Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import topology.local_homeomorph /-! # Manifolds A manifold is a topological space M locally modelled on a model space H, i.e., the manifold is covered by open subsets on which there are local homeomorphisms (the charts) going to H. If the changes of charts satisfy some additional property (for instance if they are smooth), then M inherits additional structure (it makes sense to talk about smooth manifolds). There are therefore two different ingredients in a manifold: * the set of charts, which is data * the fact that changes of charts belong to some group (in fact groupoid), which is additional Prop. We separate these two parts in the definition: the manifold structure is just the set of charts, and then the different smoothness requirements (smooth manifold, orientable manifold, contact manifold, and so on) are additional properties of these charts. These properties are formalized through the notion of structure groupoid, i.e., a set of local homeomorphisms stable under composition and inverse, to which the change of coordinates should belong. ## Main definitions * `structure_groupoid H` : a subset of local homeomorphisms of `H` stable under composition, inverse and restriction (ex: local diffeos) * `pregroupoid H` : a subset of local homeomorphisms of `H` stable under composition and restriction, but not inverse (ex: smooth maps) * `groupoid_of_pregroupoid`: construct a groupoid from a pregroupoid, by requiring that a map and its inverse both belong to the pregroupoid (ex: construct diffeos from smooth maps) * `continuous_groupoid H` : the groupoid of all local homeomorphisms of `H` * `manifold H M` : manifold structure on `M` modelled on `H`, given by an atlas of local homeomorphisms from `M` to `H` whose sources cover `M`. This is a type class. * `has_groupoid M G` : when `G` is a structure groupoid on `H` and `M` is a manifold modelled on `H`, require that all coordinate changes belong to `G`. This is a type class * `atlas H M` : when `M` is a manifold modelled on `H`, the atlas of this manifold structure, i.e., the set of charts * `structomorph G M M'` : the set of diffeomorphisms between the manifolds `M` and `M'` for the groupoid `G`. We avoid the word diffeomorphisms, keeping it for the smooth category. As a basic example, we give the instance `instance manifold_model_space (H : Type*) [topological_space H] : manifold H H` saying that a topological space is a manifold over itself, with the identity as unique chart. This manifold structure is compatible with any groupoid. ## Implementation notes The atlas in a manifold is *not* a maximal atlas in general: the notion of maximality depends on the groupoid one considers, and changing groupoids changes the maximal atlas. With the current formalization, it makes sense first to choose the atlas, and then to ask whether this precise atlas defines a smooth manifold, an orientable manifold, and so on. A consequence is that structomorphisms between M and M' do *not* induce a bijection between the atlases of M and M': the definition is only that, read in charts, the structomorphism locally belongs to the groupoid under consideration. (This is equivalent to inducing a bijection between elements of the maximal atlas). A consequence is that the invariance under structomorphisms of properties defined in terms of the atlas is not obvious in general, and could require some work