CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl

Linear structures on function with finite support `ι →₀ β`.
-/
import data.finsupp data.mv_polynomial linear_algebra.dimension
noncomputable theory
local attribute [instance, priority 100] classical.prop_decidable

open lattice set linear_map submodule

namespace finsupp

section module
variables {R : Type*} {M : Type*} {ι : Type*}
variables [ring R] [add_comm_group M] [module R M]

lemma linear_independent_single {φ : ι → Type*}
  {f : Π ι, φ ι → M} (hf : ∀i, linear_independent R (f i)) :
  linear_independent R (λ ix : Σ i, φ i, single ix.1 (f ix.1 ix.2)) :=
begin
  apply @linear_independent_Union_finite R _ _ _ _ ι φ (λ i x, single i (f i x)),
  { assume i,
    have h_disjoint : disjoint (span R (range (f i))) (ker (lsingle i)),
    { rw ker_lsingle,
      exact disjoint_bot_right },
    apply linear_independent.image (hf i) h_disjoint },
  { intros i t ht hit,
    apply disjoint_mono _ _ (disjoint_lsingle_lsingle {i} t (disjoint_singleton_left.2 hit)),
    { rw span_le,
      simp only [supr_singleton],
      rw range_coe,
      apply range_comp_subset_range },
    { refine supr_le_supr (λ i, supr_le_supr _),
      intros hi,
      rw span_le,
      rw range_coe,
      apply range_comp_subset_range } }
end

end module

section vector_space
variables {K : Type*} {V : Type*} {ι : Type*}
variables [discrete_field K] [add_comm_group V] [vector_space K V]

open linear_map submodule

lemma is_basis_single {φ : ι → Type*} (f : Π ι, φ ι → V)
  (hf : ∀i, is_basis K (f i)) :
  is_basis K (λ ix : Σ i, φ i, single ix.1 (f ix.1 ix.2)) :=
begin
  split,
  { apply linear_independent_single,
    exact λ i, (hf i).1 },
  { rw [range_sigma_eq_Union_range, span_Union],
    simp only [image_univ.symm, λ i, image_comp (single i) (f i), span_single_image],
    simp only [image_univ, (hf _).2, map_top, supr_lsingle_range] }
end

end vector_space

section dim
universes u v
variables {K : Type u} {V : Type v} {ι : Type v}
variables [discrete_field K] [add_comm_group V] [vector_space K V]

lemma dim_eq : vector_space.dim K (ι →₀ V) = cardinal.mk ι * vector_space.dim K V :=
begin
  rcases exists_is_basis K V with ⟨bs, hbs⟩,
  rw [← cardinal.lift_inj, cardinal.lift_mul, ← hbs.mk_eq_dim,
      ← (is_basis_single _ (λa:ι, hbs)).mk_eq_dim, ← cardinal.sum_mk,
      ← cardinal.lift_mul, cardinal.lift_inj],
  { simp only [cardinal.mk_image_eq (injective_single.{u u} _), cardinal.sum_const] }
end

end dim

end finsupp

section vector_space
/- We use `universe variables` instead of `universes` here because universes introduced by the
   `universes` keyword do not get replaced by metavariables once a lemma has been proven. So if you
   prove a lemma using universe `u`, you can only apply it to universe `u` in other lemmas of the
   same section. -/
universe variables u v w
variables {K : Type u} {V V₁ V₂ : Type v} {V' : Type w}
variables [discrete_field K]
variables [add_comm_group V] [vector_space K V]
variables [add_comm_group V₁] [vector_space K V₁]
variables [add_comm_group V₂] [vector_space K V₂]
variables [add_comm_group V'] [vector_space K V']

