Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Theory of complete lattices. -/ import order.bounded_lattice order.bounds data.set.basic tactic.pi_instances set_option old_structure_cmd true open set namespace lattice universes u v w w₂ variables {α : Type u} {β : Type v} {ι : Sort w} {ι₂ : Sort w₂} /-- class for the `Sup` operator -/ class has_Sup (α : Type u) := (Sup : set α → α) /-- class for the `Inf` operator -/ class has_Inf (α : Type u) := (Inf : set α → α) /-- Supremum of a set -/ def Sup [has_Sup α] : set α → α := has_Sup.Sup /-- Infimum of a set -/ def Inf [has_Inf α] : set α → α := has_Inf.Inf /-- Indexed supremum -/ def supr [has_Sup α] (s : ι → α) : α := Sup (range s) /-- Indexed infimum -/ def infi [has_Inf α] (s : ι → α) : α := Inf (range s) lemma has_Inf_to_nonempty (α) [has_Inf α] : nonempty α := ⟨Inf ∅⟩ lemma has_Sup_to_nonempty (α) [has_Sup α] : nonempty α := ⟨Sup ∅⟩ notation `⨆` binders `, ` r:(scoped f, supr f) := r notation `⨅` binders `, ` r:(scoped f, infi f) := r section prio set_option default_priority 100 -- see Note [default priority] /-- A complete lattice is a bounded lattice which has suprema and infima for every subset. -/ class complete_lattice (α : Type u) extends bounded_lattice α, has_Sup α, has_Inf α := (le_Sup : ∀s, ∀a∈s, a ≤ Sup s) (Sup_le : ∀s a, (∀b∈s, b ≤ a) → Sup s ≤ a) (Inf_le : ∀s, ∀a∈s, Inf s ≤ a) (le_Inf : ∀s a, (∀b∈s, a ≤ b) → a ≤ Inf s) /-- A complete linear order is a linear order whose lattice structure is complete. -/ class complete_linear_order (α : Type u) extends complete_lattice α, decidable_linear_order α end prio section variables [complete_lattice α] {s t : set α} {a b : α} @[ematch] theorem le_Sup : a ∈ s → a ≤ Sup s := complete_lattice.le_Sup s a theorem Sup_le : (∀b∈s, b ≤ a) → Sup s ≤ a := complete_lattice.Sup_le s a @[ematch] theorem Inf_le : a ∈ s → Inf s ≤ a := complete_lattice.Inf_le s a theorem le_Inf : (∀b∈s, a ≤ b) → a ≤ Inf s := complete_lattice.le_Inf s a lemma is_lub_Sup : is_lub s (Sup s) := ⟨assume x, le_Sup, assume x, Sup_le⟩ lemma is_lub_iff_Sup_eq : is_lub s a ↔ Sup s = a := is_lub_iff_eq_of_is_lub is_lub_Sup lemma is_glb_Inf : is_glb s (Inf s) := ⟨assume a, Inf_le, assume a, le_Inf⟩ lemma is_glb_iff_Inf_eq : is_glb s a ↔ Inf s = a := is_glb_iff_eq_of_is_glb is_glb_Inf theorem le_Sup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ Sup s := le_trans h (le_Sup hb) theorem Inf_le_of_le (hb : b ∈ s) (h : b ≤ a) : Inf s ≤ a := le_trans (Inf_le hb) h theorem Sup_le_Sup (h : s ⊆ t) : Sup s ≤ Sup t := Sup_le (assume a, assume ha : a ∈ s, le_Sup $ h ha) theorem Inf_le_Inf (h : s ⊆ t) : Inf t ≤ Inf s := le_Inf (assume a, assume ha : a ∈ s, Inf_le $ h ha) @[simp] theorem Sup_le_iff : Sup s ≤ a ↔ (∀b ∈ s, b ≤ a) := ⟨assume : Sup s ≤ a, assume b, assume : b ∈ s, le_trans (le_Sup ‹b ∈ s›) ‹Sup s ≤ a›, Sup_le⟩ @[simp] theorem le_Inf_iff : a ≤ Inf s ↔ (∀b ∈ s, a ≤ b) := ⟨assume : a ≤ Inf s, assume b, assume : b ∈ s, le_trans ‹a ≤ Inf s› (Inf_le ‹b ∈ s›), le_Inf⟩ -- how to state this? instead a parameter `a`, use `∃a, a ∈ s` or `s ≠ ∅`? theorem Inf_le_Sup (h : a ∈ s) : Inf s ≤ Sup s := by have := le_Sup h; finish --Inf_le_of_le h (le_Sup h) -- TODO: it is weird that we have to add union_def theorem Sup_union {s t : set α} : Sup (s ∪ t) = Sup s ⊔ Sup t := le_antisymm (by finish) (sup_le (Sup_le_Sup $ subset_union_left _ _) (Sup_le_Sup $ subset_union_right _ _)) /- old proof: le_antisymm (Sup_le $ assume a h, or.rec_on h (le_sup_left_of_le ∘ le_Sup) (le_sup_right_of_le ∘ le_Sup)) (sup_le (Sup_le_Sup $ subset_union_left _ _) (Sup_le_Sup $ subset_union_right _ _)) -/ theorem Sup_inter_le {s t : set α} : Sup (s ∩ t) ≤ Sup s ⊓ Sup t := by finish /- Sup_le (assume a ⟨a_s, a_t⟩, le_inf (le_Sup a_s) (le_Sup a_t)) -/ theorem Inf_union {s t : set α} : Inf (s ∪ t) = Inf s ⊓ Inf t := le_antisymm (le_inf (Inf_le_Inf $ subset_union_left _ _) (Inf_le_Inf $ subset_union_right _ _)) (by finish) /- old proof: le_antisymm (le_inf (Inf_le_Inf $ subset_union_left _ _) (Inf_le_Inf $ subset_union_right _ _)) (le_Inf $ assume a h, or.rec_on h (inf_le_left_of_le ∘ Inf_le) (inf_le_right_of_le ∘ Inf_le)) -/ theorem le_Inf_inter {s t : set α} : Inf s ⊔ Inf t ≤ Inf (s ∩ t) := by finish /- le_Inf (assume a ⟨a_s, a_t⟩, sup_le (Inf_le a_s) (Inf_le a_t)) -/ @[simp] theorem Sup_empty : Sup ∅ = (⊥ : α) := le_antisymm (by finish) (by finish) -- le_antisymm (Sup_le (assume _, false.elim)) bot_le @[simp] theorem Inf_empty : Inf ∅ = (⊤ : α) := le_antisymm (by finish) (by finish) --le_antisymm le_top (le_Inf (assume _, false.elim)) @[simp] theorem Sup_univ : Sup univ = (⊤ : α) := le_antisymm (by finish) (le_Sup ⟨⟩) -- finish fails because ⊤ ≤ a simplifies to a = ⊤ --le_antisymm le_top (le_Sup ⟨⟩) @[simp] theorem Inf_univ : Inf univ = (⊥ : α) := le_antisymm (Inf_le ⟨⟩) bot_le -- TODO(Jeremy): get this automatically @[simp] theorem Sup_insert {a : α} {s : set α} : Sup (insert a s) = a ⊔ Sup s := have Sup {b | b = a} = a, from le_antisymm (Sup_le $ assume b b_eq, b_eq ▸ le_refl _) (le_Sup rfl), calc Sup (insert a s) = Sup {b | b = a} ⊔ Sup s : Sup_union ... = a ⊔ Sup s : by rw [this] @[simp] theorem Inf_insert {a : α} {s : set α} : Inf (insert a s) = a ⊓ Inf s := have Inf {b | b = a} = a, from le_antisymm (Inf_le rfl) (le_Inf $ assume b b_eq, b_eq ▸ le_refl _), calc Inf (insert a s) = Inf {b | b = a} ⊓ Inf s : Inf_union ... = a ⊓ Inf s : by rw [this] @[simp] theorem Sup_singleton {a : α} : Sup {a} = a := by finish [singleton_def] --eq.trans Sup_insert $ by simp @[simp] theorem Inf_singleton {a : α} : Inf {a} = a := by finish [singleton_def] --eq.trans Inf_insert $ by simp @[simp] theorem Inf_eq_top : Inf s = ⊤ ↔ (∀a∈s, a = ⊤) := iff.intro (assume h a ha, top_unique $ h ▸ Inf_le ha) (assume h, top_unique $ le_Inf $ assume a ha, top_le_iff.2 $ h a ha) @[simp] theorem Sup_eq_bot : Sup s = ⊥ ↔ (∀a∈s, a = ⊥) := iff.intro (assume h a ha, bot_unique $ h ▸ le_Sup ha) (assume h, bot_unique $ Sup_le $ assume a ha, le_bot_iff.2 $ h a ha) end section complete_linear_order variables [complete_linear_order α] {s t : set α} {a b : α} lemma Inf_lt_iff : Inf s < b ↔ (∃a∈s, a < b) := iff.intro (assume : Inf s < b, classical.by_contradiction $ assume : ¬ (∃a∈s, a < b), have b ≤ Inf s, from le_Inf $ assume a ha, le_of_not_gt $ assume h, this ⟨a, ha, h⟩, lt_irrefl b (lt_of_le_of_lt ‹b ≤ Inf s› ‹Inf s < b›)) (assume ⟨a, ha, h⟩, lt_of_le_of_lt (Inf_le ha) h) lemma lt_Sup_iff : b < Sup s ↔ (∃a∈s, b < a) := iff.intro (assume : b < Sup s, classical.by_contradiction $ assume : ¬ (∃a∈s, b < a), have Sup s ≤ b, from Sup_le $ assume a ha, le_of_not_gt $ assume h, this ⟨a, ha, h⟩, lt_irrefl b (lt_of_lt_of_le ‹b < Sup s› ‹Sup s ≤ b›)) (assume ⟨a, ha, h⟩, lt_of_lt_of_le h $ le_Sup ha) lemma Sup_eq_top : Sup s = ⊤ ↔ (∀b<⊤, ∃a∈s, b < a) := iff.intro (assume (h : Sup s = ⊤) b hb, by rwa [←h, lt_Sup_iff] at hb) (assume h, top_unique $ le_of_not_gt $ assume h', let ⟨a, ha, h⟩ := h _ h' in lt_irrefl a $ lt_of_le_of_lt (le_Sup ha) h) lemma Inf_eq_bot : Inf s = ⊥ ↔ (∀b>⊥, ∃a∈s, a < b) := iff.intro (assume (h : Inf s = ⊥) b (hb : ⊥ < b), by rwa [←h, Inf_lt_iff] at hb) (assume h, bot_unique $ le_of_not_gt $ assume h', let ⟨a, ha, h⟩ := h _ h' in lt_irrefl a $ lt_of_lt_of_le h (Inf_le ha)) lemma lt_supr_iff {ι : Sort*} {f : ι → α} : a < supr f ↔ (∃i, a < f i) := iff.trans lt_Sup_iff $ iff.intro (assume ⟨a', ⟨i, rfl⟩, ha⟩, ⟨i, ha⟩) (assume ⟨i, hi⟩, ⟨f i, ⟨i, rfl⟩, hi⟩) lemma infi_lt_iff {ι : Sort*} {f : ι → α} : infi f < a ↔ (∃i, f i < a) := iff.trans Inf_lt_iff $ iff.intro (assume ⟨a', ⟨i, rfl⟩, ha⟩, ⟨i, ha⟩) (assume ⟨i, hi⟩, ⟨f i, ⟨i, rfl⟩, hi⟩) end complete_linear_order /- supr & infi -/ section variables [complete_lattice α] {s t : ι → α} {a b : α} -- TODO: this declaration gives error when starting smt state --@[ematch] theorem le_supr (s : ι → α) (i : ι) : s i ≤ supr s := le_Sup ⟨i, rfl⟩ @[ematch] theorem le_supr' (s : ι → α) (i : ι) : (: s i ≤ supr s :) := le_Sup ⟨i, rfl⟩ /- TODO: this version would be more powerful, but, alas, the pattern matcher doesn't accept it. @[ematch] theorem le_supr' (s : ι → α) (i : ι) : (: s i :) ≤ (: supr s :) := le_Sup ⟨i, rfl⟩ -/ lemma is_lub_supr : is_lub (range s) (⨆j, s j) := is_lub_Sup lemma is_lub_iff_supr_eq : is_lub (range s) a ↔ (⨆j, s j) = a := is_lub_iff_eq_of_is_lub is_lub_supr lemma is_glb_infi : is_glb (range s) (⨅j, s j) := is_glb_Inf lemma is_glb_iff_infi_eq : is_glb (range s) a ↔ (⨅j, s j) = a := is_glb_iff_eq_of_is_glb is_glb_infi theorem le_supr_of_le (i : ι) (h : a ≤ s i) : a ≤ supr s := le_trans h (le_supr _ i) theorem supr_le (h : ∀i, s i ≤ a) : supr s ≤ a := Sup_le $ assume b ⟨i, eq⟩, eq ▸ h i theorem supr_le_supr (h : ∀i, s i ≤ t i) : supr s ≤ supr t := supr_le $ assume i, le_supr_of_le i (h i) theorem supr_le_supr2 {t : ι₂ → α} (h : ∀i, ∃j, s i ≤ t j) : supr s ≤ supr t := supr_le $ assume j, exists.elim (h j) le_supr_of_le theorem supr_le_supr_const (h : ι → ι₂) : (⨆ i:ι, a) ≤ (⨆ j:ι₂, a) := supr_le $ le_supr _ ∘ h @[simp] theorem supr_le_iff : supr s ≤ a ↔ (∀i, s i ≤ a) := ⟨assume : supr s ≤ a, assume i, le_trans (le_supr _ _) this, supr_le⟩ -- TODO: finish doesn't do well here. @[congr] theorem supr_congr_Prop {α : Type u} [has_Sup α] {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q) (f : ∀x, f₁ (pq.mpr x) = f₂ x) : supr f₁ = supr f₂ := begin unfold supr, apply congr_arg, ext, simp, split, exact λ⟨h, W⟩, ⟨pq.1 h, eq.trans (f (pq.1 h)).symm W⟩, exact λ⟨h, W⟩, ⟨pq.2 h, eq.trans (f h) W⟩ end theorem infi_le (s : ι → α) (i : ι) : infi s ≤ s i := Inf_le ⟨i, rfl⟩ @[ematch] theorem infi_le' (s : ι → α) (i : ι) : (: infi s ≤ s i :) := Inf_le ⟨i, rfl⟩ /- I wanted to see if this would help for infi_comm; it doesn't. @[ematch] theorem infi_le₂' (s : ι → ι₂ → α) (i : ι) (j : ι₂) : (: ⨅ i j, s i j :) ≤ (: s i j :) := begin transitivity, apply (infi_le (λ i, ⨅ j, s i j) i), apply infi_le end -/ theorem infi_le_of_le (i : ι) (h : s i ≤ a) : infi s ≤ a := le_trans (infi_le _ i) h theorem le_infi (h : ∀i, a ≤ s i) : a ≤ infi s := le_Inf $ assume b ⟨i, eq⟩, eq ▸ h i theorem infi_le_infi (h : ∀i, s i ≤ t i) : infi s ≤ infi t := le_infi $ assume i, infi_le_of_le i (h i) theorem infi_le_infi2 {t : ι₂ → α} (h : ∀j, ∃i, s i ≤ t j) : infi s ≤ infi t := le_infi $ assume j, exists.elim (h j) infi_le_of_le theorem infi_le_infi_const (h : ι₂ → ι) : (⨅ i:ι, a) ≤ (⨅ j:ι₂, a) := le_infi $ infi_le _ ∘ h @[simp] theorem le_infi_iff : a ≤ infi s ↔ (∀i, a ≤ s i) := ⟨assume : a ≤ infi s, assume i, le_trans this (infi_le _ _), le_infi⟩ @[congr] theorem infi_congr_Prop {α : Type u} [has_Inf α] {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q) (f : ∀x, f₁ (pq.mpr x) = f₂ x) : infi f₁ = infi f₂ := begin unfold infi, apply congr_arg, ext, simp, split, exact λ⟨h, W⟩, ⟨pq.1 h, eq.trans (f (pq.1 h)).symm W⟩, exact λ⟨h, W⟩, ⟨pq.2 h, eq.trans (f h) W⟩ end @[simp] theorem infi_const {a : α} : ∀[nonempty ι], (⨅ b:ι, a) = a | ⟨i⟩ := le_antisymm (Inf_le ⟨i, rfl⟩) (by finish) @[simp] theorem supr_const {a : α} : ∀[nonempty ι], (⨆ b:ι, a) = a | ⟨i⟩ := le_antisymm (by finish) (le_Sup ⟨i, rfl⟩) @[simp] lemma infi_top : (⨅i:ι, ⊤ : α) = ⊤ := top_unique $ le_infi $ assume i, le_refl _ @[simp] lemma supr_bot : (⨆i:ι, ⊥ : α) = ⊥ := bot_unique $ supr_le $ assume i, le_refl _ @[simp] lemma infi_eq_top : infi s = ⊤ ↔ (∀i, s i = ⊤) := iff.intro (assume eq i, top_unique $ eq ▸ infi_le _ _) (assume h, top_unique $ le_infi $ assume i, top_le_iff.2 $ h i) @[simp] lemma supr_eq_bot : supr s = ⊥ ↔ (∀i, s i = ⊥) := iff.intro (assume eq i, bot_unique $ eq ▸ le_supr _ _) (assume h, bot_unique $ supr_le $ assume i, le_bot_iff.2 $ h i) @[simp] lemma infi_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp := le_antisymm (infi_le _ _) (le_infi $ assume h, le_refl _) @[simp] lemma infi_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨅ h : p, f h) = ⊤ := le_antisymm le_top $ le_infi $ assume h, (hp