in theory (amounting to the fact that these properties only depend on the maximal atlas, for instance). In practice, this does not create any real difficulty. We use the letter `H` for the model space thinking of the case of manifolds with boundary, where the model space is a half space. Manifolds are sometimes defined as topological spaces with an atlas of local diffeomorphisms, and sometimes as spaces with an atlas from which a topology is deduced. We use the former approach: otherwise, there would be an instance from manifolds to topological spaces, which means that any instance search for topological spaces would try to find manifold structures involving a yet unknown model space, leading to problems. However, we also introduce the latter approach, through a structure `manifold_core` making it possible to construct a topology out of a set of local equivs with compatibility conditions (but we do not register it as an instance). In the definition of a manifold, the model space is written as an explicit parameter as there can be several model spaces for a given topological space. For instance, a complex manifold (modelled over ℂ^n) will also be seen sometimes as a real manifold modelled over ℝ^(2n). -/ noncomputable theory local attribute [instance, priority 0] classical.decidable_inhabited classical.prop_decidable universes u variables {H : Type u} {M : Type*} {M' : Type*} {M'' : Type*} /- Notational shortcut for the composition of local homeomorphisms, i.e., `local_homeomorph.trans`. Note that, as is usual for equivs, the composition is from left to right, hence the direction of the arrow. -/ local infixr ` ≫ₕ `:100 := local_homeomorph.trans open set local_homeomorph section groupoid /- One could add to the definition of a structure groupoid the fact that the restriction of an element of the groupoid to any open set still belongs to the groupoid. (This is in Kobayashi-Nomizu.) I am not sure I want this, for instance on H × E where E is a vector space, and the groupoid is made of functions respecting the fibers and linear in the fibers (so that a manifold over this groupoid is naturally a vector bundle) I prefer that the members of the groupoid are always defined on sets of the form s × E The only nontrivial requirement is locality: if a local homeomorphism belongs to the groupoid around each point in its domain of definition, then it belongs to the groupoid. Without this requirement, the composition of diffeomorphisms does not have to be a diffeomorphism. Note that this implies that a local homeomorphism with empty source belongs to any structure groupoid, as it trivially satisfies this condition. There is also a technical point, related to the fact that a local homeomorphism is by definition a global map which is a homeomorphism when restricted to its source subset (and its values outside of the source are not relevant). Therefore, we also require that being a member of the groupoid only depends on the values on the source. -/ /-- A structure groupoid is a set of local homeomorphisms of a topological space stable under composition and inverse. They appear in the definition of the smoothness class of a manifold. -/ structure structure_groupoid (H : Type u) [topological_space H] := (members : set (local_homeomorph H H)) (comp : ∀e e' : local_homeomorph H H, e ∈ members → e' ∈ members → e ≫ₕ e' ∈ members) (inv : ∀e : local_homeomorph H H, e ∈ members → e.symm ∈ members) (id_mem : local_homeomorph.refl H ∈ members) (locality : ∀e : local_homeomorph H H, (∀x ∈ e.source, ∃s, is_open s ∧ x ∈ s ∧ e.restr s ∈ members) → e ∈ members) (eq_on_source : ∀ e e' : local_homeomorph H H, e ∈ members → e' ≈ e → e' ∈ members) variable [topological_space H] @[reducible] instance : has_mem (local_homeomorph H H) (structure_groupoid H) := ⟨λ(e : local_homeomorph H H) (G : structure_groupoid H), e ∈ G.members⟩ /-- Partial order on the set of groupoids, given by inclusion of the members of the groupoid -/ instance structure_groupoid.partial_order : partial_order (structure_groupoid H) := partial_order.lift structure_groupoid.members (λa b h, by { cases a, cases b, dsimp at h, induction h, refl }) (by apply_instance) /-- The trivial groupoid, containing only the identity (and maps with empty source, as this is necessary from the definition) -/ def id_groupoid (H : Type u) [topological_space H] : structure_groupoid H := { members := {local_homeomorph.refl H} ∪ {e : local_homeomorph H H | e.source = ∅}, comp := λe e' he he', begin cases he; simp at he he', { simpa [he] }, { have : (e ≫ₕ e').source ⊆ e.source := sep_subset _ _, rw he at this, have : (e ≫ₕ e') ∈ {e : local_homeomorph H H | e.source = ∅} := disjoint_iff.1 this, exact (mem_union _ _ _).2 (or.inr this) }, end, inv := λe he, begin cases (mem_union _ _ _).1 he with E E, { finish }, { right, simpa [e.to_local_equiv.image_source_eq_target.symm] using E }, end, id_mem := mem_union_left _ (mem_insert _ ∅), locality := λe he, begin cases e.source.eq_empty_or_nonempty with h h, { right, exact h }, { left, rcases h with ⟨x, hx⟩, rcases he x hx with ⟨s, open_s, xs, hs⟩, have x's : x ∈ (e.restr s).source, { rw [restr_source, interior_eq_of_open open_s], exact ⟨hx, xs⟩ }, cases hs, { replace hs : local_homeomorph.restr e s = local_homeomorph.refl H, by simpa using hs, have : (e.restr s).source = univ, by { rw hs, simp }, change (e.to_local_equiv).source ∩ interior s = univ at this, have : univ ⊆ interior s, by { rw ← this, exact inter_subset_right _ _ }, have : s = univ, by rwa [interior_eq_of_open open_s, univ_subset_iff] at this, simpa [this, restr_univ] using hs }, { exfalso, rw mem_set_of_eq at hs, rwa hs at x's } }, end, eq_on_source := λe e' he he'e, begin cases he, { left, have : e = e', { refine eq_of_eq_on_source_univ (setoid.symm he'e) _ _; rw set.mem_singleton_iff.1 he ; refl }, rwa ← this }, { right, change (e.to_local_equiv).source = ∅ at he, rwa [set.mem_set_of_eq, source_eq_of_eq_on_source he'e] } end } /-- Every structure groupoid contains the identity groupoid -/ instance : lattice.order_bot (structure_groupoid H) := { bot := id_groupoid H, bot_le := begin assume u f hf, change f ∈ {local_homeomorph.refl H} ∪ {e : local_homeomorph H H | e.source = ∅} at hf, simp only [singleton_union, mem_set_of_eq, mem_insert_iff] at hf, cases hf, { rw hf, apply u.id_mem }, { apply u.locality, assume x hx, rw [hf, mem_empty_eq] at hx, exact hx.elim } end, ..structure_groupoid.partial_order } /-- To construct a groupoid, one may consider classes of local homeos such that both the function and its inverse have some property. If this property is stable under composition, one gets a groupoid. `pregroupoid` bundles the properties needed for this construction, with the groupoid of smooth functions with smooth inverses as an application. -/ structure pregroupoid (H : Type*) [topological_space H] := (property : (H → H) → (set H) → Prop) (comp : ∀{f g u v}, property f u → property g v → is_open (u ∩ f ⁻¹' v) → property (g ∘ f) (u ∩ f ⁻¹' v)) (id_mem : property id univ) (locality : ∀{f u}, is_open u → (∀x∈u, ∃v, is_open v ∧ x ∈ v ∧ property f (u ∩ v)) → property f u) (congr : ∀{f g : H → H} {u}, is_open u → (∀x∈u, g x = f x) → property f u → property g u) /-- Construct a groupoid of local homeos for which the map and its inverse have some property, from a pregroupoid asserting that this property is stable under composition. -/ def pregroupoid.groupoid (PG : pregroupoid H) : structure_groupoid H := { members := {e : local_homeomorph H H | PG.property e.to_fun e.source ∧ PG.property e.inv_fun e.target}, comp := λe e' he he', begin split, { apply PG.comp he.1 he'.1, apply e.continuous_to_fun.preimage_open_of_open e.open_source e'.open_source }, { apply PG.comp he'.2 he.2, apply e'.continuous_inv_fun.preimage_open_of_open e'.open_target e.open_target } end, inv := λe he, ⟨he.2, he.1⟩, id_mem := ⟨PG.id_mem, PG.id_mem⟩, locality := λe he, begin split, { apply PG.locality e.open_source (λx xu, _), rcases he x xu with ⟨s, s_open, xs, hs⟩, refine ⟨s, s_open, xs, _⟩, convert hs.1, exact (interior_eq_of_open s_open).symm }, { apply PG.locality e.open_target (λx xu, _), rcases he (e.inv_fun x) (e.map_target xu) with ⟨s, s_open, xs, hs⟩, refine ⟨e.target ∩ e.inv_fun ⁻¹' s, _, ⟨xu, xs⟩, _⟩, { exact continuous_on.preimage_open_of_open e.continuous_inv_fun e.open_target s_open }, { rw [← inter_assoc, inter_self], convert hs.2, exact (interior_eq_of_open s_open).symm } }, end, eq_on_source := λe e' he ee', begin split, { apply PG.congr e'.open_source ee'.2, simp only [ee'.1, he.1] }, { have A := eq_on_source_symm ee', apply PG.congr e'.symm.open_source A.2, convert he.2, rw A.1, refl } end } lemma mem_groupoid_of_pregroupoid (PG : pregroupoid H) (e : local_homeomorph H H) : e ∈ PG.groupoid ↔ PG.property e.to_fun e.source ∧ PG.property e.inv_fun e.target := iff.rfl lemma groupoid_of_pregroupoid_le (PG₁ PG₂ : pregroupoid H) (h : ∀f s, PG₁.property f s → PG₂.property f s) : PG₁.groupoid ≤ PG₂.groupoid := begin assume e he, rw mem_groupoid_of_pregroupoid at he ⊢, exact ⟨h _ _ he.1, h _ _ he.2⟩ end lemma mem_pregroupoid_of_eq_on_source (PG : pregroupoid H) {e e' : local_homeomorph H H} (he' : e ≈ e') (he : PG.property e.to_fun e.source) : PG.property e'.to_fun e'.source := begin rw ← he'.1, exact PG.congr e.open_source (λx hx, (he'.2 x hx).symm) he, end /-- The groupoid of all local homeomorphisms on a topological space H -/ def continuous_groupoid (H : Type*) [topological_space H] : structure_groupoid H := pregroupoid.groupoid { property := λf s, true, comp := λf g u v hf hg huv, trivial, id_mem := trivial, locality := λf u u_open h, trivial, congr := λf g u u_open hcongr hf, trivial } /-- Every structure groupoid is contained in the groupoid of all local homeomorphisms -/ instance : lattice.order_top (structure_groupoid H) := { top := continuous_groupoid H, le_top := λ u f hf, by { split; exact dec_trivial }, ..structure_groupoid.partial_order } end groupoid /-- A manifold is a topological space endowed with an atlas, i.e., a set of local homeomorphisms taking value in a model space H, called charts, such that the domains of the charts cover the whole space. We express the covering property by chosing for each x a member `chart_at x` of the atlas containing x in its source: in the smooth case, this is