Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Path: Maths_Challenges / _target / deps / mathlib / src / linear_algebra / finsupp_vector_space.lean
Views: 18536License: APACHE
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl Linear structures on function with finite support `ι →₀ β`. -/ import data.finsupp data.mv_polynomial linear_algebra.dimension noncomputable theory local attribute [instance, priority 100] classical.prop_decidable open lattice set linear_map submodule namespace finsupp section module variables {R : Type*} {M : Type*} {ι : Type*} variables [ring R] [add_comm_group M] [module R M] lemma linear_independent_single {φ : ι → Type*} {f : Π ι, φ ι → M} (hf : ∀i, linear_independent R (f i)) : linear_independent R (λ ix : Σ i, φ i, single ix.1 (f ix.1 ix.2)) := begin apply @linear_independent_Union_finite R _ _ _ _ ι φ (λ i x, single i (f i x)), { assume i, have h_disjoint : disjoint (span R (range (f i))) (ker (lsingle i)), { rw ker_lsingle, exact disjoint_bot_right }, apply linear_independent.image (hf i) h_disjoint }, { intros i t ht hit, apply disjoint_mono _ _ (disjoint_lsingle_lsingle {i} t (disjoint_singleton_left.2 hit)), { rw span_le, simp only [supr_singleton], rw range_coe, apply range_comp_subset_range }, { refine supr_le_supr (λ i, supr_le_supr _), intros hi, rw span_le, rw range_coe, apply range_comp_subset_range } } end end module section vector_space variables {K : Type*} {V : Type*} {ι : Type*} variables [discrete_field K] [add_comm_group V] [vector_space K V] open linear_map submodule lemma is_basis_single {φ : ι → Type*} (f : Π ι, φ ι → V) (hf : ∀i, is_basis K (f i)) : is_basis K (λ ix : Σ i, φ i, single ix.1 (f ix.1 ix.2)) := begin split, { apply linear_independent_single, exact λ i, (hf i).1 }, { rw [range_sigma_eq_Union_range, span_Union], simp only [image_univ.symm, λ i, image_comp (single i) (f i), span_single_image], simp only [image_univ, (hf _).2, map_top, supr_lsingle_range] } end end vector_space section dim universes u v variables {K : Type u} {V : Type v} {ι : Type v} variables [discrete_field K] [add_comm_group V] [vector_space K V] lemma dim_eq : vector_space.dim K (ι →₀ V) = cardinal.mk ι * vector_space.dim K V := begin rcases exists_is_basis K V with ⟨bs, hbs⟩, rw [← cardinal.lift_inj, cardinal.lift_mul, ← hbs.mk_eq_dim, ← (is_basis_single _ (λa:ι, hbs)).mk_eq_dim, ← cardinal.sum_mk, ← cardinal.lift_mul, cardinal.lift_inj], { simp only [cardinal.mk_image_eq (injective_single.{u u} _), cardinal.sum_const] } end end dim end finsupp section vector_space /- We use `universe variables` instead of `universes` here because universes introduced by the `universes` keyword do not get replaced by metavariables once a lemma has been proven. So if you prove a lemma using universe `u`, you can only apply it to universe `u` in other lemmas of the same section. -/ universe variables u v w variables {K : Type u} {V V₁ V₂ : Type v} {V' : Type w} variables [discrete_field K] variables [add_comm_group V] [vector_space K V] variables [add_comm_group V₁] [vector_space K V₁] variables [add_comm_group V₂] [vector_space K V₂] variables [add_comm_group V'] [vector_space K V'] open vector_space set_option class.instance_max_depth 70 lemma equiv_of_dim_eq_lift_dim (h : cardinal.lift.