Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 21662License: APACHE
oleanfile 3.4.2, commit cbd2b6686ddb ��} init tactic basic data nat basic data nat prime algebra group_power � �Oexport_decl option none none some some export_decl bool ff ff tt tt export_decl has_andthen andthen andthen export_decl has_pow pow pow export_decl has_append append append export_decl decidable is_true is_true is_false is_false to_bool to_bool export_decl has_pure pure pure export_decl has_bind bind bind export_decl has_monad_lift_t monad_lift !monad_lift export_decl monad_functor_t monad_map $monad_map export_decl monad_run run 'run export_decl list mmap *mmap mmap' *mmap' mfilter *mfilter mfoldl *mfoldl export_decl native nat_map 3rb_map mk export_decl name_map native rb_map mk export_decl expr_map native rb_map mk export_decl tactic interaction_monad failed fail export_decl tactic_result interaction_monad result export_decl tactic Ftransparency reducible Greducible semireducible Gsemireducible export_decl tactic mk_simp_attr Lmk_simp_attr export_decl monad_except throw Othrow catch Ocatch export_decl monad_except_adapter adapt_except Tadapt_except export_decl monad_state_adapter adapt_state Wadapt_state export_decl monad_reader read Zread export_decl monad_reader_adapter adapt_reader ]adapt_reader export_decl is_lawful_functor map_const_eq `map_const_eq id_map `id_map comp_map `comp_map export_decl is_lawful_applicative seq_left_eq gseq_left_eq seq_right_eq gseq_right_eq pure_seq_eq_map gpure_seq_eq_map map_pure gmap_pure seq_pure gseq_pure seq_assoc gseq_assoc export_decl is_lawful_monad bind_pure_comp_eq_map tbind_pure_comp_eq_map bind_map_eq_seq tbind_map_eq_seq pure_bind tpure_bind bind_assoc tbind_assoc export_decl traversable traverse }traverse decl pnat subtype nat n has_lt lt nat has_lt has_zero zero nat has_zero � PInfo � VMR � VMC � doc �`ℕ+` is the type of positive natural numbers. It is defined as a subtype, and the VM representation of `ℕ+` is the same as `ℕ` because the proof is not stored. decl �equations _eqn_1 eq � eq refl � PInfo � ATTR _refl_lemma � � � EqnL �SEqnL �TK ℕ+ � NOTA ℕ+ ℕ+ � �decl coe_pnat_nat has_coe has_coe mk subtype val � PInfo � prt �VMR �VMC � c � �lt nat zero decl �equations _eqn_1 � � " � +� PInfo � ATTR �� � � EqnL �SEqnL �ATTR instance � � � class � �� �decl pnat has_repr has_repr has_repr mk n repr nat has_repr ! � PInfo � prt �nspace �VMR �VMC � � nat repr decl �equations _eqn_1 ) 2 � < . 2 >� PInfo � ATTR �� � � EqnL �SEqnL �ATTR �� � � class � �� �decl nat to_pnat n h auto_param name mk_string Str exact_dec_trivial E Str tactic name anonymous � � Msubtype mk � PInfo �VMR �VMC � � � doc �Convert a natural number to a positive natural number. The positivity assumption is inferred by `dec_trivial`. decl �equations _eqn_1 � � M ) � S U � � M . [� PInfo �ATTR �� � � EqnL �SEqnL �decl �succ_pnat n � R �succ �succ_pos � PInfo �VMR �VMC � � nat succ doc �Write a successor as an element of `ℕ+`. decl �equations _eqn_1 � X � j � ` m� PInfo �ATTR �� � � EqnL �SEqnL �decl �succ_pnat_coe n ) coe coe_to_lift coe_base + m f � rfl �� PInfo �ATTR �� � � ATTR simp � � � decl �succ_pnat_inj n m a X l S m s S � � h � h' s l � �congr_arg � � nat succ_inj � � PInfo �decl �to_pnat' dn l �pred � PInfo �#VMR �VMC �# � �pred _main �doc �Convert a natural number to a pnat. `n+1` is mapped to itself, and `0` becomes `1`. decl �equations _eqn_1 � X � � � ` �� PInfo �#ATTR �� � � EqnL �SEqnL �decl �to_pnat'_coe n s �ite �decidable_lt has_one one nat has_one � �cases_on � � id_rhs s � � � � � � s �has_add add nat has_add � � � � � � �eq mpr � � �id ) � �eq rec � f � f � �_a � s � � S � � � � � � � � . � � �if_pos � � i � � . �� PInfo �%ATTR �� � � decl �primes coe_pnat _proof_1 p nat primes p �prime � � �pos � ! �property � � PInfo �+ decl � � � � � R t � w � z � nat primes coe_nat � � PInfo �+ prt �VMR �VMC �+ � � decl �equations _eqn_1 ) � - � � @ . � - � B� PInfo �+ ATTR �� � � EqnL �SEqnL �ATTR �� � � class has_coe �� �decl �coe_pnat_nat p � s � 0 � 2 � 4 � B � : � � � � N� PInfo � �,ATTR �� � � � decl �coe_pnat_inj p � q � � X � L S � M ) � � S � � � � h � Vsubtype eq x � � Seq mp s � 9 � � T � e � 9 S � � f_a � s � 9 � � L � � n � � g � i �coe_pnat_nat S � c s � p � f � g � � p_a � s � L � � p s � p � � � d � z � � � o � T ! � PInfo � .decl pnat decidable_eq decidable_eq a b subtype decidable_eq x a b �decidable_eq S S � PInfo � B prt � VMR � VMC � B � � nat decidable_eq � doc � We now define a long list of structures on ℕ+ induced by similar structures on ℕ. Most of these behave in a completely obvious way, but there are a few things to be said about subtraction, division and powers. decl � equations _eqn_1 ) � � � � � . � � � �� PInfo � B ATTR �� � � EqnL � SEqnL � ATTR �� � � class decidable � � �decl � decidable_linear_order decidable_linear_order subtype decidable_linear_order decidable_linear_ordered_semiring to_decidable_linear_order nat decidable_linear_ordered_semiring � PInfo � D prt � VMR � VMC � D � $ � " subtype decidable_linear_order decl � equations _eqn_1 ) � � � � � . � � � �� PInfo � (D ATTR �� � � ( EqnL � (SEqnL � ATTR �� � � class � � � �decl � pos n � * � ' � PInfo � )GATTR �� � � ) decl � eq m n � s S � � X � S � , � - � ^ S � PInfo � +Idecl � mk_coe n h s t w z coe_subtype U S � / � 0 � � �� PInfo � .KATTR �� � � . ATTR �� � � . decl � add_comm_semigroup _proof_1 a b preorder to_has_lt partial_order to_preorder ordered_cancel_comm_monoid to_partial_order ordered_semiring to_ordered_cancel_comm_monoid � #ordered_semiring add_monoid to_has_zero add_comm_monoid to_add_monoid � :to_add_comm_monoid � � �add_semigroup to_has_add � ?to_add_semigroup � � � � � � � 4 � 5 add_pos � � � � � � �pos S � � PInfo � 3M decl � 2_proof_2 a b c ) � � � � has_add mk � 4 � 5 R � � � � � � � ) � S � * � ) S � J � K � L � ^ � � � - � 1add_assoc � #add_semigroup � � � � �� PInfo � IM decl � 2_proof_3 a b � � � add_semigroup mk � ' � D S � K S � R � S � 6 � M � Padd_comm � #add_comm_semigroup � � � �� PInfo � QM decl � 2 add_comm_semigroup add_comm_semigroup mk � 4 � 5 � $ � 3 S � I � Q � PInfo � 2M prt � 2VMR � 2VMC � 2M � 5 � 4 nat add decl � 2equations _eqn_1 ) � ` � 2 � m . � ` � o� PInfo � ^M ATTR �� � � ^ EqnL � ^SEqnL � 2ATTR �� � � 2 class � X � 2� �decl � add_coe m n s � � E � Yto_add_semigroup � o S � # � ` � a � � {� PInfo � _RATTR �� � � _ ATTR �� � � _ decl � coe_add_hom is_add_hom � w � is_add_hom mk � w � � add_coe � PInfo � cS prt � cVMR � c VMC � c decl � cequations _eqn_1 � � � � c � � � � � � �� PInfo � iS ATTR �� � � i EqnL � iSEqnL � cATTR �� � � c class � d � c� �decl � add_left_cancel_semigroup _proof_1 a b c h X � � E � G � Xadd � o � Xadd_assoc � o � S � � � � � l � m � n � o � � � eq � Siff mp s � � add_left_cancel_semigroup to_add_semigroup � :to_add_left_cancel_semigroup � � � � = � � � � s � = � �add_left_inj � � � � � = � � � c s � � � � = � � � S � � � � � � � � x � S_a � s � � � � � � � � � � � � � � � � � � S � c s � � � � � � � � � � �_a � s � � � � � � � � � � � � � � � � � � � � � � � PInfo � kU decl � j add_left_cancel_semigroup add_left_cancel_semigroup mk � � � � � k � PInfo � jU prt � jVMR � jVMC � jU � 5 � 4 � \decl � jequations _eqn_1 ) � � j � . � � � PInfo � U ATTR �� � � EqnL � SEqnL � jATTR �� � � j class � { � j� �decl � add_right_cancel_semigroup _proof_1 a b c h � � � � S X � S � � � � � � � � � ! � � � S � � s � � add_right_cancel_semigroup to_add_semigroup � :to_add_right_cancel_semigroup � � � � � = � 1 � � � = s � � � �add_right_inj � . � = � � � � � c � � � � S � � � � " � = � � y �_a � � � � � � � � � � F � H � � S � � c � � � E � F � �_a � � � � O � � � O � � \ � � � � � D � PInfo � �\ decl � � add_right_cancel_semigroup add_right_cancel_semigroup mk � � � � � � � PInfo � �\ prt � �VMR � �VMC � �\ � 5 � 4 � \decl � �equations _eqn_1 ) � v � � � | . � v � ~� PInfo � �\ ATTR �� � � � EqnL � �SEqnL � �ATTR �� � � � class � � � �� �decl � ne_zero n ne � � � � ne_of_gt � �ordered_comm_monoid to_partial_order ordered_cancel_comm_monoid to_ordered_comm_monoid � � � � � �� PInfo � �cATTR �� � � � decl � to_pnat'_coe n � s � S S � � � #succ_pred_eq_of_pos � PInfo � �eATTR �� � � � decl � coe_to_pnat' n X � � � � � � � � � � to_pnat'_coe � � � � PInfo � �gATTR �� � � � decl � comm_monoid _proof_1 m n gt � �has_mul mul mul_zero_class to_has_mul semiring to_mul_zero_class � <to_semiring � � ! S 9 � �to_has_zero � � � � � � mul_pos � � � � 9 � � S � �� PInfo � �i decl � �_proof_2 a b c � � � has_mul mk � � � � R � � �has_mul � � 9 � � � � � S � � � � S � � � � � � � 6 � � � �mul_assoc � #semigroup ! � � � 9� PInfo � �i decl � �_proof_3 a � � �semigroup to_has_mul � �mk � � � � � has_one mk l � � � 6 � one_mul � #monoid 9� PInfo � �i decl � �_proof_4 a � � � � � � � 6 � mul_one � 9� PInfo � �i decl � �_proof_5 a b � � � S � S � � � � � 6 � � !mul_comm � #comm_semigroup � � 9� PInfo � �i decl � � comm_monoid comm_monoid mk � � � � � � � � S � � � � � � � � � � PInfo � �i prt � �VMR � � VMC � � i nat mul � decl � �equations _eqn_1 ) � 1 � � � C . � 1 � E� PInfo � �i ATTR �� � � � EqnL � �SEqnL � �ATTR �� � � � class � � � �� �decl � inhabited inhabited inhabited mk � �monoid to_has_one � �to_monoid � E � PInfo � �q prt � �VMR � � VMC � � q �decl � �equations _eqn_1 ) � K � � � U . � K � W� PInfo � �q ATTR �� � � � EqnL � �SEqnL � �ATTR �� � � � class � � � �� �decl � one_coe s � T � � � \� PInfo � �sATTR �� � � � ATTR �� � � � decl � mul_coe m n s � � � � � �to_semigroup � R S � � � � � � � � � � � � g� PInfo � �tATTR �� � � � ATTR �� � � � decl � coe_mul_hom is_monoid_hom � R � is_monoid_hom mk � R � is_mul_hom mk � c � � � ` � � mul_coe � one_coe � PInfo � �u prt � �VMR � � VMC � � decl � �equations _eqn_1 � � � v � � � � � � � v � �� PInfo � �u ATTR �� � � � EqnL � �SEqnL � �ATTR �� � � � class � � � �� �decl � coe_bit0 a s bit0 � E � * � ~ � � � � � � � � � �� PInfo � �xATTR �� � � � ATTR �� � � � decl � coe_bit1 a s bit1 � S � � � � � � � � � � � � �� PInfo � �yATTR �� � � � ATTR �� � � � decl � pow_coe m n s has_pow pow monoid has_pow � R S � � �has_pow � � � � � � �rec � � s � � � � � � = � � � $n ih � � � s � � � e S � � � � � � � � � � � � S � � � � � � � � � � �_a � s � � � � e � � � � � � � � � � � � � �nat pow_succ � � S � � � s � d � � � S � � � � � � � � � � �_a � � � � � � � � � � s � � � � � � � �pow_succ � R � S � � s � � � � � � � � � � � � # � � �_a � s � d � � � � � � � � � � � � ! � � � � � � � # s � � � �comm_semigroup to_semigroup � ) � � � � � � � � # � E � � A � � � _a � s � � � � � * � � 0 � � # � C � * � � � � � E s � A � � � � � � � � � E � b � � _a � s � A � N � � � s � A � � � � � E � � � � ` � PInfo � �{ATTR �� � � � decl � left_cancel_semigroup _proof_1 a b c h X � � � � � � � �mul � E � �mul_assoc � E � S � � � � � � � � � � � � � � s � � = � � � � �nat mul_left_inj � � � = � � � � � � � � � � � S � PInfo � decl � left_cancel_semigroup left_cancel_semigroup mk � � � � � � PInfo � prt � VMR � VMC � � � � � � �decl � equations _eqn_1 ) � � � � � . � � � �� PInfo � ATTR �� � � EqnL � SEqnL � ATTR �� � � class � � � �decl � right_cancel_semigroup _proof_1 a b c h � � � � S � # � � � � � � � ) � � � � � i � = � :nat mul_right_inj � = � � � � � � � � � � S � � PInfo � � decl � right_cancel_semigroup right_cancel_semigroup mk � � � � � � PInfo � � prt � VMR � VMC � � � � � � � �decl � equations _eqn_1 ) � � � � � . � � � �� PInfo � � ATTR �� � � EqnL � SEqnL � ATTR �� � � class � � � �decl � distrib _proof_1 a b c X � � � � � � � � � ! � � S � � � � S � � � � � ! � � � � � �mul_add � #distrib � = � � � �� PInfo � � decl � _proof_2 a b c X � � � � � S � � � � � � S � % � &