convenient to construct the tangent bundle in an efficient way. The model space is written as an explicit parameter as there can be several model spaces for a given topological space. For instance, a complex manifold (modelled over ℂ^n) will also be seen sometimes as a real manifold over ℝ^(2n). -/ class manifold (H : Type*) [topological_space H] (M : Type*) [topological_space M] := (atlas : set (local_homeomorph M H)) (chart_at : M → local_homeomorph M H) (mem_chart_source : ∀x, x ∈ (chart_at x).source) (chart_mem_atlas : ∀x, chart_at x ∈ atlas) export manifold attribute [simp] mem_chart_source chart_mem_atlas section manifold /-- Any space is a manifold modelled over itself, by just using the identity chart -/ instance manifold_model_space (H : Type*) [topological_space H] : manifold H H := { atlas := {local_homeomorph.refl H}, chart_at := λx, local_homeomorph.refl H, mem_chart_source := λx, mem_univ x, chart_mem_atlas := λx, mem_singleton _ } /-- In the trivial manifold structure of a space modelled over itself through the identity, the atlas members are just the identity -/ @[simp] lemma model_space_atlas {H : Type*} [topological_space H] {e : local_homeomorph H H} : e ∈ atlas H H ↔ e = local_homeomorph.refl H := by simp [atlas, manifold.atlas] /-- In the model space, chart_at is always the identity -/ @[simp] lemma chart_at_model_space_eq {H : Type*} [topological_space H] {x : H} : chart_at H x = local_homeomorph.refl H := by simpa using chart_mem_atlas H x end manifold /-- Sometimes, one may want to construct a manifold structure on a space which does not yet have a topological structure, where the topology would come from the charts. For this, one needs charts that are only local equivs, and continuity properties for their composition. This is formalised in `manifold_core`. -/ structure manifold_core (H : Type*) [topological_space H] (M : Type*) := (atlas : set (local_equiv M H)) (chart_at : M → local_equiv M H) (mem_chart_source : ∀x, x ∈ (chart_at x).source) (chart_mem_atlas : ∀x, chart_at x ∈ atlas) (open_source : ∀e e' : local_equiv M H, e ∈ atlas → e' ∈ atlas → is_open (e.symm.trans e').source) (continuous_to_fun : ∀e e' : local_equiv M H, e ∈ atlas → e' ∈ atlas → continuous_on (e.symm.trans e').to_fun (e.symm.trans e').source) namespace manifold_core variables [topological_space H] (c : manifold_core H M) {e : local_equiv M H} /-- Topology generated by a set of charts on a Type. -/ protected def to_topological_space : topological_space M := topological_space.generate_from $ ⋃ (e : local_equiv M H) (he : e ∈ c.atlas) (s : set H) (s_open : is_open s), {e.to_fun ⁻¹' s ∩ e.source} lemma open_source' (he : e ∈ c.atlas) : @is_open M c.to_topological_space e.source := begin apply topological_space.generate_open.basic, simp only [exists_prop, mem_Union, mem_singleton_iff], refine ⟨e, he, univ, is_open_univ, _⟩, simp only [set.univ_inter, set.preimage_univ] end lemma open_target (he : e ∈ c.atlas) : is_open e.target := begin have E : e.target ∩ e.inv_fun ⁻¹' e.source = e.target := subset.antisymm (inter_subset_left _ _) (λx hx, ⟨hx, local_equiv.target_subset_preimage_source _ hx⟩), simpa [local_equiv.trans_source, E] using c.open_source e e he he end def local_homeomorph (e : local_equiv M H) (he : e ∈ c.atlas) : @local_homeomorph M H c.to_topological_space _ := { open_source := by convert c.open_source' he, open_target := by convert c.open_target he, continuous_to_fun := begin letI : topological_space M := c.to_topological_space, rw continuous_on_open_iff (c.open_source' he), assume s s_open, rw inter_comm, apply topological_space.generate_open.basic, simp only [exists_prop, mem_Union, mem_singleton_iff], exact ⟨e, he, ⟨s, s_open, rfl⟩⟩ end, continuous_inv_fun := begin letI : topological_space M := c.to_topological_space, apply continuous_on_open_of_generate_from (c.open_target he), assume t ht, simp only [exists_prop, mem_Union, mem_singleton_iff] at ht, rcases ht with ⟨e', e'_atlas, s, s_open, ts⟩, rw ts, let f := e.symm.trans e', have : is_open (f.to_fun ⁻¹' s ∩ f.source), by simpa [inter_comm] using (continuous_on_open_iff (c.open_source e e' he e'_atlas)).1 (c.continuous_to_fun e e' he e'_atlas) s s_open, have A : e'.to_fun ∘ e.inv_fun ⁻¹' s ∩ (e.target ∩ e.inv_fun ⁻¹' e'.source) = e.target ∩ (e'.to_fun ∘ e.inv_fun ⁻¹' s ∩ e.inv_fun ⁻¹' e'.source), by { rw [← inter_assoc, ← inter_assoc], congr' 1, exact inter_comm _ _ }, simpa [local_equiv.trans_source, preimage_inter, preimage_comp.symm, A] using this end, ..e } def to_manifold : @manifold H _ M c.to_topological_space := { atlas := ⋃ (e : local_equiv M H) (he : e ∈ c.atlas), {c.local_homeomorph e he}, chart_at := λx, c.local_homeomorph (c.chart_at x) (c.chart_mem_atlas x), mem_chart_source := λx, c.mem_chart_source x, chart_mem_atlas := λx, begin simp only [mem_Union, mem_singleton_iff], exact ⟨c.chart_at x, c.chart_mem_atlas x, rfl⟩, end } end manifold_core section has_groupoid variables [topological_space H] [topological_space M] [manifold H M] /-- A manifold has an atlas in a groupoid G if the change of coordinates belong to the groupoid -/ class has_groupoid {H : Type*} [topological_space H] (M : Type*) [topological_space M] [manifold H M] (G : structure_groupoid H) : Prop := (compatible : ∀{e e' : local_homeomorph M H}, e ∈ atlas H M → e' ∈ atlas H M → e.symm ≫ₕ e' ∈ G) lemma has_groupoid_of_le {G₁ G₂ : structure_groupoid H} (h : has_groupoid M G₁) (hle : G₁ ≤ G₂) : has_groupoid M G₂ := ⟨ λ e e' he he', hle ((h.compatible : _) he he') ⟩ lemma has_groupoid_of_pregroupoid (PG : pregroupoid H) (h : ∀{e e' : local_homeomorph M H}, e ∈ atlas H M → e' ∈ atlas H M → PG.property (e.symm ≫ₕ e').to_fun (e.symm ≫ₕ e').source) : has_groupoid M (PG.groupoid) := ⟨assume e e' he he', (mem_groupoid_of_pregroupoid PG _).mpr ⟨h he he', h he' he⟩⟩ /-- The trivial manifold structure on the model space is compatible with any groupoid -/ instance has_groupoid_model_space (H : Type*) [topological_space H] (G : structure_groupoid H) : has_groupoid H G := { compatible := λe e' he he', begin replace he : e ∈ atlas H H := he, replace he' : e' ∈ atlas H H := he', rw model_space_atlas at he he', simp [he, he', structure_groupoid.id_mem] end } /-- Any manifold structure is compatible with the groupoid of all local homeomorphisms -/ instance has_groupoid_continuous_groupoid : has_groupoid M (continuous_groupoid H) := ⟨begin assume e e' he he', rw [continuous_groupoid, mem_groupoid_of_pregroupoid], simp only [and_self] end⟩ /-- A G-diffeomorphism between two manifolds is a homeomorphism which, when read in the charts, belongs to G. We avoid the word diffeomorph as it is too related to the smooth category, and use structomorph instead. -/ structure structomorph (G : structure_groupoid H) (M : Type*) (M' : Type*) [topological_space M] [topological_space M'] [manifold H M] [manifold H M'] extends homeomorph