h).elim @[simp] lemma supr_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp := le_antisymm (supr_le $ assume h, le_refl _) (le_supr _ _) @[simp] lemma supr_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨆ h : p, f h) = ⊥ := le_antisymm (supr_le $ assume h, (hp h).elim) bot_le lemma supr_eq_dif {p : Prop} [decidable p] (a : p → α) : (⨆h:p, a h) = (if h : p then a h else ⊥) := by by_cases p; simp [h] lemma supr_eq_if {p : Prop} [decidable p] (a : α) : (⨆h:p, a) = (if p then a else ⊥) := by rw [supr_eq_dif, dif_eq_if] lemma infi_eq_dif {p : Prop} [decidable p] (a : p → α) : (⨅h:p, a h) = (if h : p then a h else ⊤) := by by_cases p; simp [h] lemma infi_eq_if {p : Prop} [decidable p] (a : α) : (⨅h:p, a) = (if p then a else ⊤) := by rw [infi_eq_dif, dif_eq_if] -- TODO: should this be @[simp]? theorem infi_comm {f : ι → ι₂ → α} : (⨅i, ⨅j, f i j) = (⨅j, ⨅i, f i j) := le_antisymm (le_infi $ assume i, le_infi $ assume j, infi_le_of_le j $ infi_le _ i) (le_infi $ assume j, le_infi $ assume i, infi_le_of_le i $ infi_le _ j) /- TODO: this is strange. In the proof below, we get exactly the desired among the equalities, but close does not get it. begin apply @le_antisymm, simp, intros, begin [smt] ematch, ematch, ematch, trace_state, have := le_refl (f i_1 i), trace_state, close end end -/ -- TODO: should this be @[simp]? theorem supr_comm {f : ι → ι₂ → α} : (⨆i, ⨆j, f i j) = (⨆j, ⨆i, f i j) := le_antisymm (supr_le $ assume i, supr_le $ assume j, le_supr_of_le j $ le_supr _ i) (supr_le $ assume j, supr_le $ assume i, le_supr_of_le i $ le_supr _ j) @[simp] theorem infi_infi_eq_left {b : β} {f : Πx:β, x = b → α} : (⨅x, ⨅h:x = b, f x h) = f b rfl := le_antisymm (infi_le_of_le b $ infi_le _ rfl) (le_infi $ assume b', le_infi $ assume eq, match b', eq with ._, rfl := le_refl _ end) @[simp] theorem infi_infi_eq_right {b : β} {f : Πx:β, b = x → α} : (⨅x, ⨅h:b = x, f x h) = f b rfl := le_antisymm (infi_le_of_le b $ infi_le _ rfl) (le_infi $ assume b', le_infi $ assume eq, match b', eq with ._, rfl := le_refl _ end) @[simp] theorem supr_supr_eq_left {b : β} {f : Πx:β, x = b → α} : (⨆x, ⨆h : x = b, f x h) = f b rfl := le_antisymm (supr_le $ assume b', supr_le $ assume eq, match b', eq with ._, rfl := le_refl _ end) (le_supr_of_le b $ le_supr _ rfl) @[simp] theorem supr_supr_eq_right {b : β} {f : Πx:β, b = x → α} : (⨆x, ⨆h : b = x, f x h) = f b rfl := le_antisymm (supr_le $ assume b', supr_le $ assume eq, match b', eq with ._, rfl := le_refl _ end) (le_supr_of_le b $ le_supr _ rfl) attribute [ematch] le_refl theorem infi_inf_eq {f g : ι → α} : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ (⨅ x, g x) := le_antisymm (le_inf (le_infi $ assume i, infi_le_of_le i inf_le_left) (le_infi $ assume i, infi_le_of_le i inf_le_right)) (le_infi $ assume i, le_inf (inf_le_left_of_le $ infi_le _ _) (inf_le_right_of_le $ infi_le _ _)) /- TODO: here is another example where more flexible pattern matching might help. begin apply @le_antisymm, safe, pose h := f a ⊓ g a, begin [smt] ematch, ematch end end -/ lemma infi_inf {f : ι → α} {a : α} (i : ι) : (⨅x, f x) ⊓ a = (⨅ x, f x ⊓ a) := le_antisymm (le_infi $ assume i, le_inf (inf_le_left_of_le $ infi_le _ _) inf_le_right) (le_inf (infi_le_infi $ assume i, inf_le_left) (infi_le_of_le i inf_le_right)) lemma inf_infi {f : ι → α} {a : α} (i : ι) : a ⊓ (⨅x, f x) = (⨅ x, a ⊓ f x) := by rw [inf_comm, infi_inf i]; simp [inf_comm] lemma binfi_inf {ι : Sort*} {p : ι → Prop} {f : Πi, p i → α} {a : α} {i : ι} (hi : p i) : (⨅i (h : p i), f i h) ⊓ a = (⨅ i (h : p i), f i h ⊓ a) := le_antisymm (le_infi $ assume i, le_infi $ assume hi, le_inf (inf_le_left_of_le $ infi_le_of_le i $ infi_le _ _) inf_le_right) (le_inf (infi_le_infi $ assume i, infi_le_infi $ assume hi, inf_le_left) (infi_le_of_le i $ infi_le_of_le hi $ inf_le_right)) theorem supr_sup_eq {f g : β → α} : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ (⨆ x, g x) := le_antisymm (supr_le $ assume i, sup_le (le_sup_left_of_le $ le_supr _ _) (le_sup_right_of_le $ le_supr _ _)) (sup_le (supr_le $ assume i, le_supr_of_le i le_sup_left) (supr_le $ assume i, le_supr_of_le i le_sup_right)) /- supr and infi under Prop -/ @[simp] theorem infi_false {s : false → α} : infi s = ⊤ := le_antisymm le_top (le_infi $ assume i, false.elim i) @[simp] theorem supr_false {s : false → α} : supr s = ⊥ := le_antisymm (supr_le $ assume i, false.elim i) bot_le @[simp] theorem infi_true {s : true → α} : infi s = s trivial := le_antisymm (infi_le _ _) (le_infi $ assume ⟨⟩, le_refl _) @[simp] theorem supr_true {s : true → α} : supr s = s trivial := le_antisymm (supr_le $ assume ⟨⟩, le_refl _) (le_supr _ _) @[simp] theorem infi_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = (⨅ i, ⨅ h:p i, f ⟨i, h⟩) := le_antisymm (le_infi $ assume i, le_infi $ assume : p i, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) @[simp] theorem supr_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = (⨆ i, ⨆ h:p i, f ⟨i, h⟩) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λh:p i, f ⟨i, h⟩) _) (supr_le $ assume i, supr_le $ assume : p i, le_supr _ _) theorem infi_and {p q : Prop} {s : p ∧ q → α} : infi s = (⨅ h₁ h₂, s ⟨h₁, h₂⟩) := le_antisymm (le_infi $ assume i, le_infi $ assume j, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) theorem supr_and {p q : Prop} {s : p ∧ q → α} : supr s = (⨆ h₁ h₂, s ⟨h₁, h₂⟩) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λj, s ⟨i, j⟩) _) (supr_le $ assume i, supr_le $ assume j, le_supr _ _) theorem infi_or {p q : Prop} {s : p ∨ q → α} : infi s = (⨅ h : p, s (or.inl h)) ⊓ (⨅ h : q, s (or.inr h)) := le_antisymm (le_inf (infi_le_infi2 $ assume j, ⟨_, le_refl _⟩) (infi_le_infi2 $ assume j, ⟨_, le_refl _⟩)) (le_infi $ assume i, match i with | or.inl i := inf_le_left_of_le $ infi_le _ _ | or.inr j := inf_le_right_of_le $ infi_le _ _ end) theorem supr_or {p q : Prop} {s : p ∨ q → α} : (⨆ x, s x) = (⨆ i, s (or.inl i)) ⊔ (⨆ j, s (or.inr j)) := le_antisymm (supr_le $ assume s, match s with | or.inl i := le_sup_left_of_le $ le_supr _ i | or.inr j := le_sup_right_of_le $ le_supr _ j end) (sup_le (supr_le_supr2 $ assume i, ⟨or.inl i, le_refl _⟩) (supr_le_supr2 $ assume j, ⟨or.inr j, le_refl _⟩)) theorem Inf_eq_infi {s : set α} : Inf s = (⨅a ∈ s, a) := le_antisymm (le_infi $ assume b, le_infi $ assume h, Inf_le h) (le_Inf $ assume b h, infi_le_of_le b $ infi_le _ h) theorem Sup_eq_supr {s : set α} : Sup s = (⨆a ∈ s, a) := le_antisymm (Sup_le $ assume b h, le_supr_of_le b $ le_supr _ h) (supr_le $ assume b, supr_le $ assume h, le_Sup h) lemma Sup_range {α : Type u} [has_Sup α] {f : ι → α} : Sup (range f) = supr f := rfl lemma Inf_range {α : Type u} [has_Inf α] {f : ι → α} : Inf (range f) = infi f := rfl lemma supr_range {g : β → α} {f : ι → β} : (⨆b∈range f, g b) = (⨆i, g (f i)) := le_antisymm (supr_le $ assume b, supr_le $ assume ⟨i, (h : f i = b)⟩, h ▸ le_supr _ i) (supr_le $ assume i, le_supr_of_le (f i) $ le_supr (λp, g (f i)) (mem_range_self _)) lemma infi_range {g : β → α} {f : ι → β} : (⨅b∈range f, g b) = (⨅i, g (f i)) := le_antisymm (le_infi $ assume i, infi_le_of_le (f i) $ infi_le (λp, g (f i)) (mem_range_self _)) (le_infi $ assume b, le_infi $ assume ⟨i, (h : f i = b)⟩, h ▸ infi_le _ i) theorem Inf_image {s : set β} {f : β → α} : Inf (f '' s) = (⨅ a ∈ s, f a) := calc Inf (set.image f s) = (⨅a, ⨅h : ∃b, b ∈ s ∧ f b = a, a) : Inf_eq_infi ... = (⨅a, ⨅b, ⨅h : f b = a ∧ b ∈ s, a) : by simp [and_comm] ... = (⨅a, ⨅b, ⨅h : a = f b, ⨅h : b ∈ s, a) : by simp [infi_and, eq_comm] ... = (⨅b, ⨅a, ⨅h : a = f b, ⨅h : b ∈ s, a) : by rw [infi_comm] ... = (⨅a∈s, f a) : congr_arg infi $ by funext x; rw [infi_infi_eq_left] theorem Sup_image {s : set β} {f : β → α} : Sup (f '' s) = (⨆ a ∈ s, f a) := calc Sup (set.image f s) = (⨆a, ⨆h : ∃b, b ∈ s ∧ f b = a, a) : Sup_eq_supr ... = (⨆a, ⨆b, ⨆h : f b = a ∧ b ∈ s, a) : by simp [and_comm] ... = (⨆a, ⨆b, ⨆h : a = f b, ⨆h : b ∈ s, a) : by simp [supr_and, eq_comm] ... = (⨆b, ⨆a, ⨆h : a = f b, ⨆h : b ∈ s, a) : by rw [supr_comm] ... = (⨆a∈s, f a) : congr_arg supr $ by funext x; rw [supr_supr_eq_left] /- supr and infi under set constructions -/ /- should work using the simplifier! -/ @[simp] theorem infi_emptyset {f : β → α} : (⨅ x ∈ (∅ : set β), f x) = ⊤ := le_antisymm le_top (le_infi $ assume x, le_infi false.elim) @[simp] theorem supr_emptyset {f : β → α} : (⨆ x ∈ (∅ : set β), f x) = ⊥ := le_antisymm (supr_le $ assume x, supr_le false.elim) bot_le @[simp] theorem infi_univ {f : β → α} : (⨅ x ∈ (univ : set β), f x) = (⨅ x, f x) := show (⨅ (x : β) (H : true), f x) = ⨅ (x : β), f x, from congr_arg infi $ funext $ assume x, infi_const @[simp] theorem supr_univ {f : β → α} : (⨆ x ∈ (univ : set β), f x) = (⨆ x, f x) := show (⨆ (x : β) (H : true), f x) = ⨆ (x : β), f x, from congr_arg supr $ funext $ assume x, supr_const @[simp] theorem infi_union {f : β → α} {s t : set β} : (⨅ x ∈ s ∪ t, f x) = (⨅x∈s, f x) ⊓ (⨅x∈t, f x) := calc (⨅ x ∈ s ∪ t, f x) = (⨅ x, (⨅h : x∈s, f x) ⊓ (⨅h : x∈t, f x)) : congr_arg infi $ funext $ assume x, infi_or ... = (⨅x∈s, f x) ⊓ (⨅x∈t, f x) : infi_inf_eq theorem infi_le_infi_of_subset {f : β → α} {s t : set β} (h : s ⊆ t) : (⨅ x ∈ t, f x) ≤ (⨅ x ∈ s, f x) := by rw [(union_eq_self_of_subset_left h).symm, infi_union]; exact inf_le_left @[simp] theorem supr_union {f : β → α} {s t : set β} : (⨆ x ∈ s ∪ t, f x) = (⨆x∈s, f x) ⊔ (⨆x∈t, f x) := calc (⨆ x ∈ s ∪ t, f x) = (⨆ x, (⨆h : x∈s, f x) ⊔ (⨆h : x∈t, f x)) : congr_arg supr $ funext $ assume x, supr_or ... = (⨆x∈s, f x) ⊔ (⨆x∈t, f x) : supr_sup_eq theorem supr_le_supr_of_subset {f : β → α} {s t : set β} (h : s ⊆ t) : (⨆ x ∈ s, f x) ≤ (⨆ x ∈ t, f x) := by rw [(union_eq_self_of_subset_left h).symm, supr_union]; exact le_sup_left @[simp] theorem insert_of_has_insert {α : Type*} (x : α) (a : set α) : has_insert.insert x a = insert x a := rfl @[simp] theorem infi_insert {f : β → α} {s : set β} {b : β} : (⨅ x ∈ insert b s, f x) = f b ⊓ (⨅x∈s, f x) := eq.trans infi_union $ congr_arg (λx:α, x ⊓ (⨅x∈s, f x)) infi_infi_eq_left @[simp] theorem supr_insert {f : β → α} {s : set β} {b : β} : (⨆ x ∈ insert b s, f x) = f b ⊔ (⨆x∈s, f x) := eq.trans supr_union $ congr_arg (λx:α, x ⊔ (⨆x∈s, f x)) supr_supr_eq_left @[simp] theorem infi_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : set β), f x) = f b := show (⨅ x ∈ insert b (∅ : set β), f x) = f b, by simp @[simp] theorem infi_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : set β), f x) = f a ⊓ f b := by { rw [show {a, b} = (insert b {a} : set β), from rfl, infi_insert, inf_comm], simp } @[simp] theorem supr_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : set β), f x) = f b := show (⨆ x ∈ insert b (∅ : set β), f x) = f b, by simp @[simp] theorem supr_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : set β), f x) = f a ⊔ f b := by { rw [show {a, b} = (insert b {a} : set β), from rfl, supr_insert, sup_comm], simp } lemma infi_image {γ} {f : β → γ} {g : γ → α} {t : set β} : (⨅ c ∈ f '' t, g c) = (⨅ b ∈ t, g (f b)) := le_antisymm (le_infi $ assume b, le_infi $ assume hbt, infi_le_of_le (f b) $ infi_le (λ_, g (f b)) (mem_image_of_mem f hbt)) (le_infi $ assume c, le_infi $ assume ⟨b, hbt, eq⟩, eq ▸ infi_le_of_le b $ infi_le (λ_, g (f b)) hbt) lemma supr_image {γ} {f : β → γ} {g : γ → α} {t : set β} : (⨆ c ∈ f '' t, g c) = (⨆ b ∈ t, g (f b)) := le_antisymm (supr_le $ assume c, supr_le $ assume ⟨b, hbt, eq⟩, eq ▸ le_supr_of_le b $ le_supr (λ_, g (f b)) hbt) (supr_le $ assume b, supr_le $ assume hbt, le_supr_of_le (f b) $ le_supr (λ_, g (f b)) (mem_image_of_mem f hbt)) /- supr and infi under Type -/ @[simp] theorem infi_empty {s : empty → α} : infi s = ⊤ := le_antisymm le_top (le_infi $ assume i, empty.rec_on _ i) @[simp] theorem supr_empty {s : empty → α} : supr s = ⊥ := le_antisymm (supr_le $ assume i, empty.rec_on _ i) bot_le @[simp] theorem infi_unit {f : unit → α} : (⨅ x, f x) = f () := le_antisymm (infi_le _ _) (le_infi $ assume ⟨⟩, le_refl _) @[simp] theorem supr_unit {f : unit → α} : (⨆ x, f x) = f () := le_antisymm (supr_le $ assume ⟨⟩, le_refl _) (le_supr _ _) lemma supr_bool_eq {f : bool → α} : (⨆b:bool, f b) = f tt ⊔ f ff := le_antisymm (supr_le $ assume b, match b with tt := le_sup_left | ff := le_sup_right end) (sup_le (le_supr _ _) (le_supr _ _)) lemma infi_bool_eq {f : bool → α} : (⨅b:bool, f b) = f tt ⊓ f ff := le_antisymm (le_inf (infi_le _ _) (infi_le _ _)) (le_infi $ assume b, match b with tt := inf_le_left | ff := inf_le_right end) theorem infi_subtype {p : ι → Prop} {f : subtype p → α} : (⨅ x, f x) = (⨅ i (h:p i), f ⟨i, h⟩) := le_antisymm (le_infi $ assume i, le_infi $ assume : p i, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) lemma infi_subtype' {p : ι → Prop} {f : ∀ i, p i → α} : (⨅ i (h : p i), f i h) = (⨅ x : subtype p, f x.val x.property) := (@infi_subtype _ _ _ p (λ x, f x.val x.property)).symm theorem supr_subtype {p : ι → Prop} {f : subtype p → α} : (⨆ x, f x) = (⨆ i (h:p i), f ⟨i, h⟩) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λh:p i, f ⟨i, h⟩) _) (supr_le $ assume i, supr_le $ assume : p i, le_supr _ _) theorem infi_sigma {p : β → Type w} {f : sigma p → α} : (⨅ x, f x) = (⨅ i (h:p i), f ⟨i, h⟩) := le_antisymm (le_infi $ assume i, le_infi $ assume : p i, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) theorem supr_sigma {p : β → Type w} {f : sigma p → α} : (⨆ x, f x) = (⨆ i (h:p i), f ⟨i, h⟩) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λh:p i, f ⟨i, h⟩) _) (supr_le $ assume i, supr_le $ assume : p i, le_supr _ _) theorem infi_prod {γ : Type w} {f : β × γ → α} : (⨅ x, f x) = (⨅ i j, f (i, j)) := le_antisymm (le_infi $ assume i, le_infi $ assume j, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) theorem supr_prod {γ : Type w} {f : β × γ → α} : (⨆ x, f x) = (⨆ i j, f (i, j)) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λj, f ⟨i, j⟩) _) (supr_le $ assume i, supr_le $ assume j, le_supr _ _) theorem infi_sum {γ : Type w} {f : β ⊕ γ → α} : (⨅ x, f x) = (⨅ i, f (sum.inl i)) ⊓ (⨅ j, f (sum.inr j)) := le_antisymm (le_inf (infi_le_infi2 $ assume i, ⟨_, le_refl _⟩) (infi_le_infi2 $ assume j, ⟨_, le_refl _⟩)) (le_infi $ assume s, match s with | sum.inl i := inf_le_left_of_le $ infi_le _ _ | sum.inr j := inf_le_right_of_le $ infi_le _ _ end) theorem supr_sum {γ : Type w} {f : β ⊕ γ → α} : (⨆ x, f x) = (⨆ i, f (sum.inl i)) ⊔ (⨆ j, f (sum.inr j)) := le_antisymm (supr_le $ assume s, match s with | sum.inl i := le_sup_left_of_le $ le_supr _ i | sum.inr j := le_sup_right_of_le $ le_supr _ j end) (sup_le (supr_le_supr2 $ assume i, ⟨sum.inl i, le_refl _⟩) (supr_le_supr2 $ assume j, ⟨sum.inr j, le_refl _⟩)) end section complete_linear_order variables [complete_linear_order α] lemma supr_eq_top (f : ι → α) : supr f = ⊤ ↔ (∀b<⊤, ∃i, b < f i) := by rw [← Sup_range, Sup_eq_top]; from forall_congr (assume b, forall_congr (assume hb, set.exists_range_iff)) lemma infi_eq_bot (f : ι → α) : infi f = ⊥ ↔ (∀b>⊥, ∃i, b > f i) := by rw [← Inf_range, Inf_eq_bot]; from forall_congr (assume b, forall_congr (assume hb, set.exists_range_iff)) end complete_linear_order /- Instances -/ instance complete_lattice_Prop : complete_lattice Prop := { Sup := λs, ∃a∈s, a, le_Sup := assume s a h p, ⟨a, h, p⟩, Sup_le := assume s a h ⟨b, h', p⟩, h b h' p, Inf := λs, ∀a:Prop, a∈s → a, Inf_le := assume s a h p, p a h, le_Inf := assume s a h p b hb, h b hb p, ..lattice.bounded_lattice_Prop } lemma Inf_Prop_eq {s : set Prop} : Inf s = (∀p ∈ s, p) := rfl lemma Sup_Prop_eq {s : set Prop} : Sup s = (∃p ∈ s, p) := rfl lemma infi_Prop_eq {ι : Sort*} {p : ι → Prop} : (⨅i, p i) = (∀i, p i) := le_antisymm (assume h i, h _ ⟨i, rfl⟩ ) (assume h p ⟨i, eq⟩, eq ▸ h i) lemma supr_Prop_eq {ι : Sort*} {p : ι → Prop} : (⨆i, p i) = (∃i, p i) := le_antisymm (assume ⟨q, ⟨i, (eq : p i = q)⟩, hq⟩, ⟨i, eq.symm ▸ hq⟩) (assume ⟨i, hi⟩, ⟨p