F.eval a∥ < ∥F.derivative.eval a∥^2) (hnsol : F.eval a ≠ 0) include hnorm /-- `T` is an auxiliary value that is used to control the behavior of the polynomial `F`. -/ private def T : ℝ := ∥(F.eval a).val / ((F.derivative.eval a).val)^2∥ private lemma deriv_sq_norm_pos : 0 < ∥F.derivative.eval a∥ ^ 2 := lt_of_le_of_lt (norm_nonneg _) hnorm private lemma deriv_sq_norm_ne_zero : ∥F.derivative.eval a∥^2 ≠ 0 := ne_of_gt deriv_sq_norm_pos private lemma deriv_norm_ne_zero : ∥F.derivative.eval a∥ ≠ 0 := λ h, deriv_sq_norm_ne_zero (by simp [*, _root_.pow_two]) private lemma deriv_norm_pos : 0 < ∥F.derivative.eval a∥ := lt_of_le_of_ne (norm_nonneg _) (ne.symm deriv_norm_ne_zero) private lemma deriv_ne_zero : F.derivative.eval a ≠ 0 := mt (norm_eq_zero _).2 deriv_norm_ne_zero private lemma T_def : T = ∥F.eval a∥ / ∥F.derivative.eval a∥^2 := calc T = ∥(F.eval a).val∥ / ∥((F.derivative.eval a).val)^2∥ : normed_field.norm_div _ _ ... = ∥F.eval a∥ / ∥(F.derivative.eval a)^2∥ : by simp [norm, padic_norm_z] ... = ∥F.eval a∥ / ∥(F.derivative.eval a)∥^2 : by simp [pow, monoid.pow] private lemma T_lt_one : T < 1 := let h := (div_lt_one_iff_lt deriv_sq_norm_pos).2 hnorm in by rw T_def; apply h private lemma T_pow {n : ℕ} (hn : n > 0) : T ^ n < 1 := have T ^ n ≤ T ^ 1, from pow_le_pow_of_le_one (norm_nonneg _) (le_of_lt T_lt_one) (succ_le_of_lt hn), lt_of_le_of_lt (by simpa) T_lt_one private lemma T_pow' (n : ℕ) : T ^ (2 ^ n) < 1 := (T_pow (nat.pow_pos (by norm_num) _)) private lemma T_pow_nonneg (n : ℕ) : T ^ n ≥ 0 := pow_nonneg (norm_nonneg _) _ /-- We will construct a sequence of elements of ℤ_p satisfying successive values of `ih`. -/ private def ih (n : ℕ) (z : ℤ_[p]) : Prop := ∥F.derivative.eval z∥ = ∥F.derivative.eval a∥ ∧ ∥F.eval z∥ ≤ ∥F.derivative.eval a∥^2 * T ^ (2^n) private lemma ih_0 : ih 0 a := ⟨ rfl, by simp [T_def, mul_div_cancel' _ (ne_of_gt (deriv_sq_norm_pos hnorm))] ⟩ private lemma calc_norm_le_one {n : ℕ} {z : ℤ_[p]} (hz : ih n z) : ∥(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)∥ ≤ 1 := calc ∥(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)∥ = ∥(↑(F.eval z) : ℚ_[p])∥ / ∥(↑(F.derivative.eval z) : ℚ_[p])∥ : normed_field.norm_div _ _ ... = ∥F.eval z∥ / ∥F.derivative.eval a∥ : by simp [hz.1] ... ≤ ∥F.derivative.eval a∥^2 * T^(2^n) / ∥F.derivative.eval a∥ : (div_le_div_right deriv_norm_pos).2 hz.2 ... = ∥F.derivative.eval a∥ * T^(2^n) : div_sq_cancel (ne_of_gt deriv_norm_pos) _ ... ≤ 1 : mul_le_one (padic_norm_z.le_one _) (T_pow_nonneg _) (le_of_lt (T_pow' _)) private lemma calc_deriv_dist {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) (hz1 : ∥z1∥ = ∥F.eval z∥ / ∥F.derivative.eval a∥) {n} (hz : ih n z) : ∥F.derivative.eval z' - F.derivative.eval z∥ < ∥F.derivative.eval a∥ := calc ∥F.derivative.eval