M M' := (to_fun_mem_groupoid : ∀c : local_homeomorph M H, ∀c' : local_homeomorph M' H, c ∈ atlas H M → c' ∈ atlas H M' → c.symm ≫ₕ to_homeomorph.to_local_homeomorph ≫ₕ c' ∈ G) variables [topological_space M'] [topological_space M''] {G : structure_groupoid H} [manifold H M'] [manifold H M''] /-- The identity is a diffeomorphism of any manifold, for any groupoid. -/ def structomorph.refl (M : Type*) [topological_space M] [manifold H M] [has_groupoid M G] : structomorph G M M := { to_fun_mem_groupoid := λc c' hc hc', begin change (local_homeomorph.symm c) ≫ₕ (local_homeomorph.refl M) ≫ₕ c' ∈ G, rw local_homeomorph.refl_trans, exact has_groupoid.compatible G hc hc' end, ..homeomorph.refl M } /-- The inverse of a structomorphism is a structomorphism -/ def structomorph.symm (e : structomorph G M M') : structomorph G M' M := { to_fun_mem_groupoid := begin assume c c' hc hc', have : (c'.symm ≫ₕ e.to_homeomorph.to_local_homeomorph ≫ₕ c).symm ∈ G := G.inv _ (e.to_fun_mem_groupoid c' c hc' hc), simp at this, rwa [trans_symm_eq_symm_trans_symm, trans_symm_eq_symm_trans_symm, symm_symm, trans_assoc] at this, end, ..e.to_homeomorph.symm} /-- The composition of structomorphisms is a structomorphism -/ def structomorph.trans (e : structomorph G M M') (e' : structomorph G M' M'') : structomorph G M M'' := { to_fun_mem_groupoid := begin /- Let c and c' be two charts in M and M''. We want to show that e' ∘ e is smooth in these charts, around any point x. For this, let y = e (c⁻¹ x), and consider a chart g around y. Then g ∘ e ∘ c⁻¹ and c' ∘ e' ∘ g⁻¹ are both smooth as e and e' are structomorphisms, so their composition is smooth, and it coincides with c' ∘ e' ∘ e ∘ c⁻¹ around x. -/ assume c c' hc hc', refine G.locality _ (λx hx, _), let f₁ := e.to_homeomorph.to_local_homeomorph, let f₂ := e'.to_homeomorph.to_local_homeomorph, let f := (e.to_homeomorph.trans e'.to_homeomorph).to_local_homeomorph, have feq : f = f₁ ≫ₕ f₂ := homeomorph.trans_to_local_homeomorph _ _, -- define the atlas g around y let y := (c.symm ≫ₕ f₁).to_fun x, let g := chart_at H y, have hg₁ := chart_mem_atlas H y, have hg₂ := mem_chart_source H y, let s := (c.symm ≫ₕ f₁).source ∩ (c.symm ≫ₕ f₁).to_fun ⁻¹' g.source, have open_s : is_open s, by apply (c.symm ≫ₕ f₁).continuous_to_fun.preimage_open_of_open; apply open_source, have : x ∈ s, { split, { simp only [trans_source, preimage_univ, inter_univ, homeomorph.to_local_homeomorph_source], rw trans_source at hx, exact hx.1 }, { exact hg₂ } }, refine ⟨s, open_s, ⟨this, _⟩⟩, let F₁ := (c.symm ≫ₕ f₁ ≫ₕ g) ≫ₕ (g.symm ≫ₕ f₂ ≫ₕ c'), have A : F₁ ∈ G := G.comp _ _ (e.to_fun_mem_groupoid c g hc hg₁) (e'.to_fun_mem_groupoid g c' hg₁ hc'), let F₂ := (c.symm ≫ₕ f ≫ₕ c').restr s, have : F₁ ≈ F₂ := calc F₁ ≈ c.symm ≫ₕ f₁ ≫ₕ (g ≫ₕ g.symm) ≫ₕ f₂ ≫ₕ c' : by simp [F₁, trans_assoc] ... ≈ c.symm ≫ₕ f₁ ≫ₕ (of_set g.source g.open_source) ≫ₕ f₂ ≫ₕ c' : by simp [eq_on_source_trans, trans_self_symm g] ... ≈ ((c.symm ≫ₕ f₁) ≫ₕ (of_set g.source g.open_source)) ≫ₕ (f₂ ≫ₕ c') : by simp [trans_assoc] ... ≈ ((c.symm ≫ₕ f₁).restr s) ≫ₕ (f₂ ≫ₕ c') : by simp [s, trans_of_set'] ... ≈ ((c.symm ≫ₕ f₁) ≫ₕ (f₂ ≫ₕ c')).restr s : by simp [restr_trans] ... ≈ (c.symm ≫ₕ (f₁ ≫ₕ f₂) ≫ₕ c').restr s : by simp [eq_on_source_restr, trans_assoc] ... ≈ F₂ : by simp [F₂, feq], have : F₂ ∈ G := G.eq_on_source F₁ F₂ A (setoid.symm this), exact this end, ..homeomorph.trans e.to_homeomorph e'.to_homeomorph } end has_groupoid