i, ⟨i, rfl⟩, hi⟩) instance pi.complete_lattice {α : Type u} {β : α → Type v} [∀ i, complete_lattice (β i)] : complete_lattice (Π i, β i) := by { pi_instance; { intros, intro, apply_field, intros, simp at H, rcases H with ⟨ x, H₀, H₁ ⟩, subst b, apply a_1 _ H₀ i, } } lemma Inf_apply {α : Type u} {β : α → Type v} [∀ i, complete_lattice (β i)] {s : set (Πa, β a)} {a : α} : (Inf s) a = (⨅f∈s, (f : Πa, β a) a) := by rw [← Inf_image]; refl lemma infi_apply {α : Type u} {β : α → Type v} {ι : Sort*} [∀ i, complete_lattice (β i)] {f : ι → Πa, β a} {a : α} : (⨅i, f i) a = (⨅i, f i a) := by erw [← Inf_range, Inf_apply, infi_range] lemma Sup_apply {α : Type u} {β : α → Type v} [∀ i, complete_lattice (β i)] {s : set (Πa, β a)} {a : α} : (Sup s) a = (⨆f∈s, (f : Πa, β a) a) := by rw [← Sup_image]; refl lemma supr_apply {α : Type u} {β : α → Type v} {ι : Sort*} [∀ i, complete_lattice (β i)] {f : ι → Πa, β a} {a : α} : (⨆i, f i) a = (⨆i, f i a) := by erw [← Sup_range, Sup_apply, supr_range] section complete_lattice variables [preorder α] [complete_lattice β] theorem monotone_Sup_of_monotone {s : set (α → β)} (m_s : ∀f∈s, monotone f) : monotone (Sup s) := assume x y h, Sup_le $ assume x' ⟨f, f_in, fx_eq⟩, le_Sup_of_le ⟨f, f_in, rfl⟩ $ fx_eq ▸ m_s _ f_in h theorem monotone_Inf_of_monotone {s : set (α → β)} (m_s : ∀f∈s, monotone f) : monotone (Inf s) := assume x y h, le_Inf $ assume x' ⟨f, f_in, fx_eq⟩, Inf_le_of_le ⟨f, f_in, rfl⟩ $ fx_eq ▸ m_s _ f_in h end complete_lattice section ord_continuous open lattice variables [complete_lattice α] [complete_lattice β] /-- A function `f` between complete lattices is order-continuous if it preserves all suprema. -/ def ord_continuous (f : α → β) := ∀s : set α, f (Sup s) = (⨆i∈s, f i) lemma ord_continuous_sup {f : α → β} {a₁ a₂ : α} (hf : ord_continuous f) : f (a₁ ⊔ a₂) = f a₁ ⊔ f a₂ := have h : f (Sup {a₁, a₂}) = (⨆i∈({a₁, a₂} : set α), f i), from hf _, have h₁ : {a₁, a₂} = (insert a₂ {a₁} : set α), from rfl, begin rw [h₁, Sup_insert, Sup_singleton, sup_comm] at h, rw [h, supr_insert, supr_singleton, sup_comm] end lemma ord_continuous_mono {f : α → β} (hf : ord_continuous f) : monotone f := assume a₁ a₂ h, calc f a₁ ≤ f a₁ ⊔ f a₂ : le_sup_left ... = f (a₁ ⊔ a₂) : (ord_continuous_sup hf).symm ... = _ : by rw [sup_of_le_right h] end ord_continuous end lattice namespace order_dual open lattice variable (α : Type*) instance [has_Inf α] : has_Sup (order_dual α) := ⟨(Inf : set α → α)⟩ instance [has_Sup α] : has_Inf (order_dual α) := ⟨(Sup : set α → α)⟩ instance [complete_lattice α] : complete_lattice (order_dual α) := { le_Sup := @complete_lattice.Inf_le α _, Sup_le := @complete_lattice.le_Inf α _, Inf_le := @complete_lattice.le_Sup α _, le_Inf := @complete_lattice.Sup_le α _, .. order_dual.lattice.bounded_lattice α, ..order_dual.lattice.has_Sup α, ..order_dual.lattice.has_Inf α } instance [complete_linear_order α] : complete_linear_order (order_dual α) := { .. order_dual.lattice.complete_lattice α, .. order_dual.decidable_linear_order α } end order_dual namespace prod open lattice variables (α : Type*) (β : Type*) instance [has_Inf α] [has_Inf β] : has_Inf (α × β) := ⟨λs, (Inf (prod.fst '' s), Inf (prod.snd '' s))⟩ instance [has_Sup α] [has_Sup β] : has_Sup (α × β) := ⟨λs, (Sup (prod.fst '' s), Sup (prod.snd '' s))⟩ instance [complete_lattice α] [complete_lattice β] : complete_lattice (α × β) := { le_Sup := assume s p hab, ⟨le_Sup $ mem_image_of_mem _ hab, le_Sup $ mem_image_of_mem _ hab⟩, Sup_le := assume s p h, ⟨ Sup_le $ ball_image_of_ball $ assume p hp, (h p hp).1, Sup_le $ ball_image_of_ball $ assume p hp, (h p hp).2⟩, Inf_le := assume s p hab, ⟨Inf_le $ mem_image_of_mem _ hab, Inf_le $ mem_image_of_mem _ hab⟩, le_Inf := assume s p h, ⟨ le_Inf $ ball_image_of_ball $ assume p hp, (h p hp).1, le_Inf $ ball_image_of_ball $ assume p hp, (h p hp).2⟩, .. prod.lattice.bounded_lattice α β, .. prod.lattice.has_Sup α β, .. prod.lattice.has_Inf α β } end prod