CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
oleanfile3.4.2, commit cbd2b6686ddb�_<�init�0�export_decloptionnonenonesomesomeexport_declboolffffttttexport_declhas_andthenandthenandthenexport_declhas_powpowpowexport_declhas_appendappendappendexport_decldecidableis_trueis_trueis_falseis_falseto_boolto_boolexport_declhas_purepurepureexport_declhas_bindbindbindexport_declhas_monad_lift_tmonad_lift!monad_liftexport_declmonad_functor_tmonad_map$monad_mapexport_declmonad_runrun'runexport_decllistmmap*mmapmmap'*mmap'mfilter*mfiltermfoldl*mfoldlexport_declnativenat_map3rb_mapmkexport_declname_mapnativerb_mapmkexport_declexpr_mapnativerb_mapmkexport_decltacticinteraction_monadfailedfailexport_decltactic_resultinteraction_monadresultexport_decltacticFtransparencyreducibleGreduciblesemireducibleGsemireducibleexport_decltacticmk_simp_attrLmk_simp_attrexport_declmonad_exceptthrowOthrowcatchOcatchexport_declmonad_except_adapteradapt_exceptTadapt_exceptexport_declmonad_state_adapteradapt_stateWadapt_stateexport_declmonad_readerreadZreadexport_declmonad_reader_adapteradapt_reader]adapt_readerexport_declis_lawful_functormap_const_eq`map_const_eqid_map`id_mapcomp_map`comp_mapexport_declis_lawful_applicativeseq_left_eqgseq_left_eqseq_right_eqgseq_right_eqpure_seq_eq_mapgpure_seq_eq_mapmap_puregmap_pureseq_puregseq_pureseq_assocgseq_assocexport_declis_lawful_monadbind_pure_comp_eq_maptbind_pure_comp_eq_mapbind_map_eq_seqtbind_map_eq_seqpure_bindtpure_bindbind_assoctbind_assocPInfounique
indluαCn}~e_1_to_inhabitedinhabiteduniqaeq�default	}mk�		}������
		����	��
-	�nspace}prt}recdecl}sizeof�α_insthas_sizeofxnat��<}recx=>��has_addadd>nathas_addIhas_oneone>nathas_onesizeofinhabitedhas_sizeof_inst	��/0	default_has_sizeof\�PInfo�
ATTRreducibility���prt�decl}has_sizeof_inst��<�=��<has_sizeofmk=��PInfo�
ATTRinstance���class����prt�decl�sizeof_spec��<��eq>n	W��<��eqrefl	>x�PInfo�
ATTR_refl_lemma���EqnL�prt�gind}�decl}to_inhabited�c��
Proj}��}rec�=,���PInfo�
ATTR����proj��decl}uniq���$%�	��
Proj}�����=�	
����PInfo�
ATTR����proj��decl}rec_on~���=��,�3-4���=��}rec~	�PInfo�
ATTR����auxrec�prt�auxrec}rec_ondecl}cases_on~���PInfo�
ATTR����auxrec�decl}no_confusion_type~�Pv1=v2���=��~��P��-
�����	����
�a_to_inhabited_eq�
����PInfo�
ATTR����prt�decl}no_confusion~���=�h12���~-	���=���eqrec-	a�h1a�����-h11��		��������������	�PInfo�
ATTR����no_conf�prt�decl�inj��"�(�,�3��	�	���-	��"�(�,�3��-}no_confusion��0�-�:	��0�PInfo�
decl�inj_arrowl��"�(�,�3��-P�������"�(�,�3��-���N�inj���-	�PInfo�
decl�inj_eq��"�(�,�3t�-�-��"�(_to_inhabited_1,uniq_13propext�-�miffintro�-�mh�-�W�-	a�m����Je_1����
	������

������e_1���

��eqdrec�������-����	����������
��	���������������
�������	-	-	�PInfo�
ATTRclass��uniqueclass�declpunitunique_proof_1xpunit
�����mk��punitstar���punit_eq��PInfo�	decl��������PInfo�	prt�VMR�VMC�	decl�equations_eqn_1��	��
��	��PInfo�	ATTR����EqnL�SEqnL�ATTR����classunique���declfinunique_match_1_afinMt�����has_zerozero�finhas_zero�>nathas_zero��fincases_onM���&val>is_lthas_ltlt>nathas_ltMid_rhs��mk
MAnnotinnaccessible�%fineq_of_veqM�8�%nateq_zero_of_le_zero�valM�8natle_of_lt_succ�C�!�PInfo�	decl�equations_eqn_1n>hn�2���4M�%��S�=�S�%�@�B�S�E�\�!�>��2��Uid_delta�U�X�PInfo�	ATTR����EqnL�decl�_proof_1_x��&���W�PInfo�	decl�unique����$��PInfo�	prt�VMR�VMC�	decl�equations_eqn_1t�r��w�r�y�PInfo�	ATTR����EqnL�SEqnL�ATTR����class����decluniqueinhabitedα_inst_1����PInfo�!	prt�VMR�VMC�!	��decl�equations_eqn_1������������PInfo�
!	ATTR����
EqnL�
SEqnL�ATTR�d�classinhabited�ddecl�eq_default��a$default	��	���
�uniq	�PInfo�#decl�default_eq��a#������symm	����PInfo�%decl�subsingleton��subsingleton��subsingletonintroab	eqmpr����	id�h�����_a�h.	/�g�����eq_default	�����������h������_a�h.��-��-����������eqrefl���PInfo�(	prt�VMR�VMC���decl�equations_eqn_1���P��������f�����PInfo�"(	ATTR����"EqnL�"SEqnL�ATTR�d�class��ddecl�forall_iff��p��giffa	�����$��w�	�h�	��h�x��	�����h���-_a-�h������-�PInfo�#*decl�exists_iff��p��Exists	����,��w�5�_x�5_a�3Existsdcases_on-	�/�3-	������-w-h��3_x���������eqsubst��M�Q����existsintro	���PInfo�+-decl�subsingleton_unique'�h₁h₂=���:�;=�	�:�h₁__to_inhabited,h₁_uniq3�cases_on-�<�j�=��
�����-�<-�=���~�����t��;��������	-h₂__to_inhabited�Jh₂_uniq��
���{��?��@�����������������-���?��@����������3���e_1����������������������������������������default���B��e_1
��congr_arg����	�������������������h���������_a���h
���	��	������-������������h�����_a���h������	�������-������������e_1���������
�����������A�������
�/���/��6�A�-��>�	�A���>���F�
�J	��/�/���6��6��9
�>�>��6	-	�����"-�PInfo�92prt�9decl�subsingleton_unique�subsingleton��uniquesubsingleton_unique'�PInfo�H5	prt�HVMR�HVMC�H�decl�Hequations_eqn_1��P���H����f�����PInfo�M5	ATTR����MEqnL�MSEqnL�HATTR����Hclass�I�H��decl�of_surjective_proof_1v�β�Pf�hffunctionsurjective	_inst_1�b_x�3�a�eq�-������-�N�O	��Q���R���S���V��W�?�����a�ha������W�����������������-congr_arg������������	�PInfo�O8decl�N�P��Q���R���S���V�unique��Q���R���S���V����	�����O�P-	�PInfo�N8VMR�NVMC�N8�V�S�R�Q�decl�Nequations_eqn_1�P��Q���R���S���V���P���N!-	���Q���R���S���V��"����PInfo�`8ATTR����`EqnL�`SEqnL�NEndFile