z' - F.derivative.eval z∥ ≤ ∥z' - z∥ : padic_polynomial_dist _ _ _ ... = ∥z1∥ : by simp [hz'] ... = ∥F.eval z∥ / ∥F.derivative.eval a∥ : hz1 ... ≤ ∥F.derivative.eval a∥^2 * T^(2^n) / ∥F.derivative.eval a∥ : (div_le_div_right deriv_norm_pos).2 hz.2 ... = ∥F.derivative.eval a∥ * T^(2^n) : div_sq_cancel deriv_norm_ne_zero _ ... < ∥F.derivative.eval a∥ : (mul_lt_iff_lt_one_right deriv_norm_pos).2 (T_pow (pow_pos (by norm_num) _)) private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n z) (h1 : ∥(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)∥ ≤ 1) (hzeq : z1 = ⟨_, h1⟩) : {q : ℤ_[p] // F.eval z' = q * z1^2} := have hdzne' : (↑(F.derivative.eval z) : ℚ_[p]) ≠ 0, from have hdzne : F.derivative.eval z ≠ 0, from mt (norm_eq_zero _).2 (by rw hz.1; apply deriv_norm_ne_zero; assumption), λ h, hdzne $ subtype.ext.2 h, let ⟨q, hq⟩ := F.binom_expansion z (-z1) in have ∥(↑(F.derivative.eval z) * (↑(F.eval z) / ↑(F.derivative.eval z)) : ℚ_[p])∥ ≤ 1, by {rw padic_norm_e.mul, apply mul_le_one, apply padic_norm_z.le_one, apply norm_nonneg, apply h1}, have F.derivative.eval z * (-z1) = -F.eval z, from calc F.derivative.eval z * (-z1) = (F.derivative.eval z) * -⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩ : by rw [hzeq] ... = -((F.derivative.eval z) * ⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩) : by simp ... = -(⟨↑(F.derivative.eval z) * (↑(F.eval z) / ↑(F.derivative.eval z)), this⟩) : subtype.ext.2 $ by simp ... = -(F.eval z) : by simp [mul_div_cancel' _ hdzne'], have heq : F.eval z' = q * z1^2, by simpa [this, hz'] using hq, ⟨q, heq⟩ private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F.eval z' = q * z1^2) (h1 : ∥(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)∥ ≤ 1) (hzeq : z1 = ⟨_, h1⟩) : ∥F.eval z'∥ ≤ ∥F.derivative.eval a∥^2 * T^(2^(n+1)) := calc ∥F.eval z'∥ = ∥q∥ * ∥z1∥^2 : by simp [heq] ... ≤ 1 * ∥z1∥^2 : mul_le_mul_of_nonneg_right (padic_norm_z.le_one _) (pow_nonneg (norm_nonneg _) _) ... = ∥F.eval z∥^2 / ∥F.derivative.eval a∥^2 : by simp [hzeq, hz.1, div_pow _ (deriv_norm_ne_zero hnorm)] ... ≤ (∥F.derivative.eval a∥^2 * T^(2^n))^2 / ∥F.derivative.eval a∥^2 : (div_le_div_right deriv_sq_norm_pos).2 (pow_le_pow_of_le_left (norm_nonneg _) hz.2 _) ... = (∥F.derivative.eval a∥^2)^2 * (T^(2^n))^2 / ∥F.derivative.eval a∥^2 : by simp only [_root_.mul_pow] ... = ∥F.derivative.eval a∥^2 * (T^(2^n))^2 : div_sq_cancel deriv_sq_norm_ne_zero _ ... = ∥F.derivative.eval a∥^2 * T^(2^(n + 1)) : by rw [←pow_mul]; refl set_option eqn_compiler.zeta true /-- Given `z : ℤ_[p]` satisfying `ih n z`, construct `z' : ℤ_[p]` satisfying `ih (n+1) z'`. We need the hypothesis `ih n z`, since otherwise `z'` is not necessarily an integer. -/ private def ih_n {n : ℕ} {z : ℤ_[p]} (hz : ih n z) : {z' : ℤ_[p] // ih (n+1) z'} := have h1 : ∥(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)∥ ≤ 1, from calc_norm_le_one hz, let z1 : ℤ_[p] := ⟨_, h1⟩, z' : ℤ_[p] := z - z1 in ⟨ z', have hdist : ∥F.derivative.eval z' - F.derivative.eval z∥ < ∥F.derivative.eval a∥, from calc_deriv_dist rfl (by simp [z1, hz.1]) hz, have hfeq : ∥F.derivative.eval z'∥ = ∥F.derivative.eval a∥, begin rw [sub_eq_add_neg, ← hz.1, ←norm_neg (F.derivative.eval z)] at hdist, have := padic_norm_z.eq_of_norm_add_lt_right hdist, rwa [norm_neg, hz.1] at this end, let ⟨q, heq⟩ := calc_eval_z' rfl hz h1 rfl in have hnle : ∥F.eval z'∥ ≤ ∥F.derivative.eval a∥^2 * T^(2^(n+1)), from calc_eval_z'_norm hz heq h1 rfl, ⟨hfeq, hnle⟩⟩ set_option eqn_compiler.zeta false -- why doesn't "noncomputable theory" stick here? private noncomputable def newton_seq_aux : Π n : ℕ, {z : ℤ_[p] // ih n z} | 0 := ⟨a, ih_0⟩ | (k+1) := ih_n (newton_seq_aux k).2 private def newton_seq (n : ℕ) : ℤ_[p] := (newton_seq_aux n).1 private lemma newton_seq_deriv_norm (n : ℕ) : ∥F.derivative.eval (newton_seq n)∥ = ∥F.derivative.eval a∥ := (newton_seq_aux n).2.1 private lemma newton_seq_norm_le (n : ℕ) : ∥F.eval (newton_seq n)∥ ≤ ∥F.derivative.eval a∥^2 * T ^ (2^n) := (newton_seq_aux n).2.2 private lemma newton_seq_norm_eq (n : ℕ) : ∥newton_seq (n+1) - newton_seq n∥ = ∥F.eval (newton_seq n)∥ / ∥F.derivative.eval (newton_seq n)∥ := by induction n; simp [newton_seq, newton_seq_aux, ih_n] private lemma newton_seq_succ_dist (n : ℕ) : ∥newton_seq (n+1) - newton_seq n∥ ≤ ∥F.derivative.eval a∥ * T^(2^n) := calc ∥newton_seq (n+1) - newton_seq n∥ = ∥F.eval (newton_seq n)∥ / ∥F.derivative.eval (newton_seq n)∥ : newton_seq_norm_eq _ ... = ∥F.eval (newton_seq n)∥ / ∥F.derivative.eval a∥ : by rw newton_seq_deriv_norm ... ≤ ∥F.derivative.eval a∥^2 * T ^ (2^n) / ∥F.derivative.eval a∥ : (div_le_div_right deriv_norm_pos).2 (newton_seq_norm_le _) ... = ∥F.derivative.eval a∥ * T^(2^n) : div_sq_cancel (ne_of_gt deriv_norm_pos) _ include hnsol private lemma T_pos : T > 0 := begin rw T_def, apply div_pos_of_pos_of_pos, { apply (norm_pos_iff _).2, apply hnsol }, { exact deriv_sq_norm_pos hnorm } end private lemma newton_seq_succ_dist_weak (n : ℕ) : ∥newton_seq (n+2) - newton_seq (n+1)∥ < ∥F.eval a∥ / ∥F.derivative.eval a∥ := have 2 ≤ 2^(n+1), from have _, from pow_le_pow (by norm_num : 1 ≤ 2) (nat.le_add_left _ _ : 1 ≤ n + 1), by simpa using this, calc ∥newton_seq (n+2) - newton_seq (n+1)∥ ≤ ∥F.derivative.eval a∥ * T^(2^(n+1)) : newton_seq_succ_dist _ ... ≤ ∥F.derivative.eval a∥ * T^2 : mul_le_mul_of_nonneg_left (pow_le_pow_of_le_one (norm_nonneg _) (le_of_lt T_lt_one) this) (norm_nonneg _) ... < ∥F.derivative.eval a∥ * T^1 : mul_lt_mul_of_pos_left (pow_lt_pow_of_lt_one T_pos T_lt_one (by norm_num)) deriv_norm_pos ... = ∥F.eval