open vector_space

set_option class.instance_max_depth 70

lemma equiv_of_dim_eq_lift_dim
  (h : cardinal.lift.{v w} (dim K V) = cardinal.lift.{w v} (dim K V')) :
  nonempty (V ≃ₗ[K] V') :=
begin
  haveI := classical.dec_eq V,
  haveI := classical.dec_eq V',
  rcases exists_is_basis K V with ⟨m, hm⟩,
  rcases exists_is_basis K V' with ⟨m', hm'⟩,
  rw [←cardinal.lift_inj.1 hm.mk_eq_dim, ←cardinal.lift_inj.1 hm'.mk_eq_dim] at h,
  rcases quotient.exact h with ⟨e⟩,
  let e := (equiv.ulift.symm.trans e).trans equiv.ulift,
  exact ⟨((module_equiv_finsupp hm).trans
      (finsupp.dom_lcongr e)).trans
      (module_equiv_finsupp hm').symm⟩,
end

def equiv_of_dim_eq_dim (h : dim K V₁ = dim K V₂) : V₁ ≃ₗ[K] V₂ :=
begin
  classical,
  exact classical.choice (equiv_of_dim_eq_lift_dim (cardinal.lift_inj.2 h))
end

def fin_dim_vectorspace_equiv (n : ℕ)
  (hn : (dim K V) = n) : V ≃ₗ[K] (fin n → K) :=
begin
  have : cardinal.lift.{v u} (n : cardinal.{v}) = cardinal.lift.{u v} (n : cardinal.{u}),
    by simp,
  have hn := cardinal.lift_inj.{v u}.2 hn,
  rw this at hn,
  rw ←@dim_fin_fun K _ n at hn,
  exact classical.choice (equiv_of_dim_eq_lift_dim hn),
end

lemma eq_bot_iff_dim_eq_zero (p : submodule K V) (h : dim K p = 0) : p = ⊥ :=
begin
  have : dim K p = dim K (⊥ : submodule K V) := by rwa [dim_bot],
  let e := equiv_of_dim_eq_dim this,
  exact e.eq_bot_of_equiv _
end

lemma injective_of_surjective (f : V₁ →ₗ[K] V₂)
  (hV₁ : dim K V₁ < cardinal.omega) (heq : dim K V₂ = dim K V₁) (hf : f.range = ⊤) : f.ker = ⊥ :=
have hk : dim K f.ker < cardinal.omega := lt_of_le_of_lt (dim_submodule_le _) hV₁,
begin
  rcases cardinal.lt_omega.1 hV₁ with ⟨d₁, eq₁⟩,
  rcases cardinal.lt_omega.1 hk with ⟨d₂, eq₂⟩,
  have : 0 = d₂,
  { have := dim_eq_surjective f (linear_map.range_eq_top.1 hf),
    rw [heq, eq₁, eq₂, ← nat.cast_add, cardinal.nat_cast_inj] at this,
    exact nat.add_left_cancel this },
  refine eq_bot_iff_dim_eq_zero _ _,
  rw [eq₂, ← this, nat.cast_zero]
end

end vector_space

section vector_space
universes u

open vector_space
set_option class.instance_max_depth 50
local attribute [instance] submodule.module

variables {K V : Type u} [discrete_field K] [add_comm_group V] [vector_space K V]

set_option pp.universes false
lemma cardinal_mk_eq_cardinal_mk_field_pow_dim (h : dim K V < cardinal.omega) :
  cardinal.mk V = cardinal.mk K ^ dim K V :=
begin
  rcases exists_is_basis K V with ⟨s, hs⟩,
  have : nonempty (fintype s),
  { rwa [← cardinal.lt_omega_iff_fintype, cardinal.lift_inj.1 hs.mk_eq_dim] },
  cases this with hsf, letI := hsf,
  calc cardinal.mk V = cardinal.mk (s →₀ K) : quotient.sound ⟨(module_equiv_finsupp hs).to_equiv⟩
    ... = cardinal.mk (s → K) : quotient.sound ⟨finsupp.equiv_fun_on_fintype⟩
    ... = _ : by rw [← cardinal.lift_inj.1 hs.mk_eq_dim, cardinal.power_def]
end

lemma cardinal_lt_omega_of_dim_lt_omega [fintype K] (h : dim K V < cardinal.omega) :
  cardinal.mk V < cardinal.omega :=
begin
  rw [cardinal_mk_eq_cardinal_mk_field_pow_dim h],
  exact cardinal.power_lt_omega (cardinal.lt_omega_iff_fintype.2 ⟨infer_instance⟩) h
end

end vector_space