Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot -/ import tactic.monotonicity import order.basic open tactic interactive (parse) interactive (loc.ns) interactive.types (texpr location) lean.parser (tk) local postfix `?`:9001 := optional meta def apply_fun_name (e : pexpr) (h : name) (M : option pexpr) : tactic unit := do { H ← get_local h, t ← infer_type H, match t with | `(%%l = %%r) := do ltp ← infer_type l, mv ← mk_mvar, to_expr ``(congr_arg (%%e : %%ltp → %%mv) %%H) >>= note h, clear H | `(%%l ≤ %%r) := do if M.is_some then do Hmono ← M >>= tactic.i_to_expr, to_expr ``(%%Hmono %%H) >>= note h >> skip else do { n ← get_unused_name `mono, to_expr ``(monotone %%e) >>= assert n, do { intro_lst [`x, `y, `h], `[dsimp, mono], skip } <|> swap, Hmono ← get_local n, to_expr ``(%%Hmono %%H) >>= note h >> skip }, clear H | _ := skip end, -- let's try to force β-reduction at `h` try (tactic.interactive.dsimp tt [] [] (loc.ns [h]) {eta := false, beta := true}) } <|> fail ("failed to apply " ++ to_string e ++ " at " ++ to_string h) namespace tactic.interactive /-- Apply a function to some local assumptions which are either equalities or inequalities. For instance, if the context contains `h : a = b` and some function `f` then `apply_fun f at h` turns `h` into `h : f a = f b`. When the assumption is an inequality `h : a ≤ b`, a side goal `monotone f` is created, unless this condition is provided using `apply_fun f at h using P` where `P : monotone f`, or the `mono` tactic can prove it. -/ meta def apply_fun (q : parse texpr) (locs : parse location) (lem : parse (tk "using" *> texpr)?) : tactic unit := --do e ← tactic.i_to_expr q, match locs with | (loc.ns l) := do l.mmap' (λ l, match l with | some h := apply_fun_name q h lem | none := skip end) | wildcard := do ctx ← local_context, ctx.mmap' (λ h, apply_fun_name q h.local_pp_name lem) end end tactic.interactive