CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl

Extends theory on products
-/

variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}

@[simp] theorem prod.forall {p : α × β → Prop} : (∀ x, p x) ↔ (∀ a b, p (a, b)) :=
⟨assume h a b, h (a, b), assume h ⟨a, b⟩, h a b⟩

@[simp] theorem prod.exists {p : α × β → Prop} : (∃ x, p x) ↔ (∃ a b, p (a, b)) :=
⟨assume ⟨⟨a, b⟩, h⟩, ⟨a, b, h⟩, assume ⟨a, b, h⟩, ⟨⟨a, b⟩, h⟩⟩

namespace prod

attribute [simp] prod.map

@[simp] lemma map_fst (f : α → γ) (g : β → δ) : ∀(p : α × β), (map f g p).1 = f (p.1)
| ⟨a, b⟩ := rfl

@[simp] lemma map_snd (f : α → γ) (g : β → δ) : ∀(p : α × β), (map f g p).2 = g (p.2)
| ⟨a, b⟩ := rfl

@[simp] lemma map_fst' (f : α → γ) (g : β → δ) : (prod.fst ∘ map f g) = f ∘ prod.fst :=
funext $ map_fst f g

@[simp] lemma map_snd' (f : α → γ) (g : β → δ) : (prod.snd ∘ map f g) = g ∘ prod.snd :=
funext $ map_snd f g

@[simp] theorem mk.inj_iff {a₁ a₂ : α} {b₁ b₂ : β} : (a₁, b₁) = (a₂, b₂) ↔ (a₁ = a₂ ∧ b₁ = b₂) :=
⟨prod.mk.inj, by cc⟩

lemma ext_iff {p q : α × β} : p = q ↔ p.1 = q.1 ∧ p.2 = q.2 :=
by rw [← @mk.eta _ _ p, ← @mk.eta _ _ q, mk.inj_iff]

lemma ext {α β} {p q : α × β} (h₁ : p.1 = q.1) (h₂ : p.2 = q.2) : p = q :=
ext_iff.2 ⟨h₁, h₂⟩

lemma map_def {f : α → γ} {g : β → δ} : prod.map f g = λ (p : α × β), (f p.1, g p.2) :=
funext (λ p, ext (map_fst f g p) (map_snd f g p))

lemma id_prod : (λ (p : α × α), (p.1, p.2)) = id :=
funext $ λ ⟨a, b⟩, rfl

/-- Swap the factors of a product. `swap (a, b) = (b, a)` -/
def swap : α × β → β × α := λp, (p.2, p.1)

@[simp] lemma swap_swap : ∀ x : α × β, swap (swap x) = x
| ⟨a, b⟩ := rfl

@[simp] lemma fst_swap {p : α × β} : (swap p).1 = p.2 := rfl

@[simp] lemma snd_swap {p : α × β} : (swap p).2 = p.1 := rfl

@[simp] lemma swap_prod_mk {a : α} {b : β} : swap (a, b) = (b, a) := rfl

@[simp] lemma swap_swap_eq : swap ∘ swap = @id (α × β) :=
funext swap_swap

@[simp] lemma swap_left_inverse : function.left_inverse (@swap α β) swap :=
swap_swap

@[simp] lemma swap_right_inverse : function.right_inverse (@swap α β) swap :=
swap_swap

lemma eq_iff_fst_eq_snd_eq : ∀{p q : α × β}, p = q ↔ (p.1 = q.1 ∧ p.2 = q.2)
| ⟨p₁, p₂⟩ ⟨q₁, q₂⟩ := by simp

theorem lex_def (r : α → α → Prop) (s : β → β → Prop)
  {p q : α × β} : prod.lex r s p q ↔ r p.1 q.1 ∨ p.1 = q.1 ∧ s p.2 q.2 :=
⟨λ h, by cases h; simp *,
 λ h, match p, q, h with
 | (a, b), (c, d), or.inl h := lex.left _ _ _ h
 | (a, b), (c, d), or.inr ⟨e, h⟩ :=
   by change a = c at e; subst e; exact lex.right _ _ h
 end⟩

instance lex.decidable [decidable_eq α] [decidable_eq β]
  (r : α → α → Prop) (s : β → β → Prop) [decidable_rel r] [decidable_rel s] :
  decidable_rel (prod.lex r s) :=
λ p q, decidable_of_decidable_of_iff (by apply_instance) (lex_def r s).symm

end prod

open function

lemma function.injective_prod {f : α → γ} {g : β → δ} (hf : injective f) (hg : injective g) :
  injective (λ p : α × β, (f p.1, g p.2)) :=
assume ⟨a₁, b₁⟩ ⟨a₂, b₂⟩, by { simp [prod.mk.inj_iff],exact λ ⟨eq₁, eq₂⟩, ⟨hf eq₁, hg eq₂⟩ }