Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ namespace tactic private meta def collect_proofs_in : expr → list expr → list name × list expr → tactic (list name × list expr) | e ctx (ns, hs) := let go (tac : list name × list expr → tactic (list name × list expr)) : tactic (list name × list expr) := do t ← infer_type e, mcond (is_prop t) (do first (hs.map $ λ h, do t' ← infer_type h, is_def_eq t t', g ← target, change $ g.replace (λ a n, if a = e then some h else none), return (ns, hs)) <|> (let (n, ns) := (match ns with | [] := (`_x, []) | (n :: ns) := (n, ns) end : name × list name) in do generalize e n, h ← intro n, return (ns, h::hs)) <|> return (ns, hs)) (tac (ns, hs)) in match e with | (expr.const _ _) := go return | (expr.local_const _ _ _ t) := collect_proofs_in t ctx (ns, hs) | (expr.mvar _ _ t) := collect_proofs_in t ctx (ns, hs) | (expr.app f x) := go (λ nh, collect_proofs_in f ctx nh >>= collect_proofs_in x ctx) | (expr.lam n b d e) := go (λ nh, do nh ← collect_proofs_in d ctx nh, var ← mk_local' n b d, collect_proofs_in (expr.instantiate_var e var) (var::ctx) nh) | (expr.pi n b d e) := do nh ← collect_proofs_in d ctx (ns, hs), var ← mk_local' n b d, collect_proofs_in (expr.instantiate_var e var) (var::ctx) nh | (expr.elet n t d e) := go (λ nh, do nh ← collect_proofs_in t ctx nh, nh ← collect_proofs_in d ctx nh, collect_proofs_in (expr.instantiate_var e d) ctx nh) | (expr.macro m l) := go (λ nh, mfoldl (λ x e, collect_proofs_in e ctx x) nh l) | _ := return (ns, hs) end meta def generalize_proofs (ns : list name) : tactic unit := do intros_dep, hs ← local_context >>= mfilter is_proof, t ← target, collect_proofs_in t [] (ns, hs) >> skip open interactive interactive.types lean.parser local postfix *:9001 := many namespace interactive /-- Generalize proofs in the goal, naming them with the provided list. -/ meta def generalize_proofs : parse ident_* → tactic unit := tactic.generalize_proofs end interactive end tactic