a∥ / ∥F.derivative.eval a∥ : begin rw [T, _root_.pow_two, _root_.pow_one, normed_field.norm_div, ←mul_div_assoc, padic_norm_e.mul], apply mul_div_mul_left', apply deriv_norm_ne_zero; assumption end private lemma newton_seq_dist_aux (n : ℕ) : ∀ k : ℕ, ∥newton_seq (n + k) - newton_seq n∥ ≤ ∥F.derivative.eval a∥ * T^(2^n) | 0 := begin simp, apply mul_nonneg, {apply norm_nonneg}, {apply T_pow_nonneg} end | (k+1) := have 2^n ≤ 2^(n+k), by {rw [←nat.pow_eq_pow, ←nat.pow_eq_pow], apply pow_le_pow, norm_num, apply nat.le_add_right}, calc ∥newton_seq (n + (k + 1)) - newton_seq n∥ = ∥newton_seq ((n + k) + 1) - newton_seq n∥ : by simp ... = ∥(newton_seq ((n + k) + 1) - newton_seq (n+k)) + (newton_seq (n+k) - newton_seq n)∥ : by rw ←sub_add_sub_cancel ... ≤ max (∥newton_seq ((n + k) + 1) - newton_seq (n+k)∥) (∥newton_seq (n+k) - newton_seq n∥) : padic_norm_z.nonarchimedean _ _ ... ≤ max (∥F.derivative.eval a∥ * T^(2^((n + k)))) (∥F.derivative.eval a∥ * T^(2^n)) : max_le_max (newton_seq_succ_dist _) (newton_seq_dist_aux _) ... = ∥F.derivative.eval a∥ * T^(2^n) : max_eq_right $ mul_le_mul_of_nonneg_left (pow_le_pow_of_le_one (norm_nonneg _) (le_of_lt T_lt_one) this) (norm_nonneg _) private lemma newton_seq_dist {n k : ℕ} (hnk : n ≤ k) : ∥newton_seq k - newton_seq n∥ ≤ ∥F.derivative.eval a∥ * T^(2^n) := have hex : ∃ m, k = n + m, from exists_eq_add_of_le hnk, let ⟨_, hex'⟩ := hex in by rw hex'; apply newton_seq_dist_aux; assumption private lemma newton_seq_dist_to_a : ∀ n : ℕ, 0 < n → ∥newton_seq n - a∥ = ∥F.eval a∥ / ∥F.derivative.eval a∥ | 1 h := by simp [newton_seq, newton_seq_aux, ih_n]; apply norm_div | (k+2) h := have hlt : ∥newton_seq (k+2) - newton_seq (k+1)∥ < ∥newton_seq (k+1) - a∥, by rw newton_seq_dist_to_a (k+1) (succ_pos _); apply newton_seq_succ_dist_weak; assumption, have hne' : ∥newton_seq (k + 2) - newton_seq (k+1)∥ ≠ ∥newton_seq (k+1) - a∥, from ne_of_lt hlt, calc ∥newton_seq (k + 2) - a∥ = ∥(newton_seq (k + 2) - newton_seq (k+1)) + (newton_seq (k+1) - a)∥ : by rw ←sub_add_sub_cancel ... = max (∥newton_seq (k + 2) - newton_seq (k+1)∥) (∥newton_seq (k+1) - a∥) : padic_norm_z.add_eq_max_of_ne hne' ... = ∥newton_seq (k+1) - a∥ : max_eq_right_of_lt hlt ... = ∥polynomial.eval a F∥ / ∥polynomial.eval a (polynomial.derivative F)∥ : newton_seq_dist_to_a (k+1) (succ_pos _) private lemma bound' : tendsto (λ n : ℕ, ∥F.derivative.eval a∥ * T^(2^n)) at_top (𝓝 0) := begin rw ←mul_zero (∥F.derivative.eval a∥), exact tendsto_const_nhds.mul (tendsto.comp (tendsto_pow_at_top_nhds_0_of_lt_1 (norm_nonneg _) (T_lt_one hnorm)) (tendsto_pow_at_top_at_top_of_gt_1_nat (by norm_num))) end private lemma bound : ∀ {ε}, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → ∥F.derivative.eval a∥ * T^(2^n) < ε := have mtn : ∀ n : ℕ, ∥polynomial.eval a (polynomial.derivative F)∥ * T ^ (2 ^ n) ≥ 0, from λ n, mul_nonneg (norm_nonneg _) (T_pow_nonneg _), begin have := bound' hnorm hnsol, simp [tendsto, nhds] at this, intros ε hε, cases this (ball 0 ε) (mem_ball_self hε) (is_open_ball) with N hN, existsi N, intros n hn, simpa [normed_field.norm_mul, real.norm_eq_abs, abs_of_nonneg (mtn n)] using hN _ hn end private lemma bound'_sq : tendsto (λ n : ℕ, ∥F.derivative.eval a∥^2 * T^(2^n)) at_top (𝓝 0) := begin rw [←mul_zero (∥F.derivative.eval a∥), _root_.pow_two], simp only [mul_assoc], apply tendsto.mul, { apply tendsto_const_nhds }, { apply bound', assumption } end private theorem newton_seq_is_cauchy : is_cau_seq norm newton_seq := begin intros ε hε, cases bound hnorm hnsol hε with N hN, existsi N, intros j hj, apply lt_of_le_of_lt, { apply newton_seq_dist _ _ hj, assumption }, { apply hN, apply le_refl } end private def newton_cau_seq : cau_seq ℤ_[p] norm := ⟨_, newton_seq_is_cauchy⟩ private def soln : ℤ_[p] := newton_cau_seq.lim private lemma soln_spec {ε : ℝ} (hε : ε > 0) : ∃ (N : ℕ), ∀ {i : ℕ}, i ≥ N → ∥soln - newton_cau_seq i∥ < ε := setoid.symm (cau_seq.equiv_lim newton_cau_seq) _ hε private lemma soln_deriv_norm : ∥F.derivative.eval soln∥ = ∥F.derivative.eval a∥ := norm_deriv_eq newton_seq_deriv_norm private lemma newton_seq_norm_tendsto_zero : tendsto (λ i, ∥F.eval (newton_cau_seq i)∥) at_top (𝓝 0) := squeeze_zero (λ _, norm_nonneg _) newton_seq_norm_le bound'_sq private lemma newton_seq_dist_tendsto : tendsto (λ n, ∥newton_cau_seq n - a∥) at_top (𝓝 (∥F.eval a∥ / ∥F.derivative.eval a∥)) := tendsto.congr' (suffices ∃ k, ∀ n ≥ k, ∥F.eval a∥ / ∥F.derivative.eval a∥ = ∥newton_cau_seq n - a∥, by simpa, ⟨1, λ _ hx, (newton_seq_dist_to_a _ hx).symm⟩) (tendsto_const_nhds) private lemma newton_seq_dist_tendsto' : tendsto (λ n, ∥newton_cau_seq n - a∥) at_top (𝓝 ∥soln - a∥) := (continuous_norm.tendsto _).comp (newton_cau_seq.tendsto_limit.sub tendsto_const_nhds) private lemma soln_dist_to_a : ∥soln - a∥ = ∥F.eval a∥ / ∥F.derivative.eval a∥ := tendsto_nhds_unique at_top_ne_bot newton_seq_dist_tendsto' newton_seq_dist_tendsto private lemma soln_dist_to_a_lt_deriv : ∥soln - a∥ < ∥F.derivative.eval a∥ := begin rw soln_dist_to_a, apply div_lt_of_mul_lt_of_pos, { apply deriv_norm_pos; assumption }, { rwa _root_.pow_two at hnorm } end private lemma eval_soln : F.eval soln = 0 := limit_zero_of_norm_tendsto_zero newton_seq_norm_tendsto_zero private lemma soln_unique (z : ℤ_[p]) (hev : F.eval z = 0) (hnlt : ∥z - a∥ < ∥F.derivative.eval a∥) : z = soln := have soln_dist : ∥z - soln∥ < ∥F.derivative.eval a∥, from calc ∥z - soln∥ = ∥(z - a) + (a - soln)∥ : by rw sub_add_sub_cancel ... ≤ max (∥z - a∥) (∥a - soln∥) : padic_norm_z.nonarchimedean _ _ ... < ∥F.derivative.eval