Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Path: Maths_Challenges / _target / deps / mathlib / src / topology / category / Top / open_nhds.lean
Views: 18536License: APACHE
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import topology.category.Top.opens import category_theory.full_subcategory open category_theory open topological_space open opposite universe u variables {X Y : Top.{u}} (f : X ⟶ Y) namespace topological_space def open_nhds (x : X.α) := { U : opens X // x ∈ U } namespace open_nhds instance open_nhds_category (x : X.α) : category.{u} (open_nhds x) := by {unfold open_nhds, apply_instance} def inclusion (x : X.α) : open_nhds x ⥤ opens X := full_subcategory_inclusion _ @[simp] lemma inclusion_obj (x : X.α) (U) (p) : (inclusion x).obj ⟨U,p⟩ = U := rfl def map (x : X) : open_nhds (f x) ⥤ open_nhds x := { obj := λ U, ⟨(opens.map f).obj U.1, by tidy⟩, map := λ U V i, (opens.map f).map i } @[simp] lemma map_obj (x : X) (U) (q) : (map f x).obj ⟨U, q⟩ = ⟨(opens.map f).obj U, by tidy⟩ := rfl @[simp] lemma map_id_obj' (x : X) (U) (p) (q) : (map (𝟙 X) x).obj ⟨⟨U, p⟩, q⟩ = ⟨⟨U, p⟩, q⟩ := rfl @[simp] lemma map_id_obj (x : X) (U) : (map (𝟙 X) x).obj U = U := by tidy @[simp] lemma map_id_obj_unop (x : X) (U : (open_nhds x)ᵒᵖ) : (map (𝟙 X) x).obj (unop U) = unop U := by simp @[simp] lemma op_map_id_obj (x : X) (U : (open_nhds x)ᵒᵖ) : (map (𝟙 X) x).op.obj U = U := by simp def inclusion_map_iso (x : X) : inclusion (f x) ⋙ opens.map f ≅ map f x ⋙ inclusion x := nat_iso.of_components (λ U, begin split, exact 𝟙 _, exact 𝟙 _ end) (by tidy) @[simp] lemma inclusion_map_iso_hom (x : X) : (inclusion_map_iso f x).hom = 𝟙 _ := rfl @[simp] lemma inclusion_map_iso_inv (x : X) : (inclusion_map_iso f x).inv = 𝟙 _ := rfl end open_nhds end topological_space