{v w} (dim K V) = cardinal.lift.{w v} (dim K V')) : nonempty (V ≃ₗ[K] V') := begin haveI := classical.dec_eq V, haveI := classical.dec_eq V', rcases exists_is_basis K V with ⟨m, hm⟩, rcases exists_is_basis K V' with ⟨m', hm'⟩, rw [←cardinal.lift_inj.1 hm.mk_eq_dim, ←cardinal.lift_inj.1 hm'.mk_eq_dim] at h, rcases quotient.exact h with ⟨e⟩, let e := (equiv.ulift.symm.trans e).trans equiv.ulift, exact ⟨((module_equiv_finsupp hm).trans (finsupp.dom_lcongr e)).trans (module_equiv_finsupp hm').symm⟩, end def equiv_of_dim_eq_dim (h : dim K V₁ = dim K V₂) : V₁ ≃ₗ[K] V₂ := begin classical, exact classical.choice (equiv_of_dim_eq_lift_dim (cardinal.lift_inj.2 h)) end def fin_dim_vectorspace_equiv (n : ℕ) (hn : (dim K V) = n) : V ≃ₗ[K] (fin n → K) := begin have : cardinal.lift.{v u} (n : cardinal.{v}) = cardinal.lift.{u v} (n : cardinal.{u}), by simp, have hn := cardinal.lift_inj.{v u}.2 hn, rw this at hn, rw ←@dim_fin_fun K _ n at hn, exact classical.choice (equiv_of_dim_eq_lift_dim hn), end lemma eq_bot_iff_dim_eq_zero (p : submodule K V) (h : dim K p = 0) : p = ⊥ := begin have : dim K p = dim K (⊥ : submodule K V) := by rwa [dim_bot], let e := equiv_of_dim_eq_dim this, exact e.eq_bot_of_equiv _ end lemma injective_of_surjective (f : V₁ →ₗ[K] V₂) (hV₁ : dim K V₁ < cardinal.omega) (heq : dim K V₂ = dim K V₁) (hf : f.range = ⊤) : f.ker = ⊥ := have hk : dim K f.ker < cardinal.omega := lt_of_le_of_lt (dim_submodule_le _) hV₁, begin rcases cardinal.lt_omega.1 hV₁ with ⟨d₁, eq₁⟩, rcases cardinal.lt_omega.1 hk with ⟨d₂, eq₂⟩, have : 0 = d₂, { have := dim_eq_surjective f (linear_map.range_eq_top.1 hf), rw [heq, eq₁, eq₂, ← nat.cast_add, cardinal.nat_cast_inj] at this, exact nat.add_left_cancel this }, refine eq_bot_iff_dim_eq_zero _ _, rw [eq₂, ← this, nat.cast_zero] end end vector_space section vector_space universes u open vector_space set_option class.instance_max_depth 50 local attribute [instance] submodule.module variables {K V : Type u} [discrete_field K] [add_comm_group V] [vector_space K V] set_option pp.universes false lemma cardinal_mk_eq_cardinal_mk_field_pow_dim (h : dim K V < cardinal.omega) : cardinal.mk V = cardinal.mk K ^ dim K V := begin rcases exists_is_basis K V with ⟨s, hs⟩, have : nonempty (fintype s), { rwa [← cardinal.lt_omega_iff_fintype, cardinal.lift_inj.1 hs.mk_eq_dim] }, cases this with hsf, letI := hsf, calc cardinal.mk V = cardinal.mk (s →₀ K) : quotient.sound ⟨(module_equiv_finsupp hs).to_equiv⟩ ... = cardinal.mk (s → K) : quotient.sound ⟨finsupp.equiv_fun_on_fintype⟩ ... = _ : by rw [← cardinal.lift_inj.1 hs.mk_eq_dim, cardinal.power_def] end lemma cardinal_lt_omega_of_dim_lt_omega [fintype K] (h : dim K V < cardinal.omega) : cardinal.mk V < cardinal.omega := begin rw [cardinal_mk_eq_cardinal_mk_field_pow_dim h], exact cardinal.power_lt_omega (cardinal.lt_omega_iff_fintype.2 ⟨infer_instance⟩) h end end vector_space