a∥ : max_lt hnlt (by rw norm_sub_rev; apply soln_dist_to_a_lt_deriv), let h := z - soln, ⟨q, hq⟩ := F.binom_expansion soln h in have (F.derivative.eval soln + q * h) * h = 0, from eq.symm (calc 0 = F.eval (soln + h) : by simp [hev, h] ... = F.derivative.eval soln * h + q * h^2 : by rw [hq, eval_soln, zero_add] ... = (F.derivative.eval soln + q * h) * h : by rw [_root_.pow_two, right_distrib, mul_assoc]), have h = 0, from by_contradiction $ λ hne, have F.derivative.eval soln + q * h = 0, from (eq_zero_or_eq_zero_of_mul_eq_zero this).resolve_right hne, have F.derivative.eval soln = (-q) * h, by simpa using eq_neg_of_add_eq_zero this, lt_irrefl ∥F.derivative.eval soln∥ (calc ∥F.derivative.eval soln∥ = ∥(-q) * h∥ : by rw this ... ≤ 1 * ∥h∥ : by rw [padic_norm_z.mul]; exact mul_le_mul_of_nonneg_right (padic_norm_z.le_one _) (norm_nonneg _) ... = ∥z - soln∥ : by simp [h] ... < ∥F.derivative.eval soln∥ : by rw soln_deriv_norm; apply soln_dist), eq_of_sub_eq_zero (by rw ←this; refl) end hensel variables {p : ℕ} [nat.prime p] {F : polynomial ℤ_[p]} {a : ℤ_[p]} private lemma a_soln_is_unique (ha : F.eval a = 0) (z' : ℤ_[p]) (hz' : F.eval z' = 0) (hnormz' : ∥z' - a∥ < ∥F.derivative.eval a∥) : z' = a := let h := z' - a, ⟨q, hq⟩ := F.binom_expansion a h in have (F.derivative.eval a + q * h) * h = 0, from eq.symm (calc 0 = F.eval (a + h) : show 0 = F.eval (a + (z' - a)), by rw add_comm; simp [hz'] ... = F.derivative.eval a * h + q * h^2 : by rw [hq, ha, zero_add] ... = (F.derivative.eval a + q * h) * h : by rw [_root_.pow_two, right_distrib, mul_assoc]), have h = 0, from by_contradiction $ λ hne, have F.derivative.eval a + q * h = 0, from (eq_zero_or_eq_zero_of_mul_eq_zero this).resolve_right hne, have F.derivative.eval a = (-q) * h, by simpa using eq_neg_of_add_eq_zero this, lt_irrefl ∥F.derivative.eval a∥ (calc ∥F.derivative.eval a∥ = ∥q∥*∥h∥ : by simp [this] ... ≤ 1*∥h∥ : mul_le_mul_of_nonneg_right (padic_norm_z.le_one _) (norm_nonneg _) ... < ∥F.derivative.eval a∥ : by simpa [h]), eq_of_sub_eq_zero (by rw ←this; refl) variable (hnorm : ∥F.eval a∥ < ∥F.derivative.eval a∥^2) include hnorm private lemma a_is_soln (ha : F.eval a = 0) : F.eval a = 0 ∧ ∥a - a∥ < ∥F.derivative.eval a∥ ∧ ∥F.derivative.eval a∥ = ∥F.derivative.eval a∥ ∧ ∀ z', F.eval z' = 0 → ∥z' - a∥ < ∥F.derivative.eval a∥ → z' = a := ⟨ha, by simp; apply deriv_norm_pos; apply hnorm, rfl, a_soln_is_unique ha⟩ lemma hensels_lemma : ∃ z : ℤ_[p], F.eval z = 0 ∧ ∥z - a∥ < ∥F.derivative.eval a∥ ∧ ∥F.derivative.eval z∥ = ∥F.derivative.eval a∥ ∧ ∀ z', F.eval z' = 0 → ∥z' - a∥ < ∥F.derivative.eval a∥ → z' = z := if ha : F.eval a = 0 then ⟨a, a_is_soln hnorm ha⟩ else by refine ⟨soln _ _, eval_soln _ _, soln_dist_to_a_lt_deriv _ _, soln_deriv_norm _ _, soln_unique _ _⟩; assumption