Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2019 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
universes u v w
variables {α : Sort u} {β : Sort v} {γ : Sort w}
structure unique (α : Sort u) extends inhabited α :=
(uniq : ∀ a:α, a = default)
attribute [class] unique
instance punit.unique : unique punit.{u} :=
{ default := punit.star,
uniq := λ x, punit_eq x _ }
instance fin.unique : unique (fin 1) :=
{ default := 0,
uniq := λ ⟨n, hn⟩, fin.eq_of_veq
(nat.eq_zero_of_le_zero (nat.le_of_lt_succ hn)) }
namespace unique
open function
section
variables [unique α]
@[priority 100] -- see Note [lower instance priority]
instance : inhabited α := to_inhabited ‹unique α›
lemma eq_default (a : α) : a = default α := uniq _ a
lemma default_eq (a : α) : default α = a := (uniq _ a).symm
@[priority 100] -- see Note [lower instance priority]
instance : subsingleton α := ⟨λ a b, by rw [eq_default a, eq_default b]⟩
lemma forall_iff {p : α → Prop} : (∀ a, p a) ↔ p (default α) :=
⟨λ h, h _, λ h x, by rwa [unique.eq_default x]⟩
lemma exists_iff {p : α → Prop} : Exists p ↔ p (default α) :=
⟨λ ⟨a, ha⟩, eq_default a ▸ ha, exists.intro (default α)⟩
end
protected lemma subsingleton_unique' : ∀ (h₁ h₂ : unique α), h₁ = h₂
| ⟨⟨x⟩, h⟩ ⟨⟨y⟩, _⟩ := by congr; rw [h x, h y]
instance subsingleton_unique : subsingleton (unique α) :=
⟨unique.subsingleton_unique'⟩
def of_surjective {f : α → β} (hf : surjective f) [unique α] : unique β :=
{ default := f (default _),
uniq := λ b,
begin
cases hf b with a ha,
subst ha,
exact congr_arg f (eq_default a)
end }
end unique