Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

31011 views
License: APACHE
oleanfile3.4.2, commit cbd2b6686ddb�_<�init�0�export_decloptionnonenonesomesomeexport_declboolffffttttexport_declhas_andthenandthenandthenexport_declhas_powpowpowexport_declhas_appendappendappendexport_decldecidableis_trueis_trueis_falseis_falseto_boolto_boolexport_declhas_purepurepureexport_declhas_bindbindbindexport_declhas_monad_lift_tmonad_lift!monad_liftexport_declmonad_functor_tmonad_map$monad_mapexport_declmonad_runrun'runexport_decllistmmap*mmapmmap'*mmap'mfilter*mfiltermfoldl*mfoldlexport_declnativenat_map3rb_mapmkexport_declname_mapnativerb_mapmkexport_declexpr_mapnativerb_mapmkexport_decltacticinteraction_monadfailedfailexport_decltactic_resultinteraction_monadresultexport_decltacticFtransparencyreducibleGreduciblesemireducibleGsemireducibleexport_decltacticmk_simp_attrLmk_simp_attrexport_declmonad_exceptthrowOthrowcatchOcatchexport_declmonad_except_adapteradapt_exceptTadapt_exceptexport_declmonad_state_adapteradapt_stateWadapt_stateexport_declmonad_readerreadZreadexport_declmonad_reader_adapteradapt_reader]adapt_readerexport_declis_lawful_functormap_const_eq`map_const_eqid_map`id_mapcomp_map`comp_mapexport_declis_lawful_applicativeseq_left_eqgseq_left_eqseq_right_eqgseq_right_eqpure_seq_eq_mapgpure_seq_eq_mapmap_puregmap_pureseq_puregseq_pureseq_assocgseq_assocexport_declis_lawful_monadbind_pure_comp_eq_maptbind_pure_comp_eq_mapbind_map_eq_seqtbind_map_eq_seqpure_bindtpure_bindbind_assoctbind_assocPInfounique
indluαCn}~e_1_to_inhabitedinhabiteduniqaeq�default	}mk�		}������
		����	��
-	�nspace}prt}recdecl}sizeof�α_insthas_sizeofxnat��<}recx=>��has_addadd>nathas_addIhas_oneone>nathas_onesizeofinhabitedhas_sizeof_inst	��/0	default_has_sizeof\�PInfo�
ATTRreducibility���prt�decl}has_sizeof_inst��<�=��<has_sizeofmk=��PInfo�
ATTRinstance���class����prt�decl�sizeof_spec��<��eq>n	W��<��eqrefl	>x�PInfo�
ATTR_refl_lemma���EqnL�prt�gind}�decl}to_inhabited�c��
Proj}��}rec�=,���PInfo�
ATTR����proj��decl}uniq���$%�	��
Proj}�����=�	
����PInfo�
ATTR����proj��decl}rec_on~���=��,�3-4���=��}rec~	�PInfo�
ATTR����auxrec�prt�auxrec}rec_ondecl}cases_on~���PInfo�
ATTR����auxrec�decl}no_confusion_type~�Pv1=v2���=��~��P��-
�����	����
�a_to_inhabited_eq�
����PInfo�
ATTR����prt�decl}no_confusion~���=�h12���~-	���=���eqrec-	a�h1a�����-h11��		��������������	�PInfo�
ATTR����no_conf�prt�decl�inj��"�(�,�3��	�	���-	��"�(�,�3��-}no_confusion��0�-�:	��0�PInfo�
decl�inj_arrowl��"�(�,�3��-P�������"�(�,�3��-���N�inj���-	�PInfo�
decl�inj_eq��"�(�,�3t�-�-��"�(_to_inhabited_1,uniq_13propext�-�miffintro�-�mh�-�W�-	a�m����Je_1����
	������

������e_1���

��eqdrec�������-����	����������
��	���������������
�������	-	-	�PInfo�
ATTRclass��uniqueclass�declpunitunique_proof_1xpunit
�����mk��punitstar���punit_eq��PInfo�	decl��������PInfo�	prt�VMR�VMC�	decl�equations_eqn_1��	��
��	��PInfo�	ATTR����EqnL�SEqnL�ATTR����classunique���declfinunique_match_1_afinMt�����has_zerozero�finhas_zero�>nathas_zero��fincases_onM���&val>is_lthas_ltlt>nathas_ltMid_rhs��mk
MAnnotinnaccessible�%fineq_of_veqM�8�%nateq_zero_of_le_zero�valM�8natle_of_lt_succ�C�!�PInfo�	decl�equations_eqn_1n>hn�2���4M�%��S�=�S�%�@�B�S�E�\�!�>��2��Uid_delta�U�X�PInfo�	ATTR����EqnL�decl�_proof_1_x��&���W�PInfo�	decl�unique����$��PInfo�	prt�VMR�VMC�	decl�equations_eqn_1t�r��w�r�y�PInfo�	ATTR����EqnL�SEqnL�ATTR����class����decluniqueinhabitedα_inst_1����PInfo�!	prt�VMR�VMC�!	��decl�equations_eqn_1������������PInfo�
!	ATTR����
EqnL�
SEqnL�ATTR�d�classinhabited�ddecl�eq_default��a$default	��	���
�uniq	�PInfo�#decl�default_eq��a#������symm	����PInfo�%decl�subsingleton��subsingleton��subsingletonintroab	eqmpr����	id�h�����_a�h.	/�g�����eq_default	�����������h������_a�h.��-��-����������eqrefl���PInfo�(	prt�VMR�VMC���decl�equations_eqn_1���P��������f�����PInfo�"(	ATTR����"EqnL�"SEqnL�ATTR�d�class��ddecl�forall_iff��p��giffa	�����$��w�	�h�	��h�x��	�����h���-_a-�h������-�PInfo�#*decl�exists_iff��p��Exists	����,��w�5�_x�5_a�3Existsdcases_on-	�/�3-	������-w-h��3_x���������eqsubst��M�Q����existsintro	���PInfo�+-decl�subsingleton_unique'�h₁h₂=���:�;=�	�:�h₁__to_inhabited,h₁_uniq3�cases_on-�<�j�=��
�����-�<-�=���~�����t��;��������	-h₂__to_inhabited�Jh₂_uniq��
���{��?��@�����������������-���?��@����������3���e_1����������������������������������������default���B��e_1
��congr_arg����	�������������������h���������_a���h
���	��	������-������������h�����_a���h������	�������-������������e_1���������
�����������A�������
�/���/��6�A�-��>�	�A���>���F�
�J	��/�/���6��6��9
�>�>��6	-	�����"-�PInfo�92prt�9decl�subsingleton_unique�subsingleton��uniquesubsingleton_unique'�PInfo�H5	prt�HVMR�HVMC�H�decl�Hequations_eqn_1��P���H����f�����PInfo�M5	ATTR����MEqnL�MSEqnL�HATTR����Hclass�I�H��decl�of_surjective_proof_1v�β�Pf�hffunctionsurjective	_inst_1�b_x�3�a�eq�-������-�N�O	��Q���R���S���V��W�?�����a�ha������W�����������������-congr_arg������������	�PInfo�O8decl�N�P��Q���R���S���V�unique��Q���R���S���V����	�����O�P-	�PInfo�N8VMR�NVMC�N8�V�S�R�Q�decl�Nequations_eqn_1�P��Q���R���S���V���P���N!-	���Q���R���S���V��"����PInfo�`8ATTR����`EqnL�`SEqnL�NEndFile