CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
oleanfile3.4.2, commit cbd2b6686ddb����init�%�export_decloptionnonenonesomesomeexport_declboolffffttttexport_declhas_andthenandthenandthenexport_declhas_powpowpowexport_declhas_appendappendappendexport_decldecidableis_trueis_trueis_falseis_falseto_boolto_boolexport_declhas_purepurepureexport_declhas_bindbindbindexport_declhas_monad_lift_tmonad_lift!monad_liftexport_declmonad_functor_tmonad_map$monad_mapexport_declmonad_runrun'runexport_decllistmmap*mmapmmap'*mmap'mfilter*mfiltermfoldl*mfoldlexport_declnativenat_map3rb_mapmkexport_declname_mapnativerb_mapmkexport_declexpr_mapnativerb_mapmkexport_decltacticinteraction_monadfailedfailexport_decltactic_resultinteraction_monadresultexport_decltacticFtransparencyreducibleGreduciblesemireducibleGsemireducibleexport_decltacticmk_simp_attrLmk_simp_attrexport_declmonad_exceptthrowOthrowcatchOcatchexport_declmonad_except_adapteradapt_exceptTadapt_exceptexport_declmonad_state_adapteradapt_stateWadapt_stateexport_declmonad_readerreadZreadexport_declmonad_reader_adapteradapt_reader]adapt_readerexport_declis_lawful_functormap_const_eq`map_const_eqid_map`id_mapcomp_map`comp_mapexport_declis_lawful_applicativeseq_left_eqgseq_left_eqseq_right_eqgseq_right_eqpure_seq_eq_mapgpure_seq_eq_mapmap_puregmap_pureseq_puregseq_pureseq_assocgseq_assocexport_declis_lawful_monadbind_pure_comp_eq_maptbind_pure_comp_eq_mapbind_map_eq_seqtbind_map_eq_seqpure_bindtpure_bindbind_assoctbind_assocnspacerelatorTK⇒(NOTA⇒ ⇒ '��decl}lift_funu₁u₂v₁v₂α�β�γ�δ�Ra�S��f�g
������
�
�
ab��PInfo�VMR�VMC���������decl�equations_eqn_1����������
�
�
eq�����!������
�
�
eqrefl5�PInfo�ATTR_refl_lemma���EqnL�SEqnL�NOTA}lift_fun⇒ ⇒ '��decl}right_total��αβout_paramRout_param���N�Q�UbExistsa�PInfo�$
VMR�VMC����decl�equations_eqn_1���N�Q�U+���_�N�Q�UAf�PInfo�$
ATTR����EqnL�SEqnL�ATTRclass���class�decl}left_total��X�N�Q�Ua�b�PInfo�%
VMR�VMC����decl�equations_eqn_1���N�Q�U+���v�N�Q�UA}�PInfo�%
ATTR����EqnL�SEqnL�ATTR����class�decl}bi_total��X�N�Q�Uand}f�PInfo�&
VMR�VMC����decl�equations_eqn_1���N�Q�U+�����N�Q�UA��PInfo�&
ATTR����EqnL�SEqnL�ATTR����class�decl}left_unique��αNβPRT�N�P�Tabc��eq�PInfo�-
VMR�VMC����decl�equations_eqn_1���N�P�T+�����N�P�TA��PInfo�-
ATTR����EqnL�SEqnL�ATTR����class�decl}right_unique����N�P�Tabc����.�PInfo�.
VMR�VMC����decl�equations_eqn_1���N�P�T+�����N�P�TA��PInfo�.
ATTR����EqnL�SEqnL�ATTR����class�decl}rel_forall_of_right_total���N�P�Ttf�	�implies�piq	i��N�P�T�fpqHrel��H��.��b.existselim��a�Rab����PInfo�0decl}rel_exists_of_left_total���N�P�Tt}�pYi�q	pi��N�P�T�}pqHrel�_x��Y��_a�"�Existsdcases_on�����Y��,p��,w�h�id_rhs_ap	��6�6p
��<���;��<��<�<��=�Hp��K���<��G�5p��S�6�intro�S�V�A�PInfo�3decl}rel_forall_of_total���N�P�Tt���iff�v���N�P�T��pqHrel��viffintro�q�i.�H�b.�x�����rightz�.c�.a�Rab���mp.�H��aexistselim��A�'�left����bRab���mpr.�PInfo�6decl}rel_exists_of_total���N�P�Tt��y���N�P�T��pqHrel�����&q��p.i.�_x�&_a�)�4�����5�@��z�<�6�c�<�6�_a�;�R��<��G�X�\���6��_��_x��_a����.��D�(�p�(Y�6i�6.���'�5_aY�<��<�UY�K�N���������*�K��K�<���Y�S�V��K���5Y
���������6��A��PInfo�;decl}left_unique_of_rel_eq���N�P�Teq'�	he�!	�w���N�P�T��A�	�K���.�������5��6
this.
����<�].AnnotcheckpointAnnothave���W�[rfl�6�PInfo�@decl}rel_imp�%%%����v���v�v��pqh�vrsl��imp_congr�PInfo�Hdecl}rel_not��not��pqh��not_congr�PInfo�Kdecl}bi_total_eq�αNrelatorbi_total��Nandintro}left_total��}right_total��a����wa��������PInfo�P	prt�VMR�VMC��decl�equations_eqn_1��N��������N������PInfo�'P	ATTR����'EqnL�'SEqnL�ATTRinstanced�class��ddecl}bi_uniqueu_1u_2α�*β�+rT�,���-���.T�}left_unique')}right_unique')�PInfo�)VVMR�)VMC�)�.�-�,decl�)equations_eqn_1�*�+�,���-���.T+�)�*�+���,���-���.TA���PInfo�2VATTR����2EqnL�2SEqnL�)decl}left_unique_flip�*�+�,���-��rTh��}right_unique)'flip')�,���-���4T�5�������.��.�5�'��PInfo�3Xdecl}rel_and����abh₁��cdh₂��and_congr�PInfo�8[decl}rel_or��or�:abh₁��cdh₂��or_congr�PInfo�@^decl}rel_iff���v�vabh₁��cdh₂��iff_congr�PInfo�Iadecl}rel_eq�*�+�,���-��rThr���(*(*1	�(*11�v��*�,���-���RT�S��abh₁c.d.h₂������6�i�h�teqrec(�<.�W�<�Y�U�i�K�Y�.�����K�<�6���K�<�6�.h�x�\*�6�X�6�Y����S��Y��������.�PInfo�QdEndFile